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Abstract: Post-training quantization (PTQ) can reduce the memory footprint and latency of deep model inference while still pre-
serving the accuracy of model, with only a small unlabeled calibration set and without the retraining on full training set. To calibrate a
quantized model, current PTQ methods usually randomly select some unlabeled data from the training set as calibration data. However,
we show the random data selection would result in performance instability and degradation due to the activation distribution mismatch.
In this paper, we attempt to solve the crucial task on appropriate calibration data selection, and propose a novel one-shot calibration
data selection method termed SelectQ, which selects specific data for calibration via dynamic clustering. The setting of our SelectQ uses
the statistic information of activation and performs layer-wise clustering to learn an activation distribution on training set. For that pur-
pose, a new metric called Knowledge Distance is proposed to calculate the distances of the activation statistics to centroids. Finally,
after calibration with the selected data, quantization noise can be alleviated by mitigating the distribution mismatch within activations.
Extensive experiments on ImageNet dataset show that our SelectQ increases the Top-1 accuracy of ResNet18 over 15% in 4-bit quantiz-
ation, compared to randomly sampled calibration data. It's noteworthy that SelectQ does not involve both the backward propagation
and batch normalization parameters, which means that it has fewer limitations in practical applications.
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1 Introduction ped6-14] which represent the parameters with low-preci-

sion values. With hardware support on efficient low-bit

Deep Neural Network (DNN) models have been widely integer computation, the computation latency and

applied in various real-time scenarios for their strong memory footprint can be greatly reduced® 16,

learning ability, such as autonomous driving, robotics and In comparison to the resource-consuming Quantiza-

IoTl4., However, with millions of parameters and the
enormous computation cost, DNN usually requires huge
energy consumption for inference, which brings some lim-
itations to its numerous applications in real world®l. To
address the problem of computation efficiency of DNN,
lots of model quantization methods have been develo-
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tion-Aware Training (QAT)6-8], Post-Training Quantization
(PTQ) is a more promising way to quantize a model on-
the-fly for hardware deployment. Majority of current
PTQ methodsl®14 rely on a small set of unlabeled calibra-
tion data to appropriately represent the activation values,
i.e., the output of weight layer. By feeding the calibra-
tion data into the network, the clipping activation ranges
can be determined for quantization. Then, those floating-
point values will be clamped to the determined range and
are mapped into the quantized values during inference.
Until now, randomly selecting some data from the
training set to form a calibration set is one predominant
method. For instance, randomly sampling one image from
each subject is the most common way to calibrate the im-

@ Springer


https://doi.org/10.1007/s11633-024-1518-0
https://doi.org/10.1007/s11633-024-1518-0
https://doi.org/10.1007/s11633-024-1518-0
https://doi.org/10.1007/s11633-024-1518-0
https://doi.org/10.1007/s11633-024-1518-0
https://doi.org/10.1007/s11633-024-1518-0
https://doi.org/10.1007/s11633-024-1518-0
https://doi.org/10.1007/s11633-024-1518-0
https://link.springer.com/journal/11633
https://link.springer.com/journal/11633
https://www.mi-research.net
https://www.mi-research.net
https://www.mi-research.net

age classification model. It seems sensible, since those
randomly sampled data have the identical distribution as
the training set. However, in this paper we will show that
the strategy of random data selection is NOT optimal for
calibration in PTQ. In this paper, we mainly focus on se-
lecting appropriate calibration data for PTQ, and the
presented core idea is shown in Fig. 1.

Full-precision
model

Select l
= Score = Quantize
Sort *
Calibration set Quantized
model

Training set

Fig. 1 The core idea of our SelectQ. We traverse the training
set, utilize the statistical information within DNNs, rank the
images and then sort them. Finally, we take those images with
the highest scores to form the calibration set for PTQ.

