Qi-Yue Yin, Jun Yang, Kai-Qi Huang, Mei-Jing Zhao, Wan-Cheng Ni, Bin Liang, Yan Huang, Shu Wu, Liang Wang. AI in Human-computer Gaming: Techniques, Challenges and Opportunities. Machine Intelligence Research, vol. 20, no. 3, pp.299-317, 2023. https://doi.org/10.1007/s11633-022-1384-6
Citation: Qi-Yue Yin, Jun Yang, Kai-Qi Huang, Mei-Jing Zhao, Wan-Cheng Ni, Bin Liang, Yan Huang, Shu Wu, Liang Wang. AI in Human-computer Gaming: Techniques, Challenges and Opportunities. Machine Intelligence Research, vol. 20, no. 3, pp.299-317, 2023. https://doi.org/10.1007/s11633-022-1384-6

AI in Human-computer Gaming: Techniques, Challenges and Opportunities

doi: 10.1007/s11633-022-1384-6
More Information
  • Author Bio:

    Qi-Yue Yin received the Ph. D. degree in pattern recognition and intelligent system from National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences (CASIA), China in 2017. He is currently an associate professor at Center for Research on Intelligent System and Engineering, CASIA, China. His research interests include machine learning, pattern recognition and artificial intelligence on games. E-mail: qyyin@nlpr.ia.ac.cn ORCID iD: 0000-0002-3442-6275

    Jun Yang received the Ph. D. degree in control science and engineering from Tsinghua University, China in 2011. He is currently a lecturer with Department of Automation, Tsinghua University, China.His research interests include multi-agent reinforcement learning and game theory. E-mail: yangjun603@tsinghua.edu.cn (Corresponding author) ORCID iD: 0000-0002-9386-5825

    Kai-Qi Huang received the Ph. D. degree in communication and information processing from Southeast University, China in 2004. He is currently a professor at Center for Research on Intelligent System and Engineering, CASIA, China. His research interests include visual surveillance, image understanding, pattern recognition, human-computer gaming and biological based vision. E-mail: kqhuang@nlpr.ia.ac.cn (Corresponding author) ORCID iD: 000-0002-2677-9273

    Mei-Jing Zhao received the Ph. D. degree in pattern recognition and intelligent system from Integrated Information System Research Center, CASIA, China in 2016. She is currently an associate professor at Center for Research on Intelligent System and Engineering, CASIA, China. Her research interests include semantic information processing, knowledge representation and reasoning. E-mail: meijing.zhao@ia.ac.cn

    Wan-Cheng Ni received the Ph. D. degree in contemporary integrated manufacturing systems from Department of Automation, Tsinghua University, China in 2007. She is currently a professor at Center for Research on Intelligent System and Engineering, CASIA, China. Her research interests include information processing and knowledge discovery, group intelligent decision-making platform and evaluation. E-mail: wancheng.ni@ia.ac.cn

    Bin Liang received the Ph. D. degree in precision instruments and mechanology from Tsinghua University, China in 1994. He is currently a professor with Department of Automation, Tsinghua University, China. His research interests include artificial intelligence, anomaly detection, space robotics, and fault-tolerant control. E-mail: bliang@tsinghua.edu.cn

    Yan Huang received the Ph. D. degree in pattern recognition and intelligent system from National Laboratory of Pattern Recognition (NLPR), CASIA, China in 2017. He is currently an associate professor at NLPR, CASIA, China. His research interests include visual language understanding and video analysis. E-mail: yhuang@nlpr.ia.ac.cn

    Shu Wu received the Ph. D. degree in computer science from University of Sherbrooke, Canada in 2012. He is currently an associate professor at National Laboratory of Pattern Recognition, CAS- IA, China. His research interests include data mining, network content analysis and security. E-mail: shu.wu@nlpr.ia.ac.cn

    Liang Wang received the Ph. D. degree in pattern recognition and intelligent system from National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences, China in 2004. He is currently a professor at NLPR, CASIA, China. His research interests include computer vision, pattern recognition, machine learning and data mining. E-mail: wangliang@nlpr.ia.ac.cn

