Dandan Zhang, Weiyong Si, Wen Fan, Yuan Guan, Chenguang Yang. From Teleoperation to Autonomous Robot-assisted Microsurgery: A Survey. Machine Intelligence Research, vol. 19, no. 4, pp.288-306, 2022. https://doi.org/10.1007/s11633-022-1332-5
Citation: Dandan Zhang, Weiyong Si, Wen Fan, Yuan Guan, Chenguang Yang. From Teleoperation to Autonomous Robot-assisted Microsurgery: A Survey. Machine Intelligence Research, vol. 19, no. 4, pp.288-306, 2022. https://doi.org/10.1007/s11633-022-1332-5

From Teleoperation to Autonomous Robot-assisted Microsurgery: A Survey

doi: 10.1007/s11633-022-1332-5
More Information
  • Author Bio:

    Dandan Zhang received the Ph. D. degree in medical robotics from Computing Department, Imperial College London, UK in 2021. She is currently an honorable researcher at Department of Electrical and Electronic Engineering, Imperial College London, UK. She has been working for Program Grant “Microrobotics for Surgery” between 2018–2022, funded by the Engineering and Physical Sciences Research Council, UK. She is also a lecturer with Department of Engineering Mathematics, University of Bristol, UK. She has been working on micro-robotics, medical robotics, and domestic robotics in the past 3 years and she has published more than 30 papers as the first author or the corresponding author. Her research interests include robot learning, human-robot shared control and microrobotics. E-mail: ye21623@bristol.ac.uk ORCID iD: 0000-0001-7649-7605

    Weiyong Si received the M. Sc. degree in aerospace engineering from the Beijing Institute of Technology, China in 2018. He is currently a Ph. D. degree candidate in robotics at Bristol Robotics Laboratory and University of the West of England, UK.His research interests include robot skill learning, teleoperation and robot control.E-mail: weiyong2.si@brl.ac.uk

    Wen Fan received the B. Sc. degree in automation from Hefei University of Technology, China in 2020, and the M. Sc. degrees in advanced control and system engineering from University of Manchester, UK in 2021. Currently, he is a research assistant at Intelligent Robotics Group, Department of Mathematics Engineering, University of Bristol, UK. His research interests include tactile robotics, robot learning, and XAI.E-mail: fanwen2021@gmail.com

    Yuan Guan received the B. Eng degree in engineering from University of Bristol, UK in 2018, and the M. Sc degree in robotics from University College London, UK in 2019. He is currently a Ph. D. degree candidate in robotics at Bristol Robotics Laboratory, University of the West of England, UK. His research interests include robot learning control and surgical robot.E-mail: yuan2.guan@brl.ac.uk

    Chenguang Yang received the Ph. D. degree in control engineering from National University of Singapore, Singapore in 2010. He received the postdoctoral training in human robotics from Imperial College London, London, UK. He was awarded UK EPSRC UKRI Innovation Fellowship and individual EU Marie Curie International Incoming Fellowship. As the lead author, he won the IEEE Transactions on Robotics Best Paper Award (2012) and IEEE Transactions on Neural Networks and Learning Systems Outstanding Paper Award (2022). He is a Co-chair of IEEE Technical Committee on Collaborative Automation for Flexible Manufacturing (CAFM) and a Co-chair of IEEE Technical Committee on Bio-mechatronics and Bio-robotics Systems (B2S). His research interest include human robot interaction and intelligent system design.E-mail: cyang@ieee.org (Corresponding author)ORCID iD: 0000-0001-5255-5559

  • Received Date: 2022-03-14
  • Accepted Date: 2022-04-19
  • Publish Online: 2022-07-02
  • Publish Date: 2022-08-01
  • Robot-assisted microsurgery (RAMS) has many benefits compared to traditional microsurgery. Microsurgical platforms with advanced control strategies, high-quality micro-imaging modalities and micro-sensing systems are worth developing to further enhance the clinical outcomes of RAMS. Within only a few decades, microsurgical robotics has evolved into a rapidly developing research field with increasing attention all over the world. Despite the appreciated benefits, significant challenges remain to be solved. In this review paper, the emerging concepts and achievements of RAMS will be presented. We introduce the development tendency of RAMS from teleoperation to autonomous systems. We highlight the upcoming new research opportunities that require joint efforts from both clinicians and engineers to pursue further outcomes for RAMS in years to come.

     

  • loading
  • [1]
    C. J. Payne, K. Vyas, D. Bautista-Salinas, D. D. Zhang, H. J. Marcus, G. Z. Yang. Shared-control robots. Neurosurgical Robotics, H. J. Marcus, C. J. Payne, Eds., New York, USA: Humana, pp. 63–79, 2021. DOI: 10.1007/978-1-0716-0993-4_4.
    [2]
    C. Duval, J. Jones. Assessment of the amplitude of oscillations associated with high-frequency components of physiological tremor: Impact of loading and signal differentiation. Experimental Brain Research, vol. 163, no. 2, pp. 261–266, 2005. DOI: 10.1007/s00221-005-2233-x.
    [3]
    C. J. Coulson, A. P. Reid, D. W. Proops, P. N. Brett. ENT challenges at the small scale. The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 3, no. 2, pp. 91–96, 2007. DOI: 10.1002/rcs.132.
    [4]
    S. P. N. Singh, C. N. Riviere. Physiological tremor amplitude during retinal microsurgery. In Proceedings of the 28th Annual Northeast Bioengineering Conference, IEEE, Philadelphia, USA, pp. 171–172, 2002. DOI: 10.1109/NEBC.2002.999520.
    [5]
    K. Olds, A. Hillel, J. Kriss, A. Nair, H. Kim, E. Cha, M. Curry, L. Akst, R. Yung, J. Richmon, R. Taylor. A robotic assistant for trans-oral surgery: The robotic endo-laryngeal flexible (robo-ELF) scope. Journal of Robotic Surgery, vol. 6, no. 1, pp. 13–18, 2012. DOI: 10.1007/s11701-011-0329-9.
    [6]
    B. Piriyanont, S. O. R. Moheimani, A. Bazaei. Design and control of a MEMS micro-gripper with integrated electro-thermal force sensor. In Proceedings of Australian Control Conference, IEEE, Fremantle, Australia, pp. 479–484, 2013. DOI: 10.1109/AUCC.2013.6697320.
    [7]
    N. Simaan, R. M. Yasin, L. Wang. Medical technologies and challenges of robot-assisted minimally invasive intervention and diagnostics. Annual Review of Control,Robotics,and Autonomous Systems, vol. 1, pp. 465–490, 2018. DOI: 10.1146/annurev-control-060117-104956.
    [8]
    D. D. Zhang, F. Cursi, G. Z. Yang. WSRender: A workspace analysis and visualization toolbox for robotic manipulator design and verification. IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3836–3843, 2019. DOI: 10.1109/LRA.2019.2929986.
    [9]
    L. F. De Nil, S. J. Lafaille. Jaw and finger movement accuracy under visual and nonvisual feedback conditions. Perceptual and Motor Skills, vol. 95, no. 3, pp. 1129–1140, 2002. DOI: 10.2466/pms.2002.95.3f.1129.
    [10]
    R. X. Wang, D. D. Zhang, Q. B. Li, X. Y. Zhou, B. Lo. Real-time surgical environment enhancement for robot-assisted minimally invasive surgery based on super-resolution. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Xi′an, China, pp. 3434–3440, 2021. DOI: 10.1109/ICRA48506.2021.9561393.
    [11]
    A. Z. Gao, R. R. Murphy, W. D. Chen, G. Dagnino, P. Fischer, M. G. Gutierrez, D. Kundrat, B. J. Nelson, N. Shamsudhin, H. Su, J. G. Xia, A. Zemmar, D. D. Zhang, C. Wang, G. Z. Yang. Progress in robotics for combating infectious diseases. Science Robotics, vol. 6, no. 52, Article number eabf1462, 2021. DOI: 10.1126/scirobotics.abf1462.
    [12]
    H. Su, C. G. Yang, G. Ferrigno, E. De Momi. Improved human-robot collaborative control of redundant robot for teleoperated minimally invasive surgery. IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1447–1453, 2019. DOI: 10.1109/LRA.2019.2897145.