First, the activation produced by randomly selecting
data cannot completely cover the feature space over the
whole training set during calibration. Most importantly,
model performance may vary greatly based on the ran-
domly sampled calibration data, as can be seen from
Fig.2. And more to the point, activation distribution may
be different for the images from the same class, espe-
cially for large scale dataset, as shown in Fig.3. This dif-
ference causes a mismatch of clipping range thus increas-
ing the quantization error. This is one of the difficulties
for applying quantization in practical scenario, which usu-
ally contains more distribution shifts and outlier data. To
avoid this mismatch, we investigate the relationship
between the activation distribution and calibration set,
which gives birth to a novel idea to select appropriate
calibraton data by extracting the statistical information
from the original model, as shown in Fig. 1.
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Fig.2 Performance distribution based on the 4-bit quantized
ResNet18 in terms of Top-1 accuracy, which is calibrated with
50 different calibration sets randomly sampled from the training
set, where the term “Count” denotes the number that falls within
the corresponding interval.

Second, current quantization methods pay more atten-
tion to the statistical properties of activation. For ex-
ample, Analytical Clipping for Integer Quantization
(ACIQ) focuses on the statistics of activation quantiza-
tion noise. ZeroQ[” constrains the activation distribu-
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Fig.3 Activation distributions of the 1st convolution layer in
2nd ResBlock in ResNet18 during inference on different images
with the same label “tench”. The horizontal axis indicates the
amount of each interval and the vertical axis denotes the
activation values. The red square points denote minimal and
maximal values of the activations.

tion with the batch normalization parameters. Besides,
majority of current data-free quantization methods have
considered the statistic alignment to generate fake data
for model calibration!” 18 or fine-tuning/l%2l. However,
data-free quantization with fine-tuning requires great
computation resource. In contrast, the methods with cal-
ibration are more efficient, but usually suffer from the
generalization decline due to the absence of information
from real data. Except for some specific cases about pri-
vacy and security, one more practical issue for PTQ is
how to choose appropriate calibration data from the
training set to avoid the potential performance degrada-
tion.

In this paper, we mainly explore the activation distri-
bution to reduce the quantization noise from a new per-
spective of calibration data selection. We show that ran-
domly selected calibration set may cause distribution mis-
match which brings down the performance. To tackle this
issue, we adopt dynamic clustering to utilize the activa-
tion distribution for appropriate calibration data selec-
tion, as shown in Fig.5. Overall, the main contributions
of this paper are threefold:

e We propose a novel and effective one-shot quantiza-
tion approach termed SelectQ for the uniform post-train-
ing quantization. Guided by the activation statistical in-
formation, our SelectQ can select appropriate calibration
data in an efficient way, and can cover the feature distri-
bution space on the whole training set. The selected cal-
ibration set leads to more appropriate clipping activation
ranges and maintains the performance of the quantized
model. To the best of our knowledge, this is the first
work devoted to the problem of calibration data selection
for PTQ. Moreover, compared to existing calibration data
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Fig. 4 Correlation between the activation distribution statistics and clipping ranges. We plot the statistic points and represent the
min-max range size by the radius and cool-warm color palette. The larger and colder point is, the wider min-max range it represents.
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Fig. 5 The main process of our SelectQ. During inference on the image, we extract the activation distribution statistics and compute
the knowledge distances from all centroids. For centroid updating, we directly shift the nearest centroid to the extracted statistics.
Otherwise, we fix all of the centroids and directly sum up the shortest distances in all layers as the score for data selection.
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generation methods, SelectQ does not involve the batch
normalization parameters, which means fewer limitations
in practical applications.

® A new metric termed Knowledge Distance is pro-
posed to estimate the distances between activation stat-
istics and cluster centroids. On this basis, centroids can
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be learned by utilizing the activation statistics. Under
this design, the whole learning process requires no back-
ward propagation, but only a few parameters.

e Extensive quantization comparisons on several
standard network architectures (such as ResNet18/50[22]
SENet3) and compact architectures (such as MobileN-
etV2/V324 25 ShuffleNet26l, SqueezeNet(2” and Mnas-
Net28]) show that our SelectQ generalizes better over
them, and outperforms the random data selection meth-
od and existing generative quantization methods with cal-
ibration, i.e., ZeroQ[7 and DSG[8] based on different
precision settings. For example, on ResNet-18 model, our
method increases the Top-1 accuracy by over 15% in 4-
bit quantization. We also evaluate SelectQQ based on the
widely used PTQ method ACIQU for the compatibility
analysis.