  • Received Date: 2022-08-18
  • Accepted Date: 2022-10-19
  • Publish Online: 2023-01-07
  • Publish Date: 2023-06-01
  • With the breakthrough of AlphaGo, human-computer gaming AI has ushered in a big explosion, attracting more and more researchers all over the world. As a recognized standard for testing artificial intelligence, various human-computer gaming AI systems (AIs) have been developed, such as Libratus, OpenAI Five, and AlphaStar, which beat professional human players. The rapid development of human-computer gaming AIs indicates a big step for decision-making intelligence, and it seems that current techniques can handle very complex human-computer games. So, one natural question arises: What are the possible challenges of current techniques in human-computer gaming and what are the future trends? To answer the above question, in this paper, we survey recent successful game AIs, covering board game AIs, card game AIs, first-person shooting game AIs, and real-time strategy game AIs. Through this survey, we 1) compare the main difficulties among different kinds of games and the corresponding techniques utilized for achieving professional human-level AIs; 2) summarize the mainstream frameworks and techniques that can be properly relied on for developing AIs for complex human-computer games; 3) raise the challenges or drawbacks of current techniques in the successful AIs; and 4) try to point out future trends in human-computer gaming AIs. Finally, we hope that this brief review can provide an introduction for beginners and inspire insight for researchers in the field of AI in human-computer gaming.

     