    [13]
    D. D. Zhang, J. H. Chen, W. Li, D. B. Salinas, G. Z. Yang. A microsurgical robot research platform for robot-assisted microsurgery research and training. International Journal of Computer Assisted Radiology and Surgery, vol. 15, no. 1, pp. 15–25, 2020. DOI: 10.1007/s11548-019-02074-1.
    [14]
    T. B. Sheridan. Telerobotics, Automation, and Human Supervisory Control, Cambridge, USA: MIT Press, 1992.
    [15]
    M. Li, R. H. Taylor. Spatial motion constraints in medical robot using virtual fixtures generated by anatomy. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, New Orleans, USA, vol. 2, pp. 1270–1275, 2004. DOI: 10.1109/ROBOT.2004.1307999.
    [16]
    T. Xia, C. Baird, G. Jallo, K. Hayes, N. Nakajima, N. Hata, P. Kazanzides. An integrated system for planning, navigation and robotic assistance for skull base surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 4, no. 4, pp. 321–330, 2008. DOI: 10.1002/rcs.213.
    [17]
    C. G. Yang, J. Luo, Y. P. Pan, Z. Liu, C. Y. Su. Personalized variable gain control with tremor attenuation for robot teleoperation. IEEE Transactions on Systems,Man,and Cybernetics:Systems, vol. 48, no. 10, pp. 1759–1770, 2018. DOI: 10.1109/TSMC.2017.2694020.
    [18]
    P. S. Jensen, K. W. Grace, R. Attariwala, J. E. Colgate, M. R. Glucksberg. Toward robot-assisted vascular microsurgery in the retina. Graefe′s Archive for Clinical and Experimental Ophthalmology, vol. 235, no. 11, pp. 696–701, 1997. DOI: 10.1007/BF01880668.
    [19]
    R. Taylor, P. Jensen, L. Whitcomb, A. Barnes, R. Kumar, D. Stoianovici, P. Gupta, Z. X. Wang, E. Dejuan, L. Kavoussi. A steady-hand robotic system for microsurgical augmentation. The International Journal of Robotics Research, vol. 18, no. 12, pp. 1201–1210, 1999. DOI: 10.1177/02783649922067807.
    [20]
    B. Mitchell, J. Koo, I. Iordachita, P. Kazanzides, A. Kapoor, J. Handa, G. Hager, R. Taylor. Development and application of a new steady-hand manipulator for retinal surgery. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Rome, Italy, pp. 623–629, 2007. DOI: 10.1109/ROBOT.2007.363056.
    [21]
    A. Üneri, M. A. Balicki, J. Handa, P. Gehlbach, R. H. Taylor, I. Iordachita. New steady-hand eye robot with micro-force sensing for vitreoretinal surgery. In Proceedings of the 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Tokyo, Japan, pp. 814–819, 2010. DOI: 10.1109/BIOROB.2010.5625991.
    [22]
    H. Steinhart, K. Bumm, M. Vogele, J. Wurm, H. Iro. Surgical application of a new robotic system for paranasal sinus surgery. Annals of Otology,Rhinology &Laryngology, vol. 113, no. 4, pp. 303–309, 2004. DOI: 10.1177/000348940411300409.
    [23]
    W. T. Ang, P. K. Pradeep, C. N. Riviere. Active tremor compensation in microsurgery. In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, San Francisco, USA, pp. 2738–2741, 2004. DOI:10.1109/IEMBS.2004.1403784.
    [24]
    T. L. Edwards, K. Xue, H. C. M. Meenink, M. J. Beelen, G. J. L. Naus, M. P. Simunovic, M. Latasiewicz, A. D. Farmery, M. D. de Smet, R. E. MacLaren. First-in-human study of the safety and viability of intraocular robotic surgery. Nature Biomedical Engineering, vol. 2, no. 9, pp. 649–656, 2018. DOI: 10.1038/s41551-018-0248-4.
    [25]
    M. D. de Smet, T. C. M. Meenink, T. Janssens, V. Vanheukelom, G. J. L. Naus, M. J. Beelen, C. Meers, B. Jonckx, J. M. Stassen. Robotic assisted cannulation of occluded retinal veins. PLoS One, vol. 11, no. 9, Article number e0162037, 2016. DOI: 10.1371/journal.pone.0162037.
    [26]
    A. L. Feng, C. R. Razavi, P. Lakshminarayanan, Z. Ashai, K. Olds, M. Balicki, Z. Gooi, A. T. Day, R. H. Taylor, J. D. Richmon. The robotic ENT microsurgery system: A novel robotic platform for microvascular surgery. The Laryngoscope, vol. 127, no. 11, pp. 2495–2500, 2017. DOI: 10.1002/lary.26667.
    [27]
    S. Weber, K. Gavaghan, W. Wimmer, T. Williamson, N. Gerber, J. Anso, B. Bell, A. Feldmann, C. Rathgeb, M. Matulic, M. Stebinger, D. Schneider, G. Mantokoudis, O. Scheidegger, F. Wagner, M. Kompis, M. Caversaccio. Instrument flight to the inner ear. Science Robotics, vol. 2, no. 4, Article number eaal4916, 2017. DOI: 10.1126/scirobotics.aal4916.
    [28]
    R. A. MacLachlan, B. C. Becker, J. C. Tabares, G. W. Podnar, L. A. Lobes, C. N. Riviere. Micron: An actively stabilized handheld tool for microsurgery. IEEE Transactions on Robotics, vol. 28, no. 1, pp. 195–212, 2012. DOI: 10.1109/TRO.2011.2169634.
    [29]
    T. Meenink, G. Naus, M. de Smet, M. Beelen, M. Steinbuch. Robot assistance for micrometer precision in vitreoretinal surgery. Investigative Ophthalmology &Visual Science, vol. 54, no. 15, Article number 5808, 2013.
    [30]
    J. Ansó, O. Scheidegger, W. Wimmer, K. Gavaghan, N. Gerber, D. Schneider, J. Hermann, C. Rathgeb, C. Dür, K. M. Rösler, G. Mantokoudis, M. Caversaccio, S, Weber. Neuromonitoring during robotic cochlear implantation: Initial clinical experience. Annals of Biomedical Engineering, vol. 46, no. 10, pp. 1568–1581, 2018. DOI: 10.1007/s10439-018-2094-7.
    [31]
    J. Ansó, T. W. Balmer, Y. Jegge, H. Kalvoy, B. J. Bell, C. Dür, E. M. Calvo, T. M. Williamson, N. Gerber, D. Ferrario, F. Forterre, P. Büchler, A. Stahel, M. D. Caversaccio, S. Weber, K. A. Gavaghan. Electrical impedance to assess facial nerve proximity during robotic cochlear implantation. IEEE Transactions on Biomedical Engineering, vol. 66, no. 1, pp. 237–245, 2019. DOI: 10.1109/TBME.2018.2830303.
    [32]
    C. Bergeles G. Z. Yang. From passive tool holders to microsurgeons: Safer, smaller, smarter surgical robots. IEEE Transactions on Biomedical Engineering, vol. 61, no. 5, pp. 1565–1576, 2014. DOI: 10.1109/TBME.2013.2293815.
    [33]
    G. Z. Yang, J. Cambias, K. Cleary, E. Daimler, J. Drake, P. E. Dupont, N. Hata, P. Kazanzides, S. Martel, R. V. Patel, V. J. Santos, R. H. Taylor. Medical robotics–Regulatory, ethical, and legal considerations for increasing levels of autonomy. Science Robotics, vol. 2, no. 4, Article number eaam8638, 2017. DOI: 10.1126/scirobotics.aam8638.
    [34]
    T. H. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, P. Abbeel. Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Brisbane, Australia, pp. 5628–5635, 2018. DOI: 10.1109/ICRA.2018.8461249.
    [35]
    B. Keller, M. Draelos, K. Zhou, R. B. Qian, A. N. Kuo, G. Konidaris, K. Hauser, J. A. Izatt. Optical coherence tomography-guided robotic ophthalmic microsurgery via reinforcement learning from demonstration. IEEE Transactions on Robotics, vol. 36, no. 4, pp. 1207–1218, 2020. DOI: 10.1109/TRO.2020.2980158.
    [36]
    J. Matas, S. James, A. J. Davison. Sim-to-real reinforcement learning for deformable object manipulation. In Proceedings of the 2nd Annual Conference on Robot Learning, Zurich, Switzerland, pp. 734–743, 2018.
