Citation: | Ge-Peng Ji, Deng-Ping Fan, Yu-Cheng Chou, Dengxin Dai, Alexander Liniger, Luc Van Gool. Deep Gradient Learning for Efficient Camouflaged Object Detection. Machine Intelligence Research, vol. 20, no. 1, pp.92-108, 2023. https://doi.org/10.1007/s11633-022-1365-9 |
[1] |
D. P. Fan, G. P. Ji, G. L. Sun, M. M. Cheng, J. B. Shen, L. Shao. Camouflaged object detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 2774–2784, 2020. DOI: 10.1109/CVPR42600.2020.00285.
|
[2] |
D. P. Fan, G. P. Ji, M. M. Cheng, L. Shao. Concealed object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, to be published. DOI: 10.1109/TPAMI.2021.3085766.
|
[3] |
D. P. Fan, G. P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, L. Shao. PraNet: Parallel reverse attention network for polyp segmentation. In Proceedings of the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Lima, Peru, pp. 263–273, 2020. DOI: 10.1007/978-3-030-59725-2_26.
|
[4] |
G. P. Ji, Y. C. Chou, D. P. Fan, G. Chen, H. Z. Fu, D. Jha, L. Shao. Progressively normalized self-attention network for video polyp segmentation. In Proceedings of the 24th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Strasbourg, France, pp. 142–152, 2021. DOI: 10.1007/978-3-030-87193-2_14.
|
[5] |
G. P. Ji, G. Xiao, Y. C. Chou, D. P. Fan, K. Zhao, G. Chen, L. Van Gool. Video polyp segmentation: A deep learning perspective.Machine Intelligence Research, to be published. DOI: 10.1007/s11633-022-1371-y .
|
[6] |
D. P. Fan, T. Zhou, G. P. Ji, Y. Zhou, G. Chen, H. Z. Fu, J. B. Shen, L. Shao. Inf-Net: Automatic COVID-19 lung infection segmentation from CT images. IEEE Transactions on Medical Imaging, vol. 39, no. 8, pp. 2626–2637, 2020. DOI: 10.1109/TMI.2020.2996645.
|
[7] |
Y. H. Wu, S. H. Gao, J. Mei, J. Xu, D. P. Fan, R. G. Zhang, M. M. Cheng. JCS: An explainable COVID-19 diagnosis system by joint classification and segmentation. IEEE Transactions on Image Processing, vol. 30, pp. 3113–3126, 2021. DOI: 10.1109/TIP.2021.3058783.
|
[8] |
J. N. Liu, B. Dong, S. Wang, H. Cui, D. P. Fan, J. Q. Ma, G. Chen. COVID-19 lung infection segmentation with a novel two-stage cross-domain transfer learning framework. Medical Image Analysis, vol. 74, Article number 102205, 2021. DOI: 10.1016/j.media.2021.102205.
|
[9] |
G. P. Ji, K. R. Fu, Z. Wu, D. P. Fan, J. B. Shen, L. Shao. Full-duplex strategy for video object segmentation. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 4902–4913, 2021. DOI: 10.1109/ICCV48922.2021.00488.
|
[10] |
W. C. Chen, X. Y. Yu, L. L. Ou. Pedestrian attribute recognition in video surveillance scenarios based on view-attribute attention localization. Machine Intelligence Research, vol. 19, no. 2, pp. 153–168, 2022. DOI: 10.1007/s11633-022-1321-8.
|
[11] |
J. R. Xue, J. W. Fang, P. Zhang. A survey of scene understanding by event reasoning in autonomous driving. International Journal of Automation and Computing, vol. 15, no. 3, pp. 249–266, 2018. DOI: 10.1007/s11633-018-1126-y.
|
[12] |
R. R. Feng, B. Prabhakaran. Facilitating fashion camouflage art. In Proceedings of the 21st ACM International Conference on Multimedia, ACM, Barcelona, Spain, pp. 793–802, 2013. DOI: 10.1145/2502081.2502121.
|
[13] |
M. Dean, R. Harwood, C. Kasari. The art of camouflage: Gender differences in the social behaviors of girls and boys with autism spectrum disorder,. Autism, vol. 21, no. 6, pp. 678–689, 2017. DOI: 10.1177/1362361316671845.