  • This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
    The images or other third party material in this article are included in the article′s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article′s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
    To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
    1 A name known by the public.
    2 https://tenhou.net/man/
    3 https://github.com/Blizzard/s2client-proto
    4 https://www.tensorflow.org/5 https://pytorch.org/
    5 https://pytorch.org/
    6 https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
    7 Including AlphaGo Master, a previous version of AlphaGo Zero that defeated strongest human professional players by 60 – 0 in online games.
    8 Come from http://wargame.ia.ac.cn/main
  • loading
  • [1]
    N. E. Cagiltay. Teaching software engineering by means of computer-game development: Challenges and opportunities. British Journal of Educational Technology, vol. 38, no. 3, pp. 405–415, 2007. DOI: 10.1111/j.1467-8535.2007.00705.x.
    [2]
    R. J. Crouser, R. Chang. An affordance-based framework for human computation and human-computer collaboration. IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp. 2859–2868, 2012. DOI: 10.1109/TVCG.2012.195.
    [3]
    A. P. Saygin, I. Cicekli, V. Akman. Turing test: 50 years later. Minds and Machines, vol. 10, no. 4, pp. 463–518, 2000. DOI: 10.1023/A:1011288000451.
    [4]
    J. Schaeffer, R. Lake, P. Lu, M. Bryant. Chinook the world man-machine checkers champion. AI Magazine, vol. 17, no. 1, Article number 21, 1996. DOI: 10.1609/aimag.v17i1.1208.
    [5]
    M. Campbell, A. J. Jr. Hoane, F. H. Hsu. Deep Blue. Artificial Intelligence, vol. 134, no. 1–2, pp. 57–83, 2002. DOI: 10.1016/S0004-3702(01)00129-1.
    [6]
    V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis. Human-level control through deep reinforcement learning. Nature, vol. 518, no. 7540, pp. 529–533, 2015. DOI: 10.1038/nature14236.
    [7]
    D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D. Hassabis. Mastering the game of go with deep neural networks and tree search. Nature, vol. 529, no. 7587, pp. 484–489, 2016. DOI: 10.1038/nature16961.
    [8]
    N. Brown, T. Sandholm. Superhuman AI for heads-up no-limit poker: Libratus beats top professionals. Science, vol. 359, no. 6374, pp. 418–424, 2018. DOI: 10.1126/science.aao1733.
    [9]
    C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dçbiak, C. Dennison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P. d. O. Pinto, J. Raiman, T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, S. S. Zhang. Dota 2 with large scale deep reinforcement learning. [Online], Available: https://arxiv.org/abs/1912.06680v1, 2019.
    [10]
    O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai, J. P. Agapiou, M. Jaderberg, A. S. Vezhnevets, R. Leblond, T. Pohlen, V. Dalibard, D. Budden, Y. Sulsky, J. Molloy, T. L. Paine, C. Gulcehre, Z. Y. Wang, T. Pfaff, Y. H. Wu, R. Ring, D. Yogatama, D. Wünsch, K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu, D. Hassabis, C. Apps, D. Silver. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, vol. 575, no. 7782, pp. 350–354, 2019. DOI: 10.1038/s41586-019-1724-z.
    [11]
    A. P. Badia, B. Piot, S. Kapturowski, P. Sprechmann, A. Vitvitskyi, Z. D. Guo, C. Blundell. Agent57: Outperforming the Atari human benchmark. In Proceedings of the 37th International Conference on Machine Learning, pp. 507–517, 2020.
    [12]
    B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, I. Mordatch. Emergent tool use from multi-agent autocurricula. [Online], Available: https://arxiv.org/abs/1909.07528, 2019.
    [13]
    N. Brown, T. Sandholm. Superhuman AI for multiplayer poker. Science, vol. 365, no. 6456, pp. 885–890, 2019. DOI: 10.1126/science.aay2400.
    [14]
    D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. T. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Van Den driessche, T. Graepel, D. Hassabis. Mastering the game of go without human knowledge. Nature, vol. 550, no. 7676, pp. 354–359, 2017. DOI: 10.1038/nature24270.
    [15]
    D. H. Ye, G. B. Chen, W. Zhang, S. Chen, B. Yuan, B. Liu, J. Chen, Z. Liu, F. H. Qiu, H. S. Yu, Y. Y. T. Yin, B. Shi, L. Wang, T. F. Shi, Q. Fu, W. Yang, L. X. Huang, W. Liu. Towards playing full MOBA games with deep reinforcement learning. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, Article number 53, 2020.