    [37]
    O. Kroemer, S. Niekum, G. Konidaris. A review of robot learning for manipulation: Challenges, representations, and algorithms. Journal of Machine Learning Research, vol. 22, no. 30, pp. 1–82, 2021.
    [38]
    I. Fleming, M. Balicki, J. Koo, I. Iordachita, B. Mitchell, J. Handa, G. Hager, R. Taylor. Cooperative robot assistant for retinal microsurgery. In Proceedings of the 11th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, New York, USA, pp. 543–550, 2008. DOI: 10.1007/978-3-540-85990-1_65.
    [39]
    J. D. Pitcher, J. T. Wilson, T. C. Tsao, S. D. Schwartz, J. P. Hubschman. Robotic eye surgery: Past, present, and future. Journal of Computer Science &Systems Biology, vol. S3, Article number 1, 2012. DOI: 10.4172/jcsb.S3-001.
    [40]
    S. K. Pandey, V. Sharma. Robotics and ophthalmology: Are we there yet? Indian Journal of Ophthalmology, vol. 67, no. 7, pp. 988–994, 2019.
    [41]
    P. N. Brett, D. A. Baker, L. Reyes, J. Blanshard. An automatic technique for micro-drilling a stapedotomy in the flexible stapes footplate. Proceedings of the Institution of Mechanical Engineers,Part H:Journal of Engineering in Medicine, vol. 209, no. 4, pp. 255–262, 1995. DOI: 10.1243/PIME_PROC_1995_209_352_02.
    [42]
    D. L. Rothbaum, J. Roy, D. Stoianovici, P. Berkelman, G. D. Hager, R. H. Taylor, L. L. Whitcomb, H. W. Francis, J. K. Niparko. Robot-assisted stapedotomy: Micropick fenestration of the stapes footplate. Otolaryngology–Head and Neck Surgery, vol. 127, no. 5, pp. 417–426, 2002. DOI: 10.1067/mhn.2002.129729.
    [43]
    N. Young, T. Nguyen, R. Wiet. Cochlear implantation. Operative Techniques in Otolaryngology–Head and Neck Surgery, vol. 14, no. 4, pp. 263–267, 2003. DOI: 10.1053/S1043-1810(03)00097-6.
    [44]
    J. Zhang, W. Wei, S. Manolidis, J. T. Roland Jr, N. Simaan. Path planning and workspace determination for robot-assisted insertion of steerable electrode arrays for cochlear implant surgery. In Proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, New York, USA, pp. 692–700, 2008. DOI: 10.1007/978-3-540-85990-1_83.
    [45]
    T. Maier, G. Strauss, M. Hofer, T. Kraus, A. Runge, R. Stenzel, J. Gumprecht, T. Berger, A. Dietz, T. C. Lueth. A new micromanipulator system for middle ear surgery. In Proceedings of the IEEE International Conference on Robotics and Automation, IEEE, Anchorage, USA, pp. 1568–1573, 2010. DOI: 10.1109/ROBOT.2010.5509594.
    [46]
    A. M. Bhatki, R. L. Carrau, C. H. Snyderman, D. M. Prevedello, P. A. Gardner, A. B. Kassam. Endonasal surgery of the ventral skull base – endoscopic transcranial surgery. Oral and Maxillofacial Surgery Clinics of North America, vol. 22, no. 1, pp. 157–168, 2010. DOI: 10.1016/j.coms.2009.10.005.
    [47]
    J. Wurm, T. Dannenmann, C. Bohr, H. Iro, K. Bumm. Increased safety in robotic paranasal sinus and skull base surgery with redundant navigation and automated registration. The International Journal of Medical Robotics and Computer Assisted Surgery, vol. 1, no. 3, pp. 42–48, 2005. DOI: 10.1002/rcs.26.
    [48]
    L. Warner, J. Chudasama, C. G. Kelly, S. Loughran, K. McKenzie, R. Wight, P. Dey. Radiotherapy versus open surgery versus endolaryngeal surgery (with or without laser) for early laryngeal squamous cell cancer. Cochrane Database of Systematic Reviews, vol. 2014, no. 12, Article number CD002027, 2014. DOI: 10.1002/14651858.CD002027.pub2.
    [49]
    G. S. Weinstein, B. W. O′Malley Jr, W. Snyder, N. G. Hockstein. Transoral robotic surgery: Supraglottic partial laryngectomy. Annals of Otology,Rhinology &Laryngology, vol. 116, no. 1, pp. 19–23, 2007. DOI: 10.1177/000348940711600104.
    [50]
    N. Simaan, R. Taylor, P. Flint. High dexterity snake-like robotic slaves for minimally invasive telesurgery of the upper airway. In Proceedings of the 7th International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Saint-Malo, France, pp. 17–24, 2004. DOI: 10.1007/978-3-540-30136-3_3.
    [51]
    D. D. Zhang, J. D. Liu, L. Zhang, G. Z. Yang. Design and verification of a portable master manipulator based on an effective workspace analysis framework. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Macau, China, pp. 417–424, 2020. DOI: 10.1109/IROS40897.2019.8968542.
    [52]
    D. D. Zhang, J. D. Liu, A. Z. Gao, G. Z. Yang. An ergonomic shared workspace analysis framework for the optimal placement of a compact master control console. IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2995–3002, 2020. DOI: 10.1109/LRA.2020.2974428.
    [53]
    D. D. Zhang, J. D. Liu, L. Zhang, G. Z. Yang. Hamlyn CRM: A compact master manipulator for surgical robot remote control. International Journal of Computer Assisted Radiology and Surgery, vol. 15, no. 3, pp. 503–514, 2020. DOI: 10.1007/s11548-019-02112-y.
    [54]
    D. D. Zhang, B. Xiao, B. R. Huang, L. Zhang, J. D. Liu, G. Z. Yang. A self-adaptive motion scaling framework for surgical robot remote control. IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 359–366, 2019. DOI: 10.1109/LRA.2018.2890200.
    [55]
    D. D. Zhang, Z. C. Wu, J. H. Chen, A. Z. Gao, X. Chen, P. C. Li, Z. Y. Wang, G. T. Yang, B. Lo, G. Z. Yang. Automatic microsurgical skill assessment based on cross-domain transfer learning. IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4148–4155, 2020. DOI: 10.1109/LRA.2020.2989075.
    [56]
    B. Dahroug, B. Tamadazte, S. Weber, L. Tavernier, N. Andreff. Review on otological robotic systems: Toward microrobot-assisted cholesteatoma surgery. IEEE Reviews in Biomedical Engineering, vol. 11, pp. 125–142, 2018. DOI: 10.1109/RBME.2018.2810605.
    [57]
    P. J. Swaney, A. W. Mahoney, A. A. Remirez, E. Lamers, B. I. Hartley, R. H. Feins, R. Alterovitz, R. J. Webster. Tendons, concentric tubes, and a bevel tip: Three steerable robots in one transoral lung access system. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Seattle, USA, pp. 5378–5383, 2015. DOI: 10.1109/ICRA.2015.7139950.
    [58]
    S. C. Ryu, P. E. Dupont. FBG-based shape sensing tubes for continuum robots. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Hong Kong, China, pp. 3531–3537, 2014. DOI: 10.1109/ICRA.2014.6907368.
    [59]
    G. ter Haar, C. Coussios. High intensity focused ultrasound: Physical principles and devices. International Journal of Hyperthermia, vol. 23, no. 2, pp. 89–104, 2007. DOI: 10.1080/02656730601186138.
    [60]
    J. A. Brown, Z. Torbatian, R. B. Adamson, R. Van Wijhe, R. J. Pennings, G. R. Lockwood, M. L. Bance. High-frequency Ex vivo ultrasound imaging of the auditory system. Ultrasound in Medicine &Biology, vol. 35, no. 11, pp. 1899–1907, 2009. DOI: 10.1016/j.ultrasmedbio.2009.05.021.
    [61]
    T. Y. Fang, H. K. Zhang, R. Finocchi, R. H. Taylor, E. M. Boctor. Force-assisted ultrasound imaging system through dual force sensing and admittance robot control. International Journal of Computer Assisted Radiology and Surgery, vol. 12, no. 6, pp. 983–991, 2017. DOI: 10.1007/s11548-017-1566-9.
    [62]
    T. J. Muldoon, M. C. Pierce, D. L. Nida, M. D. Williams, A. Gillenwater, R. Richards-Kortum. Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy. Optics Express, vol. 15, no. 25, pp. 16413–16423, 2007. DOI: 10.1364/OE.15.016413.
