Citation: | Yu-Jia Zhou, Jing Yao, Zhi-Cheng Dou, Ledell Wu, Ji-Rong Wen. DynamicRetriever: A Pre-trained Model-based IR System Without an Explicit Index. Machine Intelligence Research, vol. 20, no. 2, pp.276-288, 2023. https://doi.org/10.1007/s11633-022-1373-9 |
[1] |
S. Robertson, H. Zaragoza. The probabilistic relevance framework: BM25 and beyond. Foundations and Trends in Information Retrieval, vol. 3, no. 4, pp. 333–389, 2009. DOI: 10.1561/1500000019.
|
[2] |
T. Mikolov, K. Chen, G. Corrado, J. Dean. Efficient estimation of word representations in vector space. [Online], Available: https://arxiv.org/abs/1301.3781, 2013.
|
[3] |
C. Y. Xiong, Z. Y. Dai, J. Callan, Z. Y. Liu, R. Power. End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Tokyo, Japan, pp. 55–64, 2017. DOI: 10.1145/3077136.3080809.
|
[4] |
Z. Y. Dai, C. Y. Xiong, J. Callan, Z. Y. Liu. Convolutional neural networks for soft-matching N-grams in Ad-Hoc search. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, USA, pp. 126–134, 2018. DOI: 10.1145/3159652.3159659.
|
[5] |
J. T. Zhan, J. X. Mao, Y. Q. Liu, J. F. Guo, M. Zhang, S. P. Ma. Optimizing dense retrieval model training with hard negatives. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1503–1512, 2021. DOI: 10.1145/3404835.3462880.
|
[6] |
L. Xiong, C. Y. Xiong, Y. Li, K. F. Tang, J. L. Liu, P. N. Bennett, J. Ahmed, A. Overwijk. Approximate nearest neighbor negative contrastive learning for dense text retrieval. In Proceedings of the 9th International Conference on Learning Representations, 2021.
|
[7] |
L. Y. Gao, Z. Y. Dai, T. F. Chen, Z. Fan, B. Van Durme, J. Callan. Complement lexical retrieval model with semantic residual embeddings. In Proceedings of the 43rd European Conference on Information Retrieval, Springer, pp. 146–160, 2021. DOI: 10.1007/978-3-030-72113-8_10.
|
[8] |
K. Guu, K. Lee, Z. Tung, P. Pasupat, M. W. Chang. REALM: Retrieval-augmented language model pre-training. [Online], Available: https://arxiv.org/abs/2002.08909, 2020.
|
[9] |
J. Devlin, M. W. Chang, K. Lee, K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, USA, pp. 4171–4186, 2019. DOI: 10.18653/v1/N19-1423.
|
[10] |
A. Radford, K. Narasimhan, T. Salimans, I. Sutskever. Improving language understanding by generative pre-training. [Online], Available: https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf, 2018.
|
[11] |
K. Clark, M. T. Luong, Q. V. Le, C. D. Manning. ELECTRA: Pre-training text encoders as discriminators rather than generators. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.
|
[12] |
R. Nogueira, W. Yang, K. Cho, J. Lin. Multi-stage document ranking with BERT. [Online], Available: https://arxiv.org/abs/1910.14424, 2019.
|
[13] |
W. C. Chang, F. X. Yu, Y. W. Chang, Y. M. Yang, S. Kumar. Pre-training tasks for embedding-based large-scale retrieval. In Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2020.
|
[14] |
X. Y. Ma, J. F. Guo, R. Q. Zhang, Y. X. Fan, X. Ji, X. Q. Cheng. PROP: Pre-training with representative words prediction for Ad-Hoc retrieval. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 283–291, 2021. DOI: 10.1145/3437963.3441777.
|
[15] |
W. Yang, H. T. Zhang, J. Lin. Simple applications of BERT for ad hoc document retrieval. [Online], Available: https://arxiv.org/abs/1903.10972, 2019.
|
[16] |
R. Nogueira, K. Cho. Passage re-ranking with BERT. [Online], Available: https://arxiv.org/abs/1901.04085, 2019
|
[17] |
L. Y. Gao, Z. Y. Dai, J. Callan. Rethink training of BERT rerankers in multi-stage retrieval pipeline. In Proceedings of the 43rd European Conference on Information Retrieval, Springer, pp. 280–286, 2021. DOI: 10.1007/978-3-030-72240-1_26.
|
[18] |
J. T. Zhan, J. X. Mao, Y. Q. Liu, M. Zhang, S. P. Ma. RepBERT: Contextualized text embeddings for first-stage retrieval. [Online], Available: https://arxiv.org/abs/2006.15498, 2020.
|
[19] |
B. Miutra, N. Craswell. An introduction to neural information retrieval. Foundations and Trends in Information Retrieval, vol. 13, no. 1, pp. 1–126, 2018. DOI: 10.1561/1500000061.
|
[20] |
D. Metzler, Y. Tay, D. Bahri, M. Najork. Rethinking search: Making domain experts out of dilettantes. ACM SIGIR Forum, vol. 55, no. 1, Article number 13, 2021. DOI: 10.1145/3476415.3476428.