2 Related work

For DNN deployment on hardware, especially for
those supporting low-precision computation, quantization
is indispensable to improve the efficiency of model infer-
ence. Traditional quantization methods can be roughly
divided into QAT and PTQ. QAT performs quantization
and backward propagation alternately, and approximates
the gradient by straight-through estimator(29. By fine-
tuning the weights, the performance can be well retained
when quantizing in extremely low-bit cases(6-8l. However,
QAT methods involve high computation cost, which lim-
its their real applications.

PTQ is emerged for rapid deployment without back-
ward propagation, which requires small amount of un-
labeled data from original dataset to adjust the weights
and determine the activation clipping ranges. For ex-
ample, ACIQP! analytically optimizes the clipping range
for trade-off between clipping error and rounding error.
Outlier Channel Splitting (OCS)[20] duplicates and halves
channels containing outliers. AdaRound('!l and BR-
ECQ[3] are proposed for adaptive rounding via analysis
to quantization noise. Differently, AdaQuant!!4 reduces
the quantization noise of each layer or block separately
by parameter optimization. ZeroQl7 is also a remarkable
method which generates fake data to form the calibra-
tion set. DSG[8l reveals the homogenization of generat-
ive data for quantization. QDropl!? drops the quantiza-
tion of activations during adaptive rounding. SQuant[3
employs the constrained absolute sum of error for data-
free quantization.

Although existing works have exploited the statistical
properties of activation for quantization, e.g.,[17-19, 21, 31]
and have demonstrated the effectiveness to investigate
the relationship between data and the quantization error,
our SelectQ is the first approach that utilizes the distri-
bution information of activation to guide calibration data
selection.
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3 Motivation

To illustrate the necessity of the calibration on the
performance of the quantized model, we conduct several
quantization experiments in this section to motivate this
study.

3.1 Performance fluctuation

Firstly, we explore the importance of the selected cal-
ibration data. In this study, 50 different calibration sets
are randomly sampled from the ImageNet32 training set.
Following common practice, we select one image per class
to form the calibration set, and then calibrate 4-bit
quantized ResNet18 model. As shown in Fig.2, the Top-1
accuracy ranges from 6% to 15% with heavy fluctuation.
This evidently shows that performance of quantized mod-
el is significantly affected by the calibration set in low-bit
quantization, which in turn verifies the importance of se-
lecting appropriate calibration data. As such, we believe
that there must exist effective ways to promote the
quantized model performance from a new perspective of
calibration data selection.

3.2 Distribution mismatch

We explore how the calibration set impacts the quant-
ized model performance. Based on the inference on evalu-
ation data, we observe that the activations deliver differ-
ent distributions even if it runs on the images from the
same class, as shown in Fig.3, which we call distribution
mismatch. According to the experimental results, we find
the relationship between the distribution and the min-
max range, i.e., skinny distribution usually leads to a nar-
row min-max range, while the fat one tends to produce a
wide range.

This distribution mismatch eventually decreases the
performance, especially for those quantization methods
which clamp the activation range by min-max values. For
example, if datum which produces outlier activation dis-
tribution is selected for calibration, the clipping range
may be deviated to cause quantization noise. To handle
this issue, conventional methods require more data for
sufficient clipping range. But it is worth noting that lar-
ger range leads to higher rounding error, especially in
low-bit quantization. This observation inspires us to ex-
ploit the activation distribution statistics for data selec-
tion to avoid the distribution mismatch in calibration.