    [16]
    J. J. Li, S. Koyamada, Q. W. Ye, G. Q. Liu, C. Wang, R. H. Yang, L. Zhao, T. Qin, T. Y. Liu, H. W. Hon. Suphx: Mastering mahjong with deep reinforcement learning. [Online], Available: https://arxiv.org/abs/2003.13590v2, 2020.
    [17]
    D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, D. Hassabis. A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science, vol. 362, no. 6419, pp. 1140–1144, 2018. DOI: 10.1126/science.aar6404.
    [18]
    M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh, M. Johanson, M. Bowling. DeepStack: Expert-level artificial intelligence in heads-up no-limit poker. Science, vol. 356, no. 6337, pp. 508–513, 2017. DOI: 10.1126/science.aam6960.
    [19]
    D. C. Zha, J. R. Xie, W. Y. Ma, S. Zhang, X. R. Lian, X. Hu, J. Liu. Douzero: Mastering doudizhu with self-play deep reinforcement learning. In Proceedings of the 38th International Conference on Machine Learning, pp. 12333–12344, 2021.
    [20]
    M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castañeda, C. Beattie, N. C. Rabinowitz, A. S. Morcos, A. Ruderman, N. Sonnerat, T. Green, L. Deason, J. Z. Leibo, D. Silver, D. Hassabis, K. Kavukcuoglu, T. Graepel. Human-level performance in 3D multiplayer games with population-based reinforcement learning. Science, vol. 364, no. 6443, pp. 859–865, 2019. DOI: 10.1126/science.aau6249.
    [21]
    X. J. Wang, J. X. Song, P. H. Qi, P. Peng, Z. K. Tang, W. Zhang, W. M. Li, X. J. Pi, J. J. He, C. Gao, H. T. Long, Q. Yuan. SCC: An efficient deep reinforcement learning agent mastering the game of StarCraft II. In Proceedings of the 38th International Conference on Machine Learning, pp. 10905–10915, 2021.
    [22]
    Q. Y. Yin, M. J. Zhao, W. C. Ni, J. G. Zhang, K. Q. Huang. Intelligent decision making technology and challenge of wargame. Acta Automatica Sinica, vol. 48, no. 9, pp. 1–15, 2022. DOI: 10.16383/j.aas.c210547. (in Chinese)
    [23]
    N. Brown, T. Sandholm. Safe and nested subgame solving for imperfect-information games. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, USA, pp. 689–699, 2017.
    [24]
    N. Burch. Time and Space: Why Imperfect Information Games are Hard, Ph. D. dissertation, Department of Computing Science, University of Alberta, Edmonton, Canada, 2017.
    [25]
    R. Sanjaya, J. Wang, Y. D. Yang. Measuring the non-transitivity in chess. Algorithms, vol. 15, no. 5, Article number 152, 2022. DOI: 10.3390/a15050152.
    [26]
    W. M. Czarnecki, G. Gidel, B. Tracey, K. Tuyls, S. Omidshafiei, D. Balduzzi, M. Jaderberg. Real world games look like spinning tops. In Proceedings of the 34th Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 17443–17454, 2020.
    [27]
    C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, S. Colton. A survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in Games, vol. 4, no. 1, pp. 1–43, 2012. DOI: 10.1109/TCIAIG.2012.2186810.
    [28]
    L. Schaefers, M. Platzner. Distributed Monte Carlo tree search: A novel technique and its application to computer go. IEEE Transactions on Computational Intelligence and AI in Games, vol. 7, no. 4, pp. 361–374, 2015. DOI: 10.1109/TCIAIG.2014.2346997.
    [29]
    A. E. Elo. The Rating of Chess Players, Past & Present, New York, USA: Arco Pub, 1978.
    [30]
    M. Zinkevich, M. Johanson, M. Bowling, C. Piccione. Regret minimization in games with incomplete information. In Proceedings of the 20th International Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 1729–1736, 2007.
    [31]
    M. Lanctot, K. Waugh, M. Zinkevich, M. Bowling. Monte Carlo sampling for regret minimization in extensive games. In Proceedings of the 22nd International Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 1078–1086, 2009.
    [32]
    N. Burch, M. Johanson, M. Bowling. Solving imperfect information games using decomposition. In Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Canada, pp. 602–608, 2013.
    [33]
    Y. Li, D. Xu. Skill learning for robotic insertion based on one-shot demonstration and reinforcement learning. International Journal of Automation and Computing, vol. 18, no. 3, pp. 457–467, 2021. DOI: 10.1007/s11633-021-1290-3.
    [34]
    K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A. Bharath. Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, vol. 34, no. 6, pp. 26–38, 2017. DOI: 10.1109/MSP.2017.2743240.
    [35]