|
[14] |
H. Y. Mei, G. P. Ji, Z. Q. Wei, X. Yang, X. P. Wei, D. P. Fan. Camouflaged object segmentation with distraction mining. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, pp. 8768–8777, 2021. DOI: 10.1109/CVPR46437.2021.00866.
|
[15] |
Y. Q. Lv, J. Zhang, Y. C. Dai, A. X. Li, B. W. Liu, N. Barnes, D. P. Fan. Simultaneously localize, segment and rank the camouflaged objects. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 11586–11596, 2021. DOI: 10.1109/CVPR46437.2021.01142.
|
[16] |
Q. Jia, S. L. Yao, Y. Liu, X. Fan, R. S. Liu, Z. X. Luo. Segment, magnify and reiterate: Detecting camouflaged objects the hard way. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, USA, pp. 4713–4722, 2022.
|
[17] |
Y. J. Zhong, B. Li, L. Tang, S. Y. Kuang, S. Wu, S. H. Ding. Detecting camouflaged object in frequency domain. In Proceedings of Conference on Computer Vision and Pattern Recognition, IEEE, New Orleans, USA, pp. 4504–4513, 2022.
|
[18] |
Q. Zhai, X. Li, F. Yang, C. Chen, H. Cheng, D. P. Fan. Mutual graph learning for camouflaged object detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 12992–13002, 2021. DOI: 10.1109/CVPR46437.2021.01280.
|
[19] |
G. P. Ji, L. Zhu, M. C. Zhuge, K. R. Fu. Fast camouflaged object detection via edge-based reversible re-calibration network. Pattern Recognition, vol. 123, Article number 108414, 2022. DOI: 10.1016/j.patcog.2021.108414.
|
[20] |
H. W. Zhu, P. Li, H. R. Xie, X. F. Yan, D. Liang, D. P. Chen, M. Q. Wei, J. Qin. I can find you! Boundary-guided separated attention network for camouflaged object detection. In Proceedings of the 36th AAAI Conference on Artificial Intelligence, online, pp. 3608–3616, 2022. DOI: 10.1609/aaai.v36i3.20273.
|
[21] |
F. Yang, Q. Zhai, X. Li, R. Huang, A. Luo, H. Cheng, D. P. Fan. Uncertainty-guided transformer reasoning for camouflaged object detection. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 4126–4135, 2021. DOI: 10.1109/ICCV48922.2021.00411.
|
[22] |
A. X. Li, J. Zhang, Y. Q. Lv, B. W. Liu, T. Zhang, Y. C. Dai. Uncertainty-aware joint salient object and camouflaged object detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 10066–10076, 2021. DOI: 10.1109/CVPR46437.2021.00994.
|
[23] |
Y. X. Pan, Y. W. Chen, Q. Fu, P. Zhang, X. Xu. Study on the camouflaged target detection method based on 3D convexity. Modern Applied Science, vol. 5, no. 4, pp. 152–157, 2011. DOI: 10.5539/mas.v5n4p152.
|
[24] |
P. Sengottuvelan, A. Wahi, A. Shanmugam. Performance of decamouflaging through exploratory image analysis. In Proceedings of the 1st International Conference on Emerging Trends in Engineering and Technology, IEEE, Nagpur, India, pp. 6–10, 2008. DOI: 10.1109/ICETET.2008.232.
|
[25] |
Z. Liu, K. Q. Huang, T. N. Tan. Foreground object detection using top-down information based on em framework. IEEE Transactions on Image Processing, vol. 21, no. 9, pp. 4204–4217, 2012. DOI: 10.1109/TIP.2012.2200492.
|
[26] |
J. Q. Yin, Y. B. Han, W. D. Hou, J. P. Li. Detection of the mobile object with camouflage color under dynamic background based on optical flow. Procedia Engineering, vol. 15, pp. 2201–2205, 2011. DOI: 10.1016/j.proeng.2011.08.412.
|
[27] |
J. Gallego, P. Bertolino. Foreground object segmentation for moving camera sequences based on foreground-background probabilistic models and prior probability maps. In Proceedings of IEEE International Conference on Image Processing, Paris, France, pp. 3312–3316, 2014. DOI: 10.1109/ICIP.2014.7025670.