4 Methodology

SelectQ is an efficient clustering-guided method that
selects an appropriate small set of unlabeled data from
training set to form the calibration set for PTQ. Specific-
ally, it learns the cluster centroids via dynamic cluster-
ing to cover the activation distribution space. Then, it
computes the distances between the fixed centroids and
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running activation distribution statistics to score the data
that are fed into the model. Finally, all training data are
travelled and an optimized calibration set is obtained.
The efficient one-shot clustering requires a few paramet-
ers without any backward propagation. We illustrate the
whole process of our SelectQ in Fig.5 and will present the
details below.

4.1 Uniform quantization

To quantize tensors within a pre-trained DNN model,
we firstly determine the clipping range [«, §]. For activa-
tion, it’s common to run on a small amount of unlabeled
data and use the min/max values as the clipping range
boundaries. The process of determining the activation
clipping range is called calibration, and the used data in
the process is termed calibration set. Then, to represent
the floating points with n-bit integers, we uniformly map
the origin values to the integer range [—2"7', 277! —1].
The above process is referred as quantization, defined as

szlnt(“Tp)—z, A= Bz0) (1)

2" — 1

where xg and xrpp denote the quantized and full-
precision values respectively, A is a scaling factor for
uniform mapping and Z is an integer offset for
asymmetric quantization. Note that there also exist some
works on non-uniform quantization33-3%. However,
without loss of generality, we only perform our proposed
SelectQ on the case of asymmetric uniform quantization,
which has been widely implemented on efficient hardware
devices.

During inference, activation values will be clipped by
the determined clipping range. This means out-of-range
values will be replaced by « or 3, which leads to the so-
called clipping error. On the other hand, large clipping
range means that original values will be represented in
low-resolution, which causes the so-called rounding error.

4.2 Knowledge distance

To update the centroids and score images, we pro-pose
the metric Knowledge Distance by using acti- vation dis-
tribution information for clustering.

For each centroid C; in i-th layer with mean xS and
standard deviation o, we simply compute the euclidean
distance from the running statistics p; and o; as follows:

2

, (2)

2

D(Cy) = Hu?—m of — o

2
+’y‘
2

where v is a hyper-parameter to weight the euclidean
distances of mean and standard deviation. This distance
describes the level of activation distribution coherence
from the statistical characteristic of activation. With
simple statistics of layer-wise activation, it avoids massive

computation cost in the processes of centroid updating
and data selection. Note that we have also tried the
cosine similarity and channel-wise distances, which only
makes tiny improvement but with much more require-
ments of computation resource.

4.3 Data selection

We conduct statistical analysis on the activation val-
ues to reveal the correlation between activation distribu-
tion statistics (i.e., mean and standard deviation) and
clipping range. As shown in Fig.4, cool-warm color
palette and the point size indicate the min-max range
during inference. Clearly, there exists large divergence
among activation distribution statistics, and the range
width is positively associated with the statistic values, es-
pecially the standard deviation, which is incredibly im-
portant for clipping range determination.

In addition, similar to the long-tailed distribution of
activation, as shown in Fig.3, the min-max range is more
sensitive to outlier data and weaker in describing the dis-
tribution of activation. In contrast, statistics can provide
better description for the distribution.

As illustrated in Fig.5, our SelectQ travels the whole
training set and applies dynamic clustering on the activa-
tion distribution statistics. Note that during the whole
clustering process, batch normalization parameters are
fixed from shift. The detailed procedures are presented
below:

e Initialization. First of all, we initialize the
centroids with the activation distribution statistics in
each layer by feeding uniformly random data to DNN. In
the ith layer, each centroid C; consists of layer-wise
mean values pic and standard deviation values of. In
addition, for centroid initialization, we have also tried to
pass some of training data, which shows no significant
performance improvement. One explanation is that the
sampled data leads to unstable distribution. Thus, uni-
formly random data is used due to higher diversity and
robustness, which is also utilized by SQuant/30.