    Y. Yu. Towards sample efficient reinforcement learning. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, pp. 5739–5743, 2018.
    [36]
    T. M. Moerland, J. Broekens, C. M. Jonker. Model-based reinforcement learning: A survey. [Online], Available: https://arxiv.org/abs/2006.16712, 2020.
    [37]
    A. J. Baruah, S. Baruah. Data augmentation and deep neuro-fuzzy network for student performance prediction with MapReduce framework. International Journal of Automation and Computing, vol. 18, no. 6, pp. 981–992, 2021. DOI: 10.1007/s11633-021-1312-1.
    [38]
    M. R. Samsami, H. Alimadad. Distributed deep reinforcement learning: An overview. [Online], Available: https://arxiv.org/abs/2011.11012, 2020. DOI: 10.48550/arxiv.2011.11012.
    [39]
    T. Y. Chen, K. Q. Zhang, G. B. Giannakis, T. Başar. Communication-efficient distributed reinforcement learning. [Online], Available: https://arxiv.org/abs/1812.03239, 2018.
    [40]
    A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, S. Legg, V. Mnih, K. Kavukcuoglu, D. Silver. Massively parallel methods for deep reinforcement learning. [Online], Available: https://arxiv.org/abs/1507.04296v2, 2015.
    [41]
    L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, K. Kavukcuoglu. IMPALA: Scalable distributed Deep-RL with importance weighted actor-learner architectures. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, pp. 1406–1415, 2018.
    [42]
    L. Espeholt, R. Marinier, P. Stanczyk, K. Wang, M. Michalski. SEED RL: Scalable and efficient Deep-RL with accelerated central inference. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, pp. 1–20, 2020.
    [43]
    M. W. Hoffman, B. Shahriari, J. Aslanides, G. Barth-Maron, N. Momchev, D. Sinopalnikov, P. Stańczyk, S. Ramos, A. Raichuk, D. Vincent, L. Hussenot, R. Dadashi, G. Dulac-Arnold, M. Orsini, A. Jacq, J. Ferret, N. Vieillard, S. K. S. Ghasemipour, S. Girgin, O. Pietquin, F. Behbahani, T. Norman, A. Abdolmaleki, A. Cassirer, F. Yang, K. Baumli, S. Henderson, A. Friesen, R. Haroun, A. Novikov, S. G. Colmenarejo, S. Cabi, C. Gulcehre, T. Le Paine, S. Srinivasan, A. Cowie, Z. Y. Wang, B. Piot, N. de Freitas. Acme: A research framework for distributed reinforcement learning. [Online], Available: https://arxiv.org/abs/2006.00979, 2020.
    [44]
    W. J. Hong, P. Yang, K. Tang. Evolutionary computation for large-scale multi-objective optimization: A decade of progresses. International Journal of Automation and Computing, vol. 18, no. 2, pp. 155–169, 2021. DOI: 10.1007/s11633-020-1253-0.
    [45]
    C. Daskalakis, P. W. Goldberg, C. H. Papadimitriou. The complexity of computing a Nash equilibrium. SIAM Journal on Computing, vol. 39, no. 1, pp. 195–259, 2009. DOI: 10.1137/070699652.
    [46]
    N. Brown, A. Bakhtin, A. Lerer, Q. C. Gong. Combining deep reinforcement learning and search for imperfect-information games. In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver, Canada, Article number 1431, 2020.
    [47]
    Y. F. Lv, X. M. Ren. Approximate Nash solutions for multiplayer mixed-zero-sum game with reinforcement learning. IEEE Transactions on Systems,Man,and Cybernetics:Systems, vol. 49, no. 12, pp. 2739–2750, 2019. DOI: 10.1109/TSMC.2018.2861826.
    [48]
    J. Heinrich, M. Lanctot, D. Silver. Fictitious self-play in extensive-form games. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, pp. 805–813, 2015.
    [49]
    V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, USA, pp. 1928–1937, 2016.
    [50]
    J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov. Proximal policy optimization algorithms. [Online], Available: https://arxiv.org/abs/1707.06347, 2017.
    [51]
    P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. H. Yang, W. Paul, M. I. Jordan, I. Stoica. Ray: A distributed framework for emerging AI applications. In Proceedings of the 13th USENIX Symposium on Operating Systems Design and Implementation, Carlsbad, USA, pp. 561–577, 2018.
    [52]
    A. Sergeev, M. Del Balso. Horovod: Fast and easy distributed deep learning in TensorFlow. [Online], Available: https://arxiv.org/abs/1802.05799, 2018.
    [53]
    T. Kurth, M. Smorkalov, P. Mendygral, S. Sridharan, A. Mathuriya. TensorFlow at scale: Performance and productivity analysis of distributed training with Horovod, MLSL, and Cray PE ML. Concurrency and Computation:Practice and Experience, vol. 31, no. 16, Article number e4989, 2019. DOI: 10.1002/cpe.4989.
    [54]