    [63]
    R. K. Orosco, R. Y. Tsien, Q. T. Nguyen. Fluorescence imaging in surgery. IEEE Reviews in Biomedical Engineering, vol. 6, pp. 178–187, 2013. DOI: 10.1109/RBME.2013.2240294.
    [64]
    A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser. Optical coherence tomography-principles and applications. Reports on Progress in Physics, vol. 66, no. 2, pp. 239–303, 2003. DOI: 10.1088/0034-4885/66/2/204.
    [65]
    P. Patwari, N. J. Weissman, S. A. Boppart, C. Jesser, D. Stamper, J. G. Fujimoto, M. E. Brezinski. Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. The American Journal of Cardiology, vol. 85, no. 5, pp. 641–644, 2000. DOI: 10.1016/S0002-9149(99)00825-5.
    [66]
    I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, G. J. Tearney. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound. Journal of the American College of Cardiology, vol. 39, no. 4, pp. 604–609, 2002. DOI: 10.1016/S0735-1097(01)01799-5.
    [67]
    J. Lademann, N. Otberg, H. Richter, L. Meyer, H. Audring, A. Teichmann, S. Thomas, A. Knüttel, W. Sterry. Application of optical non-invasive methods in skin physiology: A comparison of laser scanning microscopy and optical coherent tomography with histological analysis. Skin Research &Technology, vol. 13, no. 2, pp. 119–132, 2007. DOI: 10.1111/j.1600-0846.2007.00208.x.
    [68]
    C. Pitris, K. T. Saunders, J. G. Fujimoto, M. E. Brezinski. High-resolution imaging of the middle ear with optical coherence tomography: A feasibility study. Archives of Otolaryngology–Head &Neck Surgery, vol. 127, no. 6, pp. 637–642, 2001. DOI: 10.1001/archotol.127.6.637.
    [69]
    K. Zhang, W. C. Wang, J. Han, J. U. Kang. A surface topology and motion compensation system for microsurgery guidance and intervention based on common-path optical coherence tomography. IEEE Transactions on Biomedical Engineering, vol. 56, no. 9, pp. 2318–2321, 2009. DOI: 10.1109/TBME.2009.2024077.
    [70]
    J. U. Kang, J. H. Han, X. Liu, K. Zhang. Common-path optical coherence tomography for biomedical imaging and sensing. Journal of the Optical Society of Korea, vol. 14, no. 1, pp. 1–13, 2010. DOI: 10.3807/JOSK.2010.14.1.001.
    [71]
    J. U. Kang, J. H. Han, X. Liu, K. Zhang, C. G. Song, P. Gehlbach. Endoscopic functional Fourier domain common-path optical coherence tomography for microsurgery. IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 4, pp. 781–792, 2010. DOI: 10.1109/JSTQE.2009.2031597.
    [72]
    S. S. Gurbani, P. Wilkening, M. T. Zhao, B. Gonenc, G. W. Cheon, I. I. Iordachita, W. W. Chien, R. H. Taylor, J. K. Niparko, J. U. Kang. Robot-assisted three-dimensional registration for cochlear implant surgery using a common-path swept-source optical coherence tomography probe. Journal of Biomedical Optics, vol. 19, no. 5, Article number 057004, 2014. DOI: 10.1117/1.JBO.19.5.057004.
    [73]
    R. J. Varghese, P. Berthet-Rayne, P. Giataganas, V. Vitiello, G. Z. Yang. A framework for sensorless and autonomous probe-tissue contact management in robotic endomicroscopic scanning. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Singapore, pp. 1738–1745, 2017. DOI: 10.1109/ICRA.2017.7989205.
    [74]
    R. Ray, D. E. Barañano, J. A. Fortun, B. J. Schwent, B. E. Cribbs, C. S. Bergstrom, G. B. Hubbard Ⅲ, S. K. Srivastava. Intraoperative microscope-mounted spectral domain optical coherence tomography for evaluation of retinal anatomy during macular surgery. Ophthalmology, vol. 118, no. 11, pp. 2212–2217, 2011. DOI: 10.1016/j.ophtha.2011.04.012.
    [75]
    R. Kumar, P. Berkelman, P. Gupta, A. Barnes, P. S. Jensen, L. L. Whitcomb, R. H. Taylor. Preliminary experiments in cooperative human/robot force control for robot assisted microsurgical manipulation. In Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, USA, vol. 1, pp. 610–617, 2000. DOI: 10.1109/ROBOT.2000.844120.
    [76]
    P. J. Berkelman, D. L. Rothbaum, J. Roy, S. Lang, L. L. Whitcomb, G. Hager, P. S. Jensen, E. de Juan, R. H. Taylor, J. K. Niparko. Performance evaluation of a cooperative manipulation microsurgical assistant robot applied to stapedotomy. In Proceedings of the 4th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Utrecht, The Netherlands, pp. 1426–1429, 2001. DOI: 10.1007/3-540-45468-3_255.
    [77]
    P. J. Berkelman, L. L. Whitcomb, R. H. Taylor, P. Jensen. A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation. IEEE Transactions on Robotics and Automation, vol. 19, no. 5, pp. 917–921, 2003. DOI: 10.1109/TRA.2003.817526.
    [78]
    B. Bell, S. Stankowski, B. Moser, V. Oliva, C. Stieger, L. P. Nolte, M. Caversaccio, S. Weber. Integrating optical fiber force sensors into microforceps for ORL microsurgery. In Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology, IEEE, Buenos Aires, Argentina, pp. 1848–1851, 2010. DOI: 10.1109/IEMBS.2010.5625967.
    [79]
    Z. L. Sun, M. Balicki, J. Kang, J. Handa, R. Taylor, I. Iordachita. Development and preliminary data of novel integrated optical micro-force sensing tools for retinal microsurgery. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Kobe, Japan, pp. 1897–1902, 2009. DOI: 10.1109/ROBOT.2009.5152836.
    [80]
    I. Iordachita, Z. L. Sun, M. Balicki, J. U. Kang, S. J. Phee, J. Handa, P. Gehlbach, R. Taylor. A sub-millimetric, 0.25 mN resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery. International Journal of Computer Assisted Radiology and Surgery, vol. 4, no. 4, pp. 383–390, 2009. DOI: 10.1007/s11548-009-0301-6.
    [81]
    X. C. He, M. A. Balicki, J. U. Kang, P. L. Gehlbach, J. T. Handa, R. H. Taylor, I. I. Iordachita. Force sensing micro-forceps with integrated fiber Bragg grating for vitreoretinal surgery. In Proceedings of SPIE 8218, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XⅡ, SPIE, San Francisco, USA, vol. 8218, Article number 82180W, 2012. DOI: 10.1117/12.909602.
    [82]
    I. Kuru, B. Gonenc, M. Balicki, J. Handa, P. Gehlbach, R. H. Taylor, I. Iordachita. Force sensing micro-forceps for robot assisted retinal surgery. In Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, San Diego, USA, pp. 1401–1404, 2012. DOI: 10.1109/EMBC.2012.6346201.
    [83]
    D. Petrovic, G. Popovic, E. Chatzitheodoridis, O. Del Medico, A. Almansa, F. Sumecz, W. Brenner, H. Detter. Gripping tools for handling and assembly of microcomponents. In Proceedings of the 23rd International Conference on Microelectronics, IEEE, Nis, Yugoslavia, pp. 247–250, 2002. DOI: 10.1109/MIEL.2002.1003186.
    [84]
    M. Rakotondrabe, I. A. Ivan. Development and force/position control of a new hybrid thermo-piezoelectric MicroGripper dedicated to micromanipulation tasks. IEEE Transactions on Automation Science and Engineering, vol. 8, no. 4, pp. 824–834, 2011. DOI: 10.1109/TASE.2011.2157683.
    [85]
    A. Menciassi, A. Eisinberg, G. Scalari, C. Anticoli, M. C. Carrozza, P. Dario. Force feedback-based microinstrument for measuring tissue properties and pulse in microsurgery. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Seoul, Korea, vol. 1, pp. 626–631, 2001. DOI: 10.1109/ROBOT.2001.932620.
    [86]
    U. Seibold, B. Kubler, G. Hirzinger. Prototype of instrument for minimally invasive surgery with 6-axis force sensing capability. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Barcelona, Spain, pp. 496–501, 2005. DOI: 10.1109/ROBOT.2005.1570167.