e Centroid Updating. Then, we perform dynamic
clustering to update the centroids in each layer during
the training set traveling. We start to extract the activa-
tion distribution statistics, i.e., computing xS and of.
After that, the distances between obtained statistics and
all centroids in the same layer are computed and sorted.
As shown in Fig. 5, for the nearest centroid to the extrac-
ted statistics, we assume it is the best to represent the
current distribution. And to learn from current distribu-
tion, the centroid is updated as follows:

, 3
O'iC/: O'iC + Ao ( )

{Mz‘C,: s + Atfbi

where & and of’ denote the updated statistics within

centroid, and A; is the updating step for dynamic
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clustering. To adjust the centroid shift during updating,
we perform cosine annealing on it, as shown below:

tnim W)) > (4)

where t denotes the current batch number, tmq, is the
total amount of batches, and Anin and A\jq. denote the
updating step of the beginning and the end respectively.
To save computation resource, SelectQ is one-shot which
means A; changes during the whole epoch.

During the centroid updating phase, an activation dis-
tribution space is constructed discretely by the statistics.
Multiple centroids can effectively provide activation dis-
tribution diversity which has been revealed by DSGI8.
Different from DSG which utilizes slack distribution
alignment, our SelectQ is independent on the batch nor-
malization layer, which means that our method can be
applied with less limitations.

And more to the point, centroid updating can allevi-
ate the negative impact caused by distribution mismatch.
Since the representative centroids are learned via shifting
with activation distribution statistics, thus appropriate
clipping ranges can be determined eventually.

e Data Ranking. After updating the centroids, we
fix all of the centroids and travel the training set again

1
At = Amin + 5 ()\maz - Amzn) (1 + cos (

for calibration data selection. Each data will be ranked
according to the knowledge distance. For simplicity, we
compute the knowledge distance from the nearest
centroid in each layer, and sum them up to obtain the fi-
nal score:

l 1
§=3 5= min{s] =DC))|0<j <N}, (5)

where [ indicates the number of activations, N denotes
number of centroids in each layer, and D (-) computes the
knowledge distances by Equation 2. Subsequently, those
images with the highest scores will be picked up into the
calibration set. Note that we set less centroids than the
calibration set size, since large amount of centroids will
lead to extremely high computation requirement,
especially for those deeper models.

Due to the independence of each dynamic clustering
process on different activations, we separately perform
the centroid updating with multi-threading for computa-
tion optimization. Without backward propagation, Se-
lectQ can efficiently select data to form the calibration
set. Finally, with the selected data, we can perform the
uniform quantization with Equation 1 on DNN models.

5 Experiments

5.1 Experimental settings

We mainly evaluate each method and show the quant-
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ization results by using ImageNet datasetB32. We start by
discussing the results on ResNet18/50122 and SENet[23,
which are standard architectures widely used in industry.
The results on compact architectures are subsequently
presented, including MobileNetV2/V3[24 25 ShuffleNet[26],
MnasNet28], SqueezeNet(2 and MENet36. We conduct
quantization experiments with several precision settings,
including 4-bit, 6-bit and 8-bit for both weight and activ-
ation. All the experiments are implemented with PyT-
orchl37 on NVIDIA GTX2080Ti and the pre-trained mod-
els are provided by PyTorchCV 1.

For implementation details, we set Amin to 0.001,
Amaz t0 0.1 in equation 4 and v to 1.0 in equation 2. For
dynamic clustering, we set 10 centroids for each activa-
tion.

5.2 Comparison on imagenet dataset

Since we focus on the appropriate calibration dataset
selection, we mainly compare our method to the random
selection strategy under the same settings. In this study,
we mainly compare our SelectQ with DSGI8 and
ZeroQ[7, since they take generating calibration set into
account.

The comparison results are described in Table 1, from
which we see clearly that our method outperforms both
the existing random selection and the calibration data
generation methods of DSG and ZeroQ, especially the
random selection. It should be noted that in 4-bit quant-
ization, our SelectQ promotes the Top-1 accuracy of Res-
Net-18 by over 15%. Moreover, on most of light-weight
architectures, our SelectQ also surpasses the random se-
lection method, e.g., the performance on MobileNetV3 in
6-bit quantization is 8.91% higher than that of random
selection. Besides, in 8-bit quantization over MnasNet
with SelectQ, the Top-1 accuracy is even more than the
full-precision model.

