Robust Neural Control of Discrete Time Uncertain Nonlinear Systems Using Sliding Mode Backpropagation Training Algorithm
-
Graphical Abstract
-
Abstract
This work deals with robust inverse neural control strategy for a class of single-input single-output (SISO) discrete-time nonlinear system afiected by parametric uncertainties. According to the control scheme, in the flrst step, a direct neural model (DNM) is used to learn the behavior of the system, then, an inverse neural model (INM) is synthesized using a specialized learning technique and cascaded to the uncertain system as a controller. In previous works, the neural models are trained classically by backpropagation (BP) algorithm. In this work, the sliding mode-backpropagation (SM-BP) algorithm, presenting some important properties such as robustness and speedy learning, is investigated. Moreover, four combinations using classical BP and SM-BP are tested to determine the best conflguration for the robust control of uncertain nonlinear systems. Two simulation examples are treated to illustrate the efiectiveness of the proposed control strategy.
-
-