|
[28] |
Y. J. Sun, G. Chen, T. Zhou, Y. Zhang, N. Liu. Context-aware cross-level fusion network for camouflaged object detection. In Proceedings of the 30th International Joint Conference on Artificial Intelligence, Montreal, Canada, pp. 1025–1031, 2021. DOI: 10.24963/ijcai.2021/142.
|
[29] |
G. Chen, S. J. Liu, Y. J. Sun, G. P. Ji, Y. F. Wu, T. Zhou. Camouflaged object detection via context-aware cross-level fusion. IEEE Transactions on Circuits and Systems for Video Technology, to be published. DOI: 10.1109/TCSVT.2022.3178173.
|
[30] |
J. J. Ren, X. W. Hu, L. Zhu, X. M. Xu, Y. Y. Xu, W. M. Wang, Z. J. Deng, P. A. Heng. Deep texture-aware features for camouflaged object detection. IEEE Transactions on Circuits and Systems for Video Technology, to be published. DOI: 10.1109/TCSVT.2021.3126591.
|
[31] |
N. Kajiura, H. Liu, S. Satoh. Improving camouflaged object detection with the uncertainty of pseudo-edge labels. In Proceedings of ACM Multimedia Asia, Gold Coast, Australia, pp. 7, 2021. DOI: 10.1145/3469877.3490587.
|
[32] |
M. C. Zhuge, X. K. Lu, Y. Y. Guo, Z. H. Cai, S. H. Chen. CubeNet: X-shape connection for camouflaged object detection. Pattern Recognition, vol. 127, Article number 108644, 2022. DOI: 10.1016/j.patcog.2022.108644.
|
[33] |
T. N. Le, T. V. Nguyen, Z. L. Nie, M. T. Tran, A. Sugimoto. Anabranch network for camouflaged object segmentation. Computer Vision and Image Understanding, vol. 184, pp. 45–56, 2019. DOI: 10.1016/j.cviu.2019.04.006.
|
[34] |
Y. Pang, X. Zhao, T. Z. Xiang, L. Zhang, H. Lu. Zoom in and out: A mixed-scale triplet network for camouflaged object detection. In Proceedings of Conference on Computer Vision and Pattern Recognition, IEEE, New Orleans, USA, pp. 2160–2170, 2022.
|
[35] |
Y. X. Mao, J. Zhang, Z. X. Wan, Y. C. Dai, A. X. Li, Y. Q. Lv, X. Y. Tian, D. P. Fan, N. Barnes. Transformer transforms salient object detection and camouflaged object detection, [Online], Available: https://arxiv.org/abs/2104.10127v1, 2021.
|
[36] |
X. L. Cheng, H. Xiong, D. P. Fan, Y. R. Zhong, M. Harandi, T. Drummond, Z. Y. Ge. Implicit motion handling for video camouflaged object detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, New Orleans, USA, pp. 13864–13873, 2022.
|
[37] |
J. C. Zhu, X. Y. Zhang, S. Zhang, J. N. Liu. Inferring camouflaged objects by texture-aware interactive guidance network. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 4, pp. 3599–3607, 2021.
|
[38] |
T. Y. Lin, P. Dollàr, R. Girshick, K. M. He, B. Hariharan, S. Belongie. Feature pyramid networks for object detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 936–944, 2017. DOI: 10.1109/CVPR.2017.106.
|
[39] |
Z. H. Ke, J. Y. Sun, K. C. Li, Q. Yan, R. W. H. Lau. MODNet: Real-time trimap-free portrait matting via objective decomposition. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 1, pp. 1140–1147, 2022. DOI: 10.1609/aaai.v36i1.19999.
|
[40] |
M. X. Tan, Q. V. Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, USA, pp. 6105–6114, 2019.
|
[41] |
S. Ioffe, C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, pp. 448–456, 2015.
|
[42] |
X. Glorot, A. Bordes, Y. Bengio. Deep sparse rectifier neural networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, pp. 315–323, 2011.
|
[43] |
Z. Su, W. Z. Liu, Z. T. Yu, D. W. Hu, Q. Liao, Q. Tian, M. Pietikäinen, L. Liu. Pixel difference networks for efficient edge detection. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 5097–5107, 2021. DOI: 10.1109/ICCV48922.2021.00507.