    [87]
    X. J. Zhang. Silicon microsurgery-force sensor based on diffractive optical MEMS encoders. Sensor Review, vol. 24, no. 1, pp. 37–41, 2004. DOI: 10.1108/02602280410515806.
    [88]
    J. Peirs, J. Clijnen, D. Reynaerts, H. Van Brussel, P. Herijgers, B. Corteville, S. Boone. A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sensors and Actuators A:Physical, vol. 115, no. 2–3, pp. 447–455, 2004. DOI: 10.1016/j.sna.2004.04.057.
    [89]
    P. Puangmali, H. B. Liu, L. D. Seneviratne, P. Dasgupta, K. Althoefer. Miniature 3-axis distal force sensor for minimally invasive surgical palpation. IEEE/ASME Transactions on Mechatronics, vol. 17, no. 4, pp. 646–656, 2012. DOI: 10.1109/TMECH.2011.2116033.
    [90]
    P. S. Zarrin, A. Escoto, R. Xu, R. V. Patel, M. D. Naish, A. L. Trejos. Development of an optical fiber-based sensor for grasping and axial force sensing. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Singapore, pp. 939–944, 2017. DOI: 10.1109/ICRA.2017.7989114.
    [91]
    B. C. Becker, R. A. MacLachlan, C. N. Riviere. State estimation and feedforward tremor suppression for a handheld micromanipulator with a Kalman filter. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA, IEEE, pp. 5160–5165, 2011. DOI: 10.1109/IROS.2011.6094935.
    [92]
    C. K. M. Fung, I. Elhaj, W. J. Li, N. Xi. A 2-D PVDF force sensing system for micro-manipulation and micro-assembly. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Washington, USA, vol. 2, pp. 1489–1494, 2002. DOI: 10.1109/ROBOT.2002.1014754.
    [93]
    T. Sasaki, M. Hebisawa, Y. Mito, K. Dohda, S. Kuroda. Force measurement of blood vessel gripping by hydraulic-driven forceps. Procedia CIRP, vol. 65, pp. 84–87, 2017. DOI: 10.1016/j.procir.2017.04.002.
    [94]
    Y. D. Hu, D. Z. Li, G. H. Zong, X. G. Sun. Robotic system for microsurgical keratoplasty. In Proceedings of the 27th Annual International Conference of the Engineering in Medicine and Biology, IEEE, Shanghai, China, pp. 5762–5765, 2005. DOI: 10.1109/IEMBS.2005.1615797.
    [95]
    G. M. Gu, Y. K. Shin, J. Son, J. Kim. Design and characterization of a photo-sensor based force measurement unit (FMU). Sensors and Actuators A:Physical, vol. 182, pp. 49–56, 2012. DOI: 10.1016/j.sna.2012.05.018.
    [96]
    Y. Ansel, F. Schmitz, S. Kunz, H. P. Gruber, G. Popovic. Development of tools for handling and assembling microcomponents. Journal of Micromechanics and Microengineering, vol. 12, no. 4, pp. 430–437, 2002. DOI: 10.1088/0960-1317/12/4/315.
    [97]
    D. R. Huang, B. Li, Y. N. Li, C. G. Yang. Cooperative manipulation of deformable objects by single-leader-dual-follower teleoperation. IEEE Transactions on Industrial Electronics, to be published. DOI: 10.1109/TIE.2021.3139228.
    [98]
    A. Gijbels, N. Wouters, P. Stalmans, H. Van Brussel, D. Reynaerts, E. Vander Poorten. Design and realisation of a novel robotic manipulator for retinal surgery. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 3598–3603, 2013. DOI: 10.1109/IROS.2013.6696869.
    [99]
    C. He, K. Olds, I. Iordachita, R. Taylor. A new ENT microsurgery robot: Error analysis and implementation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Karlsruhe, Germany, pp. 1221–1227, 2013. DOI: 10.1109/ICRA.2013.6630727.
    [100]
    M. Miroir, Y. Nguyen, J. Szewczyk, S. Mazalaigue, E. Ferrary, O. Sterkers, A. B. Grayeli. RobOtol: From design to evaluation of a robot for middle ear surgery. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Taipei, China, pp. 850–856, 2010. DOI: 10.1109/IROS.2010.5650390.
    [101]
    I. W. Hunter, T. D. Doukoglou, S. R. Lafontaine, P. G. Charette, L. A. Jones, M. A. Sagar, G. D. Mallinson, P. J. Hunter. A teleoperated microsurgical robot and associated virtual environment for eye surgery. Presence:Teleoperators and Virtual Environments, vol. 2, no. 4, pp. 265–280, 1993. DOI: 10.1162/pres.1993.2.4.265.
    [102]
    T. Ueta, Y. Yamaguchi, Y. Shirakawa, T. Nakano, R. Ideta, Y. Noda, A. Morita, R. Mochizuki, N. Sugita, M. Mitsuishi, Y. Tamaki. Robot-assisted vitreoretinal surgery: Development of a prototype and feasibility studies in an animal model. Ophthalmology, vol. 116, no. 8, pp. 1538–1543.e2, 2009. DOI: 10.1016/j.ophtha.2009.03.001.
    [103]
    H. C. M. Meenink. Vitreo-Retinal Eye Surgery Robot: Sustainable Precision, Ph. D. dissertation, Technische Universiteit Eindhoven, Eindhoven, The Netherlands, 2011. DOI: 10.6100/IR717725.
    [104]
    A. Kapoor, R. Kumar, R. H. Taylor. Simple biomanipulation tasks with “steady hand” cooperative manipulator. In Proceedings of the 6th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Montreal, Canada, pp. 141–148, 2003. DOI: 10.1007/978-3-540-39899-8_18.
    [105]
    X. C. He, V. van Geirt, P. Gehlbach, R. Taylor, I. Iordachita. IRIS: Integrated robotic intraocular snake. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Seattle, USA, pp. 1764–1769, 2015. DOI: 10.1109/ICRA.2015.7139426.
    [106]
    Y. Q. Chen, J. W. Tao, L. Y. Su, L. Li, S. X. Zhao, Y. Yang, L. J. Shen. Cooperative robot assistant for vitreoretinal microsurgery: Development of the RVRMS and feasibility studies in an animal model. Graefe′s Archive for Clinical and Experimental Ophthalmology, vol. 255, no. 6, pp. 1167–1171, 2017. DOI: 10.1007/s00417-017-3656-3.
    [107]
    H. Das, H. Zak, J. Johnson, J. Crouch, D. Frambach. Evaluation of a telerobotic system to assist surgeons in microsurgery. Computer Aided Surgery, vol. 4, no. 1, pp. 15–25, 1999. DOI: 10.3109/10929089909148155.
    [108]
    W. Wei, R. E. Goldman, H. F. Fine, S. Chang, N. Simaan. Performance evaluation for multi-arm manipulation of hollow suspended organs. IEEE Transactions on Robotics, vol. 25, no. 1, pp. 147–157, 2009. DOI: 10.1109/TRO.2008.2006865.
    [109]
    M. Miroir, J. Szewczyk, Y. Nguyen, S. Mazalaigue, O. Sterkers. Design of a robotic system for minimally invasive surgery of the middle ear. In Proceedings of the 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, IEEE, Scottsdale, USA, pp. 747–752, 2008. DOI: 10.1109/BIOROB.2008.4762795.
    [110]
    J. Bodner, F. Augustin, H. Wykypiel, J. Fish, G. Muehlmann, G. Wetscher, T. Schmid. The da Vinci robotic system for general surgical applications: A critical interim appraisal. Swiss Medical Weekly, vol. 135, no. 45–46, pp. 674–678, 2005.
    [111]
    H. Kazerooni, J. Guo. Human extenders. Journal of Dynamic Systems,Measurement,and Control, vol. 115, no. 2B, pp. 281–290, 1993. DOI: 10.1115/1.2899068.
    [112]
    C. He, K. Olds, L. M. Akst, M. Ishii, W. W. Chien, I. Iordachita, R. Taylor. Evaluation, optimization, and verification of the wrist mechanism of a new cooperatively controlled bimanual ENT microsurgery robot. In Proceedings of International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, Houston, USA, pp. 155–164, 2012. DOI: 10.1115/IMECE2012-88460.