    X. P. Qiu, T. X. Sun, Y. G. Xu, Y. F. Shao, N. Dai, X. J. Huang. Pre-trained models for natural language processing: A survey. Science China Technological Sciences, vol. 63, no. 10, pp. 1872–1897, 2020. DOI: 10.1007/s11431-020-1647-3.
    [55]
    J. Y. Lin, R. Men, A. Yang, C. Zhou, M. Ding, Y. C. Zhang, P. Wang, A. Wang, L. Jiang, X. Y. Jia, J. Zhang, J. W. Zhang, X. Zou, Z. K. Li, X. D. Deng, J. Liu, J. B. Xue, H. L. Zhou, J. X. Ma, J. Yu, Y. Li, W. Lin, J. R. Zhou, J. Tang, H. X. Yang. M6: A Chinese multimodal pretrainer. [Online], Available: https://arxiv.org/abs/2103.00823, 2021.
    [56]
    T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, D. Amodei. Language models are few-shot learners. In Proceedings of the 34th Annual Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 1877–1901, 2020.
    [57]
    J. Y. Lin, A. Yang, J. Z. Bai, C. Zhou, L. Jiang, X. Y. Jia, A. Wang, J. Zhang, Y. Li, W. Lin, J. R. Zhou, H. X. Yang. M6-10T: A sharing-delinking paradigm for efficient multi-trillion parameter pretraining. [Online], Available: https://arxiv.org/abs/2110.03888, 2021.
    [58]
    M. Biesialska, K. Biesialska, M. R. Costa-Jussà. Continual lifelong learning in natural language processing: A survey. In Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, pp. 6523–6541, 2020. DOI: 10.18653/v1/2020.coling-main.574.
    [59]
    M. De Lange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, T. Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3366–3385, 2022. DOI: 10.1109/TPAMI.2021.3057446.
    [60]
    L. V. Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R. Heese, B. Kirsch, M. Walczak, J. Pfrommer, A. Pick, R. Ramamurthy, J. Garcke, C. Bauckhage, J. Schuecker. Informed machine learning – A taxonomy and survey of integrating prior knowledge into learning systems. IEEE Transactions on Knowledge and Data Engineering, to be published. DOI: 10.1109/TKDE.2021.3079836.
    [61]
    Y. Wu, J. H. Li, Y. Z. Yuan, A. K. Qin, Q. G. Miao, M. G. Gong. Commonality autoencoder: Learning common features for change detection from heterogeneous images. IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 9, pp. 4257–4270, 2022. DOI: 10.1109/TNNLS.2021.3056238.
    [62]
    M. K. Titsias, S. Nikoloutsopoulos. Bayesian transfer reinforcement learning with prior knowledge rules. [Online], Available: https://arxiv.org/abs/1810.00468, 2018.
    [63]
    N. Bougie, L. K. Cheng, R. Ichise. Combining deep reinforcement learning with prior knowledge and reasoning. ACM SIGAPP Applied Computing Review, vol. 18, no. 2, pp. 33–45, 2018. DOI: 10.1145/3243064.3243067.
    [64]
    M. C. Shen, J. P. How. Robust opponent modeling via adversarial ensemble reinforcement learning. In Proceedings of the 31st International Conference on Automated Planning and Scheduling, Guangzhou, China, pp. 578–587, 2021.
    [65]
    M. J. Kim, K. J. Kim. Opponent modeling based on action table for MCTS-based fighting game AI. In Proceedings of IEEE Conference on Computational Intelligence and Games, New York, USA, pp. 178–180, 2017. DOI: 10.1109/CIG.2017.8080432.
    [66]
    F. B. Von Der Osten, M. Kirley, T. Miller. The minds of many: Opponent modelling in a stochastic game. In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, pp. 3845–3851, 2017.
    [67]
    D. Balduzzi, K. Tuyls, J. Perolat, T. Graepel. Re-evaluating evaluation. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, pp. 3272–3283, 2018.
    [68]
    S. Omidshafiei, C. Papadimitriou, G. Piliouras, K. Tuyls, M. Rowland, J. B. Lespiau, W. M. Czarnecki, M. Lanctot, J. Perolat, R. Munos. α-rank: Multi-agent evaluation by evolution. Scientific Reports, vol. 9, no. 1, Article number 9937, 2019. DOI: 10.1038/s41598-019-45619-9.
    [69]
    K. Tuyls, J. Pérolat, M. Lanctot, G. Ostrovski, R. Savani, J. Z. Leibo, T. Ord, T. Graepel, S. Legg. Symmetric decomposition of asymmetric games. Scientific Reports, vol. 8, no. 1, Article number 1015, 2018. DOI: 10.1038/s41598-018-19194-4.
    [70]
    H. T. Jia, Y. J. Hu, Y. F. Chen, C. X. Ren, T. J. Lv, C. J. Fan, C. J. Zhang. Fever basketball: A complex, flexible, and asynchronized sports game environment for multi-agent reinforcement learning. [Online], Available: https://arxiv.org/abs/2012.03204, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(5)

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (348) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return