It is noteworthy that the generalization performance
of our SelectQ can be demonstrated via extensive quant-
ization experiments based on various DNN models.
However, there still exists severe performance degrada-
tion in some 4-bit quantization cases, e.g., ResNet50 and
MobileNet. This is because these models are unable to
resist the quantization noise if without weight adjust-
ment.

5.3 Compatibility with ACIQ

Compatibility is incredibly important for model de-
ployment in practical applications. Different from the
current methods that focus on model optimization, we
pay attention to appropriate calibration data selection,
i.e., SelectQ has higher compatibility than existing PTQ

I Computer vision models on PyTorch: https://pypi.org/project/
pytorchev/
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Table 1 Results on standard models ResNet18/50 and SENet.

Table 2 Results on lightweight models MobileNetV2/V3.

Model Method W-bit A-bit Top-1 Model Method W-bit A-bit Top-1
Baseline 32 32 72.987% Baseline 32 32 75.346%
Random 4 4 10.293% Random 4 4 0.172%
ZeroQ 4 4 26.04% SelectQ 4 4 0.362%
DSG 4 4 34.53% MobileNetV3 Random 6 6 51.131%
SelectQ 4 4 36.033% SelectQ 6 6 60.041%
Random 6 6 71.260% Random 8 8 75.004%
ResNet18 ZeroQ 6 6 69.74% SelectQ 8 8 75.048%
DSG 6 6 70.46% Baseline 32 32 72.977%
SelectQ 6 6 72.258% Random 4 4 10.869%
Random 8 8 72.927% SelectQ 4 4 10.884%
ZeroQ 8 8 71.43% MobileNetV2 Random 6 6 70.178%
DSG 8 8 71.49% SelectQ 6 6 70.252%
SelectQ 8 8 72.992% Random ] ] 72.772%
Baseline 32 32 77.731% SelectQ 8 8 72.843%
Random 4 4 6.805%
Table 3 Results on lightweight models ShuffleNet, SqueezeNet,
SelectQ 4 4 16.510% MnasNet and MENet.
Random 6 6 76.023% Model Method ~ W-bit  A-bit Top-1
ZeroQ 6 6 75.56% Baseline 32 32 65.047%
ResNet50 DSG 6 6 76.07% Random 6 6 40.230%
SelectQ 6 6 76.487% ZeroQ 6 6 39.92%
Random 8 8 77.524% DSG 6 6 44.88%
ZeroQ 8 8 77.67% ShuffleNet SelectQ 6 6 45.254%
DSG 8 8 77.68% Random 8 8 64.244%
SelectQ 8 8 77.687% ZeroQ 8 8 64.46%
Baseline 32 32 74.318% DSG 8 g 64.77%
Random 4 4 6.698% SelectQ 8 8 64.792%
SelectQ 4 4 9.248% Baseline 32 32 60.649%
SENet Random 6 [ 71.607% Random 6 6 52.247%
SelectQ 6 6 71.947% SqueezeNet SelectQ 6 6 54.596%
Random 8 8 74.211% Random 8 8 60.622%
SelectQ 8 8 74.218% SelectQ 8 8 60.630%
H 14
methods. Toward this end, we conduct a series of experi- Baseline 32 32 74.959%
ments for compatibility analysis with ACIQU due to its Random 6 6 67.727%
wide applications in practice. MnasNet SelectQ 6 6 70.184%
Specifically, when quantizing ResNet50, MobileNetV3
. . Random 8 8 74.899%
and ShuffleNet, we feed calibration data from SelectQ
and random selection to optimize the clipping range by SelectQ 8 8 74.962%
Gaussian distribution, and the results are reported in Baseline 30 30 55.971%
Table 4. By clipping range optimization, our SelectQ still
. . Random 6 6 1.161%
outperforms random selection method, which demon-
strates its high compatibility with ACIQ. Note that per- MENet SelectQ 6 6 3.067%
formance degradation happens in some cases with ACIQ), Random 8 8 50.609%
as the quantization noise distribution may shift from the
SelectQ 8 8 51.011%

ACIQ assumption.
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Table 4 Compatibility analysis results on several deep

networks.