    [113]
    D. D. Zhang, Y. Guo, J. H. Chen, J. D. Liu, G. Z. Yang. A handheld master controller for robot-assisted microsurgery. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Macau, China, pp. 394–400, 2019. DOI: 10.1109/IROS40897.2019.8967774.
    [114]
    W. T. Latt, R. C. Newton, M. Visentini-Scarzanella, C. J. Payne, D. P. Noonan, J. Z. Shang, G. Z. Yang. A hand-held instrument to maintain steady tissue contact during probe-based confocal laser endomicroscopy. IEEE Transactions on Biomedical Engineering, vol. 58, no. 9, pp. 2694–2703, 2011. DOI: 10.1109/TBME.2011.2162064.
    [115]
    C. J. Payne, W. T. Latt, G. Z. Yang. A new hand-held force-amplifying device for micromanipulation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Saint Paul, USA, pp. 1583–1588, 2012. DOI: 10.1109/ICRA.2012.6225306.
    [116]
    G. Kane, G. Eggers, R. Boesecke, J. Raczkowsky, H. Wörn, R. Marmulla, J. Mühling. System design of a hand-held mobile robot for craniotomy. In Proceedings of the 12th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, London, UK, pp. 402–409, 2009. DOI: 10.1007/978-3-642-04268-3_50.
    [117]
    C. Lee, D. H. Lee, C. T. Nguyen, U. K. Kim, D. T. Nguyen, H. Moon, J. Koo, J. D. Nam, H. R. Choi. Preliminary design and fabrication of smart handheld surgical tool with tactile feedback. In Proceedings of IEEE International Workshop on Robot and Human Communication, IEEE, Gyeongju, Korea, pp. 76–80, 2013. DOI: 10.1109/ROMAN.2013.6628432.
    [118]
    C. Song, P. L. Gehlbach, J. U. Kang. Active tremor cancellation by a “Smart” handheld vitreoretinal microsurgical tool using swept source optical coherence tomography. Optics Express, vol. 20, no. 21, pp. 23414–23421, 2012. DOI: 10.1364/OE.20.023414.
    [119]
    C. Lee, U. Kim, D. H. Lee, C. T. Nguyen, D. T. Nguyen, H. Phung, J. Park, H. Jung, H. R. Choi. Development of a smart handheld surgical tool with tactile feedback. Intelligent Service Robotics, vol. 10, no. 2, pp. 149–158, 2017. DOI: 10.1007/s11370-016-0214-5.
    [120]
    D. Chang, G. M. Gu, J. Kim. Design of a novel tremor suppression device using a linear delta manipulator for micromanipulation. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 413–418, 2013. DOI: 10.1109/IROS.2013.6696384.
    [121]
    K. Zareinia, Y. Maddahi, L. S. Gan, A. Ghasemloonia, S. Lama, T. Sugiyama, F. W. Yang, G. R. Sutherland. A force-sensing bipolar forceps to quantify tool – Tissue interaction forces in microsurgery. IEEE/ASME Transactions on Mechatronics, vol. 21, no. 5, pp. 2365–2377, 2016. DOI: 10.1109/TMECH.2016.2563384.
    [122]
    D. H. Kim, K. Kim, K. Y. Kim, S. M. Cha. Dexterous teleoperation for micro parts handling based on haptic/visual interface. In Proceedings of International Symposium on Micromechatronics and Human Science, IEEE, Nagoya, Japan, pp. 211–217, 2001. DOI: 10.1109/MHS.2001.965247.
    [123]
    D. Escobar-Castillejos, J. Noguez, L. Neri, A. Magana, B. Benes. A review of simulators with haptic devices for medical training. Journal of Medical Systems, vol. 40, no. 4, Article number 104, 2016. DOI: 10.1007/s10916-016-0459-8.
    [124]
    C. J. Payne, H. Rafii-Tari, H. J. Marcus, G. Z. Yang. Hand-held microsurgical forceps with force-feedback for micromanipulation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Hong Kong, China, pp. 284–289, 2014. DOI: 10.1109/ICRA.2014.6906623.
    [125]
    C. J. Payne, H. J. Marcus, G. Z. Yang. A smart haptic hand-held device for neurosurgical microdissection. Annals of Biomedical Engineering, vol. 43, no. 9, pp. 2185–2195, 2015. DOI: 10.1007/s10439-015-1258-y.
    [126]
    C. J. Payne, G. Gras, M. Hughes, D. Nathwani, G. Z. Yang. A hand-held flexible mechatronic device for arthroscopy. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Hamburg, Germany, pp. 817–823, 2015. DOI: 10.1109/IROS.2015.7353466.
    [127]
    A. Z. Gao, B. Gonenc, J. Z. Guo, H. Liu, P. Gehlbach, I. Iordachita. 3-DoF force-sensing micro-forceps for robot-assisted membrane peeling: Intrinsic actuation force modeling. In Proceedings of the 6th IEEE International Conference on Biomedical Robotics and Biomechatronics, IEEE, Singapore, pp. 489–494, 2016. DOI: 10.1109/BIOROB.2016.7523674.
    [128]
    S. Giannarou, M. L. Ye, G. Gras, K. Leibrandt, H. J. Marcus, G. Z. Yang. Vision-based deformation recovery for intraoperative force estimation of tool–tissue interaction for neurosurgery. International Journal of Computer Assisted Radiology and Surgery, vol. 11, no. 6, pp. 929–936, 2016. DOI: 10.1007/s11548-016-1361-z.
    [129]
    G. Gras, H. J. Marcus, C. J. Payne, P. Pratt, G. Z. Yang. Visual force feedback for hand-held microsurgical instruments. In Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, Munich, Germany, pp. 480–487, 2015. DOI: 10.1007/978-3-319-24553-9_59.
    [130]
    A. Kapoor, M. Li, R. H. Taylor. Constrained control for surgical assistant robots. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Orlando, USA, pp. 231–236, 2006. DOI: 10.1109/ROBOT.2006.1641189.
    [131]
    M. Jakopec, F. R. Y. Baena, S. J. Harris, P. Gomes, J. Cobb, B. L. Davies. The hands-on orthopaedic robot “acrobot”: Early clinical trials of total knee replacement surgery. IEEE Transactions on Robotics and Automation, vol. 19, no. 5, pp. 902–911, 2003. DOI: 10.1109/TRA.2003.817510.
    [132]
    C. J. Payne, K. W. Kwok, G. Z. Yang. An ungrounded hand-held surgical device incorporating active constraints with force-feedback. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 2559–2565, 2013. DOI: 10.1109/IROS.2013.6696717.
    [133]
    W. T. Ang, C. N. Riviere, P. K. Khosla. An active hand-held instrument for enhanced microsurgical accuracy. In Proceedings of the 3rd International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, Pittsburgh, USA, pp. 878–886, 2000. DOI: 10.1007/978-3-540-40899-4_91.
    [134]
    J. J. Abbott, A. M. Okamura. Stable forbidden-region virtual fixtures for bilateral telemanipulation. Journal of Dynamic Systems,Measurement,and Control, vol. 128, no. 1, pp. 53–64, 2006. DOI: 10.1115/1.2168163.
    [135]
    J. J. Abbott, A. M. Okamura. Pseudo-admittance bilateral telemanipulation with guidance virtual fixtures. The International Journal of Robotics Research, vol. 26, no. 8, pp. 865–884, 2007. DOI: 10.1177/0278364907080425.
    [136]
    B. C. Becker, R. A. MacLachlan, L. A. Lobes, G. D. Hager, C. N. Riviere. Vision-based control of a handheld surgical micromanipulator with virtual fixtures. IEEE Transactions on Robotics, vol. 29, no. 3, pp. 674–683, 2013. DOI: 10.1109/TRO.2013.2239552.
    [137]
    I. M. Koo, K. Jung, J. C. Koo, J. D. Nam, Y. K. Lee, H. R. Choi. Development of soft-actuator-based wearable tactile display. IEEE Transactions on Robotics, vol. 24, no. 3, pp. 549–558, 2008. DOI: 10.1109/TRO.2008.921561.
    [138]
    N. C. Goulbourne, S. Son, J. W. Fox. Self-sensing McKibben actuators using dielectric elastomer sensors. In Proceedings of SPIE 6524, Electroactive Polymer Actuators and Devices, SPIE, San Diego, USA, vol. 6524, Aricle number 652414, 2007. DOI: 10.1117/12.716274.
