Comparative Analysis of Optimized Output Regulation of A SISO Nonlinear System Using Different Sliding Manifolds
-
Graphical Abstract
-
Abstract
This paper presents the design of sliding mode controller for the output regulation of single input single output (SISO) nonlinear systems. The sliding surfaces are designed to force the error dynamics to follow proportional (P), proportional integral (PI) and proportional integral derivative (PID) dynamics. The controller parameters are obtained using probabilistic particle swarm optimization technique. A judicious selection of various sliding surfaces based on the relative degree of the systems is also elaborated. A detailed comparison of the output regulation for various systems with different relative degree is presented. Numerical simulation shows the effectiveness of the proposed method and robustness of the sliding mode controller.
-
-