|
[21] |
Y. Tay, V. Q. Tran, M. Dehghani, J. M. Ni, D. Bahri, H. Mehta, Z. Qin, K. Hui, Z. Zhao, J. Gupta, T. Schuster, W. W. Cohen, D. Metzler. Transformer memory as a differentiable search index. [Online], Available: https://arxiv.org/abs/2202.06991, 2022.
|
[22] |
J. Pennington, R. Socher, C. Manning. GloVe: Global vectors for word representation. In Proceedings of Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, pp. 1532–1543, 2014. DOI: 10.3115/v1/D14-1162.
|
[23] |
G. Q. Zheng, J. Callan. Learning to reweight terms with distributed representations. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, pp. 575–584, 2015. DOI: 10.1145/2766462.2767700.
|
[24] |
J. F. Guo, Y. X. Fan, Q. Y. Ai, W. B. Croft. A deep relevance matching model for Ad-Hoc retrieval. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis, USA, pp. 55–64, 2016. DOI: 10.1145/2983323.2983769.
|
[25] |
M. Dehghani, H. Zamani, A. Severyn, J. Kamps, W. B. Croft. Neural ranking models with weak supervision. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Japan, pp. 65–74, 2017. DOI: 10.1145/3077136.3080832.
|
[26] |
R. Nogueira, J. Lin. From doc2query to docTTTTTquery. [Online], Available: https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf 2019.
|
[27] |
R. Nogueira, W. Yang, J. Lin, K. Cho. Document expansion by query prediction. [Online], Available: https://arxiv.org/abs/1904.08375, 2019.
|
[28] |
C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Q. Zhou, W. Li, P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. The Journal of Machine Learning Research, vol. 21, no. 1, Article number 140, 2020.
|
[29] |
Z. Y. Dai, J. Callan. Context-aware sentence/passage term importance estimation for first stage retrieval. [Online], Available: https://arxiv.org/abs/1910.10687, 2019.
|
[30] |
Z. Y. Dai, J. Callan. Context-aware document term weighting for ad-hoc search. In Proceedings of the Web Conference, Taiwan, China, pp. 1897–1907, 2020. DOI: 10.1145/3366423.3380258.
|
[31] |
J. Johnson, M. Douze, H. Jégou. Billion-scale similarity search with GPUs. IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535–547, 2021. DOI: 10.1109/TBDATA.2019.2921572.
|
[32] |
H. Jégou, M. Douze, C. Schmid. Product quantization for nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 1, pp. 117–128, 2011. DOI: 10.1109/TPAMI.2010.57.
|
[33] |
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, pp. 6000–6010, 2017.
|
[34] |
J. F. Guo, Y. X. Fan, L. Pang, L. Yang, Q. Y. Ai, H. Zamani, C. Wu, W. B. Croft, X. Q. Cheng. A deep look into neural ranking models for information retrieval. Information Processing &Management, vol. 57, no. 6, Article number 102067, 2020. DOI: 10.1016/j.ipm.2019.102067.
|
[35] |
K. Lee, M. W. Chang, K. Toutanova. Latent retrieval for weakly supervised open domain question answering. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 6086–6096, 2019. DOI: 10.18653/v1/P19-1612.
|
[36] |
J. M. Ni, G. H. Ábrego, N. Constant, J. Ma, K. B. Hall, D. Cer, Y. F. Yang. Sentence-T5: Scalable sentence encoders from pre-trained text-to-text models. In Proceedings of the Findings of the Association for Computational Linguistics, Dublin, Ireland, pp. 1864–1874, 2022. DOI: 10.18653/v1/2022.findings-acl.146.
|
[37] |
V. Karpukhin, B. Oǧuz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Q. Chen, W. T. Yih. Dense passage retrieval for open-domain question answering. In Proceedings of Conference on Empirical Methods in Natural Language Processing, pp. 6769–6781, 2020. DOI: 10.18653/v1/2020.emnlp-main.550.
|
[38] |
N. De Cao, G. Izacard, S. Riedel, F. Petroni. Autoregressive entity retrieval. In Proceedings of the 9th International Conference on Learning Representations, 2021.
|
[39] |
J. G. Chen, R. Q. Zhang, J. F. Guo, Y. X. Fan, X. Q. Cheng. GERE: Generative evidence retrieval for fact verification. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Spain, pp. 2184–2189, 2022. DOI: 10.1145/3477495.3531827.
|
[40] |
J. P. Callan. Passage-level evidence in document retrieval. In Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Springer-Verlag, Dublin, Ireland, pp. 302–310, 1994.
|
[41] |
T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein, I. Polosukhin, J. Devlin, K. Lee, K. Toutanova, L. Jones, M. Kelcey, M. W. Chang, A. M. Dai, J. Uszkoreit, Q. Le, S. Petrov. Natural questions: A benchmark for question answering research. Transactions of the Association for Computational Linguistics, vol. 7, pp. 453–466, 2019. DOI: 10.1162/tacl_a_00276.
|