    [139]
    C. N. Riviere, W. T. Ang, P. K. Khosla. Toward active tremor canceling in handheld microsurgical instruments. IEEE Transactions on Robotics and Automation, vol. 19, no. 5, pp. 793–800, 2003. DOI: 10.1109/TRA.2003.817506.
    [140]
    W. T. Latt, U. X. Tan, C. Y. Shee, W. T. Ang. A compact hand-held active physiological tremor compensation instrument. In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, IEEE, Singapore, pp. 711–716, 2009. DOI: 10.1109/AIM.2009.5229927.
    [141]
    U. X. Tan, W. T. Latt, C. Y. Shee, W. T. Ang. Design and development of a low-cost flexure-based hand-held mechanism for micromanipulation. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Kobe, Japan, pp. 4350–4355, 2009. DOI: 10.1109/ROBOT.2009.5152250.
    [142]
    G. Stetten, B. Wu, R. Klatzky, J. Galeotti, M. Siegel, R. Lee, F. Mah, A. Eller, J. Schuman, R. Hollis. Hand-held force magnifier for surgical instruments. In Proceedings of the 2nd International Conference on Information Processing in Computer-assisted Interventions, Springer, Berlin, Germany, pp. 90–100, 2011. DOI: 10.1007/978-3-642-21504-9_9.
    [143]
    B. Gonenc, M. A. Balicki, J. Handa, P. Gehlbach, C. N. Riviere, R. H. Taylor, I. Iordachita. Preliminary evaluation of a micro-force sensing handheld robot for vitreoretinal surgery. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Vilamoura-Algarve, Portugal, pp. 4125–4130, 2012. DOI: 10.1109/IROS.2012.6385715.
    [144]
    S. Kyeong, D. Chang, Y. Kim, G. M. Gu, S. Lee, S. Jeong, J. Kim. A hand-held micro surgical device for contact force regulation against involuntary movements. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, Milan, Italy, pp. 869–872, 2015. DOI: 10.1109/EMBC.2015.7318500.
    [145]
    S. Yang, R. A. MacLachlan, C. N. Riviere. Design and analysis of 6 DOF handheld micromanipulator. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Saint Paul, USA, pp. 1946–1951, 2012. DOI: 10.1109/ICRA.2012.6225133.
    [146]
    A. Saxena, R. V. Patel. An active handheld device for compensation of physiological tremor using an ionic polymer metallic composite actuator. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 4275–4280, 2013. DOI: 10.1109/IROS.2013.6696969.
    [147]
    B. C. Becker, S. Voros, R. A. MacLachlan, G. D. Hager, C. N. Riviere. Active guidance of a handheld micromanipulator using visual servoing. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Kobe, Japan, pp. 339–344, 2009. DOI: 10.1109/ROBOT.2009.5152632.
    [148]
    W. T. Ang, C. N. Riviere, P. K. Khosla. Design and implementation of active error canceling in hand-held microsurgical instrument. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the Next Millennium, IEEE, Maui, USA, vol. 2, pp. 1106–1111, 2001. DOI: 10.1109/IROS.2001.976316.
    [149]
    D. Y. Choi, C. N. Riviere. Flexure-based manipulator for active handheld microsurgical instrument. In Proceedings of the 27th Annual Conference on IEEE Engineering in Medicine and Biology, IEEE, Shanghai, China, pp. 5085–5088, 2005. DOI: 10.1109/IEMBS.2005.1615620.
    [150]
    M. Abayazid, G. J. Vrooijink, S. Patil, R. Alterovitz, S. Misra. Experimental evaluation of ultrasound-guided 3D needle steering in biological tissue. International Journal of Computer Assisted Radiology and Surgery, vol. 9, no. 6, pp. 931–939, 2014. DOI: 10.1007/s11548-014-0987-y.
    [151]
    S. Mukherjee, S. Yang, R. A. MacLachlan, L. A. Lobes, J. N. Martel, C. N. Riviere. Toward monocular camera-guided retinal vein cannulation with an actively stabilized handheld robot. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Singapore, pp. 2951–2956, 2017. DOI: 10.1109/ICRA.2017.7989341.
    [152]
    K. Ikuta, T. Kato, S. Nagata. Micro active forceps with optical fiber scope for intra-ocular microsurgery. In Proceedings of the Ninth International Workshop on Micro Electromechanical Systems, IEEE, San Diego, USA, pp. 456–461, 1996. DOI: 10.1109/MEMSYS.1996.494025.
    [153]
    L. Fichera, N. P. Dillon, D. Q. Zhang, I. S. Godage, M. A. Siebold, B. I. Hartley, J. H. Noble, P. T. Russell Ⅲ, R. F. Labadie, R. J. Webster Ⅲ. Through the eustachian tube and beyond: A new miniature robotic endoscope to see into the middle ear. IEEE Robotics and Automation Letters, vol. 2, no. 3, pp. 1488–1494, 2017. DOI: 10.1109/LRA.2017.2668468.
    [154]
    M. Balicki, J. H. Han, I. Iordachita, P. Gehlbach, J. Handa, R. Taylor, J. Kang. Single fiber optical coherence tomography microsurgical instruments for computer and robot-assisted retinal surgery. In Proceedings of the 12th International Conference on Medical Image Computing and Computer-assisted Intervention, Springer, London, UK, pp. 108–115, 2009. DOI: 10.1007/978-3-642-04268-3_14.
    [155]
    Y. Huang, X. Liu, C. Song, J. U. Kang. Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for imageguided intervention. Biomedical Optics Express, vol. 3, no. 12, pp. 3105–3118, 2012. DOI: 10.1364/BOE.3.003105.
    [156]
    G. W. Cheon, P. Lee, B. Gonenc, P. L. Gehlbach, J. U. Kang. Active depth-guiding handheld micro-forceps for membranectomy based on CP-SSOCT. In Proceedings of SPIE 9702, Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XVI, SPIE, San Francisco, USA, vol. 9702, Article number 97020C, 2016. DOI: 10.1117/12.2212715.
    [157]
    B. D. Argall, S. Chernova, M. Veloso, B. Browning. A survey of robot learning from demonstration. Robotics and Autonomous Systems, vol. 57, no. 5, pp. 469–483, 2009. DOI: 10.1016/j.robot.2008.10.024.
    [158]
    H. Ravichandar, A. S. Polydoros, S. Chernova, A. Billard. Recent advances in robot learning from demonstration. Annual Review of Control,Robotics,and Autonomous Systems, vol. 3, pp. 297–330, 2020. DOI: 10.1146/annurev-control-100819-063206.
    [159]
    Z. Y. Zhu, H. S. Hu. Robot learning from demonstration in robotic assembly: A survey. Robotics, vol. 7, no. 2, Article number 17, 2018. DOI: 10.3390/robotics7020017.
    [160]
    G. P. Mylonas, P. Giataganas, M. Chaudery, V. Vitiello, A. Darzi, G. Z. Yang. Autonomous eFAST ultrasound scanning by a robotic manipulator using learning from demonstrations. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Tokyo, Japan, pp. 3251–3256, 2013. DOI: 10.1109/IROS.2013.6696818.
    [161]
    M. Maaref, A. Rezazadeh, K. Shamaei, R. Ocampo, T. Mahdi. A bicycle cranking model for assist-as-needed robotic rehabilitation therapy using learning from demonstration. IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 653–660, 2016. DOI: 10.1109/LRA.2016.2525827.
    [162]
    C. Yu, J. M. Liu, S. Nemati, G. S. Yin. Reinforcement learning in healthcare: A survey. ACM Computing Surveys, vol. 55, no. 1, Article number 5, 2023. DOI: 10.1145/3477600.
    [163]
    B. Akgun, M. Cakmak, K. Jiang, A. L. Thomaz. Keyframe-based learning from demonstration. International Journal of Social Robotics, vol. 4, no. 4, pp. 343–355, 2012. DOI: 10.1007/s12369-012-0160-0.
    [164]
    M. Rigter, B. Lacerda, N. Hawes. A framework for learning from demonstration with minimal human effort. IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2023–2030, 2020. DOI: 10.1109/LRA.2020.2970619.
    [165]
    D. D. Zhang, Q. Li, Y. Zheng, L. Wei, D. S. Zhang, Z. Y. Zhang. Explainable hierarchical imitation learning for robotic drink pouring. IEEE Transactions on Automation Science and Engineering, to be published. DOI: 10.1109/TASE.2021.3138280.
