Delayed Teleoperation with Force Feedback of a Humanoid Robot
-
Graphical Abstract
-
Abstract
Teleoperation systems allow the extension of human capabilities to remote-control devices by providing the operator with conditions similar to those at the remote site through a communication channel that sends information from one site to the other. This article aims to present an analysis of the benefits of force feedback applied to the bilateral teleoperation of a humanoid robot with time-varying delay. As a control scheme, we link adaptive inverse dynamics compensation, balance control, and P+d like controllers. Finally, a test is performed where an operator simultaneously handles the locomotion (forward velocity and turn angle) and arm of a simulated 3D humanoid robot to do a pick-and-place task using two master devices with force feedback, where indexes such as time to complete the task, coordination errors, path tracking error, and percentage of successful tests are reported for different time-delays. We conclude with the results achieved.
-
-