|
[44] |
C. Ma, Y. M. Rao, Y. A. Cheng, C. Chen, J. W. Lu, J. Zhou. Structure-preserving super resolution with gradient guidance. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 7766–7775, 2020. DOI: 10.1109/CVPR42600.2020.00779.
|
[45] |
J. Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, 1986. DOI: 10.1109/TPAMI.1986.4767851.
|
[46] |
L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2018. DOI: 10.1109/TPAMI.2017.2699184.
|
[47] |
K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, 2016. DOI: 10.1109/CVPR.2016.90.
|
[48] |
J. Wei, S. H. Wang, Q. M. Huang. F.3Net: Fusion, feedback and focus for salient object detection. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 7, pp. 12321–12328, 2020. DOI: 10.1609/aaai.v34i07.6916.
|
[49] |
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. M. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. J. Bai, S. Chintala. PyTorch: An imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 721, 2019.
|
[50] |
S. M. Hu, D. Liang, G. Y. Yang, G. W. Yang, W. Y. Zhou. Jittor: A novel deep learning framework with meta-operators and unified graph execution. Science China Information Sciences, vol. 63, no. 12, Article number 222103, 2020. DOI: 10.1007/s11432-020-3097-4.
|
[51] |
K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imageNet classification. In Proceedings of IEEE International Conference on Computer Vision, Santiago, Chile, pp. 1026–1034, 2015. DOI: 10.1109/ICCV.2015.123.
|
[52] |
A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, pp. 1097–1105, 2012.
|
[53] |
D. P. Kingma, J. Ba. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[54] |
I. Loshchilov, F. Hutter. SGDR: Stochastic gradient descent with warm restarts. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[55] |
P. Krähenbühl, V. Koltun. Efficient inference in fully connected CRFs with Gaussian edge potentials. In Proceedings of the 24th International Conference on Neural Information Processing Systems, Granada, Spain, pp. 109–117, 2011.
|
[56] |
J. X. Zhao, J. J. Liu, D. P. Fan, Y. Cao, J. F. Yang, M. M. Cheng. EGNet: Edge guidance network for salient object detection. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Seoul, Republic of Korea, pp. 8778–8787, 2019. DOI: 10.1109/ICCV.2019.00887.
|
[57] |
Z. Wu, L. Su, Q. M. Huang. Stacked cross refinement network for edge-aware salient object detection. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Seoul, Republic of Korea, pp. 7263–7272, 2019. DOI: 10.1109/ICCV.2019.00736.
|
[58] |
Z. Wu, L. Su, Q. M. Huang. Cascaded partial decoder for fast and accurate salient object detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 3902–3911, 2019. DOI: 10.1109/CVPR.2019.00403.
|
[59] |
S. H. Gao, Y. Q. Tan, M. M. Cheng, C. Z. Lu, Y. P. Chen, S. C. Yan. Highly efficient salient object detection with 100K parameters. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 702–721, 2020. DOI: 10.1007/978-3-030-58539-6_42.
|
[60] |
J. Zhang, D. P. Fan, Y. C. Dai, S. Anwar, F. S. Saleh, T. Zhang, N. Barnes. UC-Net: Uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 8579–8588, 2020. DOI: 10.1109/CVPR42600.2020.00861.
|
[61] |
H. J. Zhou, X. H. Xie, J. H. Lai, Z. X. Chen, L. X. Yang. Interactive two-stream decoder for accurate and fast saliency detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 9138–9147, 2020. DOI: 10.1109/CVPR42600.2020.00916.
|
[62] |
Y. W. Pang, X. Q. Zhao, L. H. Zhang, H. C. Lu. Multi-scale interactive network for salient object detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 9410–9419, 2020. DOI: 10.1109/CVPR42600.2020.00943.
|
[63] |
X. B. Qin, D. P. Fan, C. Y. Huang, C. Diagne, Z. C. Zhang, A. C. Sant′Anna, A. Suàrez, M. Jagersand, L. Shao. Boundary-aware segmentation network for mobile and web applications, [Online], Available: https://arxiv.org/abs/2101.04704, 2021.