    [166]
    W. Y. Si, N. Wang, C. G. Yang. A review on manipulation skill acquisition through teleoperation-based learning from demonstration. Cognitive Computation and Systems, vol. 3, no. 1, pp. 1–16, 2021. DOI: 10.1049/ccs2.12005.
    [167]
    D. D. Zhang, Z. Wu, J. H. Chen, R. Q. Zhu, A. Munawar, B. Xiao, Y. Guan, Hang Su, W. H. Hong, Y. Guo, G. S. Fischer, B. Lo, G. Z. Yang. Human-robot shared control for surgical robot based on context-aware Sim-to-Real adaptation. [Online], Available: https://arxiv.org/abs/2204.11116, 2022.
    [168]
    J. H. Chen, D. D. Zhang, A. Munawar, R. Q. Zhu, B. Lo, G. S. Fischer, G. Z. Yang. Supervised semi-autonomouscontrol for surgical robot based on banoian optimization. In Proceedings of IEEE/RSJ International Conference onIntelligent Robots and Systems, IEEE, Las Vegas, USA, pp. 2943–2949, 2020. DOI: 10.1109/IROS45743.2020.
    [169]
    H. Su, A. Mariani, S. E. Ovur, A. Menciassi, G. Ferrigno, E. De Momi. Toward teaching by demonstration for robot-assisted minimally invasive surgery. IEEE Transactions on Automation Science and Engineering, vol. 18, no. 2, pp. 484–494, 2021. DOI: 10.1109/TASE.2020.3045655.
    [170]
    T. Osa, K. Harada, N. Sugita, M. Mitsuishi. Trajectory planning under different initial conditions for surgical task automation by learning from demonstration. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Hong Kong, China, pp. 6507–6513, 2014. DOI: 10.1109/ICRA.2014.6907819.
    [171]
    N. Padoy, G. D. Hager. Human-machine collaborative surgery using learned models. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Shanghai, China, pp. 5285–5292, 2011. DOI: 10.1109/ICRA.2011.5980250.
    [172]
    M. Power, H. Rafii-Tari, C. Bergeles, V. Vitiello, G. Z. Yang. A cooperative control framework for haptic guidance of bimanual surgical tasks based on learning from demonstration. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Seattle, USA, pp. 5330–5337, 2015. DOI: 10.1109/ICRA.2015.7139943.
    [173]
    C. Shin, P. W. Ferguson, S. A. Pedram, J. Ma, E. P. Dutson, J. Rosen. Autonomous tissue manipulation via surgical robot using learning based model predictive control. In Proceedings of International Conference on Robotics and Automation, IEEE, Montreal, Canada, pp. 3875–3881, 2019. DOI: 10.1109/ICRA.2019.8794159.
    [174]
    B. D. Huang, M. L. Ye, S. L. Lee, G. Z. Yang. A vision-guided multi-robot cooperation framework for learning-by-demonstration and task reproduction. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Vancouver, Canada, pp. 4797–4804, 2017. DOI: 10.1109/IROS.2017.8206355.
    [175]
    K. L. Schwaner, D. Dall′Alba, P. T. Jensen, P. Fiorini, T. R. Savarimuthu. Autonomous needle manipulation for robotic surgical suturing based on skills learned from demonstration. In Proceedings of the 17th International Conference on Automation Science and Engineering, IEEE, Lyon, France, pp. 235–241, 2021. DOI: 10.1109/CASE49439.2021.9551569.
    [176]
    J. W. Kim, C. Y. He, M. Urias, P. Gehlbach, G. D. Hager, I. Iordachita, M. Kobilarov. Autonomously navigating a surgical tool inside the eye by learning from demonstration. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Paris, France, pp. 7351–7357, 2020. DOI: 0.1109/ICRA40945.2020.9196537.
    [177]
    W. D. Wang, C. J. Du, W. Wang, Z. J. Du. A PSO-optimized fuzzy reinforcement learning method for making the minimally invasive surgical arm cleverer. IEEE Access, vol. 7, pp. 48655–48670, 2019. DOI: 10.1109/ACCESS.2019.2910016.
    [178]
    N. D. Nguyen, T. Nguyen, S. Nahavandi, A. Bhatti, G. Guest. Manipulating soft tissues by deep reinforcement learning for autonomous robotic surgery. In Proceedings of IEEE International Systems Conference, IEEE, Orlando, USA, pp. 1–7, 2019. DOI: 10.1109/SYSCON.2019.8836924.
    [179]
    V. M. Varier, D. K. Rajamani, N. Goldfarb, F. Tavakkolmoghaddam, A. Munawar, G. S. Fischer. Collaborative suturing: A reinforcement learning approach to automate hand-off task in suturing for surgical robots. In Proceedings of the 29th IEEE International Conference on Robot and Human Interactive Communication, IEEE, Naples, Italy, pp. 1380–1386, 2020. DOI: 10.1109/RO-MAN47096.2020.9223543.
    [180]
    Z. Y. Chiu, F. Richter, E. K. Funk, R. K. Orosco, M. C. Yip. Bimanual regrasping for suture needles using reinforcement learning for rapid motion planning. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Xi′an, China, pp. 7737–7743, 2021. DOI: 10.1109/ICRA48506.2021.9561673.
    [181]
    D. Baek, M. Hwang, H. Kim, D. S. Kwon. Path planning for automation of surgery robot based on probabilistic roadmap and reinforcement learning. In Proceedings of the 15th International Conference on Ubiquitous Robots, IEEE, Honolulu, USA, pp. 342–347, 2018. DOI: 10.1109/URAI.2018.8441801.
    [182]
    W. Q. Chi, J. D. Liu, M. E. M. K. Abdelaziz, G. Dagnino, C. Riga, C. Bicknell, G. Z. Yang. Trajectory optimization of robot-assisted endovascular catheterization with reinforcement learning. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Madrid, Spain, pp. 3875–3881, 2018. DOI: 10.1109/IROS.2018.8593421.
    [183]
    F. Richter, R. K. Orosco, M. C. Yip. Open-sourced reinforcement learning environments for surgical robotics. [Online], Available: https://arxiv.org/abs/1903.02090, 2019.
    [184]
    J. Q. Xu, B. Li, B. Lu, Y. H. Liu, Q. Dou, P. A. Heng. SurRoL: An open-source reinforcement learning centered and dVRK compatible platform for surgical robot learning. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, Prague, Czech Republic, pp. 1821–1828, 2021. DOI: 10.1109/IROS51168.2021.9635867.
    [185]
    J. Chen, H. Y. K. Lau, W. J. Xu, H. L. Ren. Towards transferring skills to flexible surgical robots with programming by demonstration and reinforcement learning. In Proceedings of the 8th International Conference on Advanced Computational Intelligence, IEEE, Chiang Mai, Thailand, pp. 378–384, 2016. DOI: 10.1109/ICACI.2016.7449855.
    [186]
    X. Y. Tan, C. B. Chng, Y. Su, K. Lim, C. K. Chui. Robot-assisted training in laparoscopy using deep reinforcement learning. IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 485–492, 2019. DOI: 10.1109/LRA.2019.2891311.
    [187]
    H. Su, Y. B. Hu, Z. J. Li, A. Knoll, G. Ferrigno, E. De Momi. Reinforcement learning based manipulation skill transferring for robot-assisted minimally invasive surgery. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Paris, France, pp. 2203–2208, 2020. DOI: 10.1109/ICRA40945.2020.9196588.
    [188]
    M. S. Yasar, D. Evans, H. Alemzadeh. Context-aware monitoring in robotic surgery. In Proceedings of International Symposium on Medical Robotics, IEEE, Atlanta, USA, 2019. DOI: 10.1109/ISMR.2019.8710192.
    [189]
    M. S. Yasar, H. Alemzadeh. Real-time context-aware detection of unsafe events in robot-assisted surgery. In Proceedings of the 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, IEEE, Valencia, Spain, pp. 385–397, 2020. DOI: 10.1109/DSN48063.2020.00054.
    [190]
    D. D. Zhang, R. X. Wang, B. Lo. Surgical gesture recognition based on bidirectional multi-layer independently RNN with explainable spatial feature extraction. In Proceedings of IEEE International Conference on Robotics and Automation, IEEE, Xi′an, China, pp. 1350–1356, 2021. DOI: 10.1109/ICRA48506.2021.9561803.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (276) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return