Model Method ‘W-bit A-bit Top-1
Baseline 32 32 77.731%
ACIQ 4 4 43.784%
SelectQ + ACIQ 4 4 43.859%
ResNet50 ACIQ 6 6 73.737%
SelectQ + ACIQ 6 6 74.198%
ACIQ 8 8 76.353%
SelectQ + ACIQ 8 8 76.471%
Baseline 32 32 75.346%
ACIQ 6 6 72.391%
MobileNetV3 SelectQ + ACIQ 6 6 72.755%
ACIQ 8 8 75.111%
SelectQ + ACIQ 8 8 75.121%
Baseline 32 32 65.047%
ACIQ 6 6 59.865%
ShuffleNet SelectQ + ACIQ 6 6 60.159%
ACIQ 8 8 64.536%
SelectQ + ACIQ 8 8 64.791%

5.4 Parameter sensitivity analysis

We perform the hyper-parameter sensitivity analysis.
We mainly study the key hyper-parameters in our Se-
lectQ, e.g., centroid number in each layer and calibration
set.

We first evaluate the performance of ResNetl8 with
different settings of calibration set. As shown in Fig.6,
quantizing ResNet18 with bit-width settings of 4, 6 and
8, more calibration data lead to higher performance. This
is easy to understand, because more calibration data cov-
er the activation distribution better and reduce the clip-
ping error.

[=10 =100 1000]
72.730%72.853% 72.992%

o
80.000% 70.780% 72:258%

61.946%
60.000%

—
'

Q-‘ 0,
S 40.000% 36.033%

31.897%

20.000% 16.679%

0%

Fig. 6 Quantization results with different calibration set sizes.
Color of blue, orange and gray indicates the calibration set size
of 10,100 and 1 000 respectively. Left, middle and right groups
are the results of 4-bit, 6-bit and 8-bit quantization respectively.

Then we evaluate the effects of different numbers of
centroids. The analysis results in Fig.7 demonstrate that
more centroids used in SelectQ leads to higher perform-
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Fig. 7 Quantization results with different amounts of cent-
roids. Horizontal axis denotes the amount of centroid used, while
vertical axis indicates the Top-1 accuracy. Different colors show
quantization in different bit-width settings. In addition, results
of random selection are taken into consideration for comparison.

ance, especially in lower bit-width cases. However, at the
same time more centroids also lead to higher computa-
tion complexity in both centroid updating and data selec-
tion.

5.5 Visualization

For intuitive understanding of our SelectQ, we also
visualize some activation distribution statistics in Fig.8,
where we plot the activation statistics during model infer-
ence on some image samples. From Figs 8a to 8d, we see
that the learned centroids can imitate the activation dis-
tribution, thereby avoiding the distribution mismatch by
filtering out the data to produce outlier distribution.
From the other cases, as shown in Figs 8e to 8h, the
learned centroids can well represent the activation distri-
bution.

6 Conclusion

We have focused on exlporing the appropriate calibra-
tion data selection problem for post-training quantization,
and have also proved the impact of calibration set on the
quantized model performance through experimental in-
vestigation. Specifically, we discovered the distribution
mismatch in activation, which potentially leads to quant-
ization noise and error. Technically, we have proposed a
new and effective calibration dataset selection method Se-
lectQ, which learns the centroids to eliminate the activa-
tion distribution mismatch during calibration in quantiza-
tion. Extensive experiments demonstrated the generaliza-
tion and compatibility ablities of our SelectQ. In future,
we will continuously pay attention to the calibration set
selection problem for post-training quantization. In addi-
tion, quantizing a low-level vision modell38 39 is also an
interesting future direction.
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