|
[64] |
D. P. Fan, M. M. Cheng, Y. Liu, T. Li, A. Borji. Structure-measure: A new way to evaluate foreground maps. In Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, pp. 4558–4567, 2017. DOI: 10.1109/ICCV.2017.487.
|
[65] |
D. P. Fan, C. Gong, Y. Cao, B. Ren, M. M. Cheng, A. Borji. Enhanced-alignment measure for binary foreground map evaluation. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, pp. 698–704, 2018. DOI: 10.24963/ijcai.2018/97.
|
[66] |
D. P. Fan, G. P. Ji, X. B. Qin, M. M. Cheng. Cognitive vision inspired object segmentation metric and loss function. SCIENTIA SINICA Informationis, vol. 51, no. 9, Article number 1475, 2021. DOI: 10.1360/SSI-2020-0370.
|
[67] |
A. Borji, M. M. Cheng, H. Z. Jiang, J. Li. Salient object detection: A benchmark. IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5706–5722, 2015. DOI: 10.1109/TIP.2015.2487833.
|
[68] |
M. C. Zhuge, D. P. Fan, N. Liu, D. W. Zhang, D. Xu, L. Shao. Salient object detection via integrity learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, to be published. DOI: 10.1109/TPAMI.2022.3179526.
|
[69] |
R. Margolin, L. Zelnik-Manor, A. Tal. How to evaluate foreground maps. In IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, pp. 248–255, 2014. DOI: 10.1109/CVPR.2014.39.
|
[70] |
A. Howard, M. Sandler, B. Chen, W. J. Wang, L. C. Chen, M. X. Tan, G. Chu, V. Vasudevan, Y. K. Zhu, R. M. Pang, H. Adam, Q. Le. Searching for MobileNetV3. In Proceedings of IEEE/CVF International conference on computer vision, IEEE, Seoul, Republic of Korea, pp. 1314–1324, 2019. DOI: 10.1109/ICCV.2019.00140.
|
[71] |
D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. De Lange, D. Johansen, H. D. Johansen. Kvasir-SEG: A segmented polyp dataset. In Proceedings of the 26th International Conference on Multimedia Modeling, Springer, Daejeon, Republic of Korea, pp. 451–462, 2020. DOI: 10.1007/978-3-030-37734-2.
|
[72] |
J. Bernal, F. J. Sànchez, G. Fernàndez-Esparrach, D. Gil, C. Rodríguez, F. Vilariño. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. Saliency maps from physicians. Computerized Medical Imaging and Graphics, vol. 43, pp. 99–111, 2015. DOI: 10.1016/j.compmedimag.2015.02.007.
|
[73] |
J. Bernal, J. Sànchez, F. Vilariño. Towards automatic polyp detection with a polyp appearance model. Pattern Recognition, vol. 45, no. 9, pp. 3166–3182, 2012. DOI: 10.1016/j.patcog.2012.03.002.
|
[74] |
J. Silva, A. Histace, O. Romain, X. Dray, B. Granado. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. International Journal of Computer Assisted Radiology and Surgery, vol. 9, no. 2, pp. 283–293, 2014. DOI: 10.1007/s11548-013-0926-3.
|
[75] |
O. Ronneberger, P. Fischer, T. Brox. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Munich, Germany, pp. 234–241, 2015. DOI: 10.1007/978-3-319-24574-4_28.
|
[76] |
Z. W. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, J. M. Liang. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging, vol. 39, no. 6, pp. 1856–1867, 2020. DOI: 10.1109/TMI.2019.2959609.
|
[77] |
X. Q. Zhao, L. H. Zhang, H. C. Lu. Automatic polyp segmentation via multi-scale subtraction network. In Proceedings of the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Strasbourg, France, pp. 120–130, 2021. DOI: 10.1007/978-3-030-87193-2_12.
|
[78] |
Y. Shi, L. M. Cui, Z. Q. Qi, F. Meng, Z. S. Chen. Automatic road crack detection using random structured forests. IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 12, pp. 3434–3445, 2016. DOI: 10.1109/TITS.2016.2552248.
|
[79] |
E. Z. Xie, W. J. Wang, W. H. Wang, M. Y. Ding, C. H. Shen, P. Luo. Segmenting transparent objects in the wild. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 696–711, 2020. DOI: 10.1007/978-3-030-58601-0_41.
|