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Abstract: Reinforcement learning encounters formidable challenges when tasked with intricate decision-making scenarios, primarily
due to the expansive parameterized action spaces and the vastness of the corresponding policy landscapes. To surmount these diffi-
culties, we devise a practical structured action graph model augmented by guiding policies that integrate trust region constraints. Based
on this, we propose guided proximal policy optimization with structured action graph (GPPO-SAG), which has demonstrated pro-
nounced efficacy in refining policy learning and enhancing performance across sophisticated tasks characterized by parameterized ac-
tion spaces. Rigorous empirical evaluations of our model have been performed on comprehensive gaming platforms, including the entire
suite of StarCraft II and Hearthstone, yielding exceptionally favorable outcomes. Our source code is at https://github.com/sachiel321/

GPPO-SAG.
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1 Introduction

Recently, the human-like ability of agents to reason
and make decisions in complex scenes has been attracted
by an increasing number of researchersl! 4. One potential
approach to achieve this goal is deep reinforcement learn-
ing (DRL)P -l where the policy gradient!”] method plays a
crucial role. Compared to the value-based approach, the
policy gradient method is more efficient for tasks with
large and continuous action spaces. However, the vanilla
policy gradient method®! is less robust, and many ad-
vanced algorithms improve the policy gradient meth-
od®-10], The proximal policy optimization (PPO)! meth-
od has emerged as one of the most popular RL al-
gorithms, primarily due to its superior and robust per-
formance, which stems from the theoretical foundation
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provided by trust region theoryl.

Policy learning in parameterized action space is a no-
torious challenge for RL agents in complex tasks. The
real-time strategy (RTS) gamellll is a typical example,
where each step requires the agent to select an action
type from a discrete action space and then the paramet-
ers of that action. These action parameters may be in the
continuous action space. For example, if you choose a sol-
dier to move, then the action type is moving, and you
need to select a soldier and its moving target location,
which is a point in a continuous action space. The com-
bination of the aforementioned factors typically results in
a vast space for action. The popular method decomposes
the original action space through autoregressive action se-
lection and transforms the complex decision-making prob-
lem into several simpler and easier decision-making prob-
lems in the appropriate action spaces/tl].

The autoregressive action selection method has proven
to be a highly effective solution for tackling complex
problems with large parameterized action spaces. Its ver-
satility is evident in its application to a range of chal-
lenges, including SCCI2l, DI-starl!3, OpenAlI-Fivel!4, and
JueWu AI for Honor of Kingsl!5l. With the emergence of
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offline reinforcement learning, DeepMind has introduced
AlphaStar Unplugged['6l, which is inherited from the
autoregressive action selection framework. As a result,
autoregressive action selection has become the standard
method for addressing complex problems with large para-
meterized action spaces.

Although these heuristics have also achieved good res-
ults, surprisingly no researcher has conducted exhaustive
mathematical modeling and quantitative analysis of
guided reinforcement learning via autoregressive action
selection. In all existing research on RL based on autore-
gressive action selection, each decomposed sub-policy is
modeled as an independent solution of the policy optimiz-
ation problem. However, some researchers have shown
that simply imposing generic-purpose RL algorithms on a
policy consisting of several sub-policies may introduce un-
wanted bias[!” 18, Qur study is dedicated to bridging this
gap. We claim that although the parameterized action
space of these problems is large and diverse, it usually
has some internal structures. We can simplify the com-
plexity of policy modeling and facilitate the learning of
the RL agent if we consider these internal structures.
Hence we first formalize the RL with autoregressive ac-
tion selection as a Markov decision process with struc-
tured action graph, give a lower bound on the improve-
ment of policy monotonicity based on guiding policy, and
then based on this provide a theoretical guarantee for the
optimization of on-policy RL algorithms guided by a pri-
ori policy. Finally, based on the above theoretical founda-
tion, we propose the guided proximal policy optimization
with structured action graph (GPPO-SAG). Compared to
the existing methodsl® 11, 12, GPPO-SAG performs theor-
etically and practically better in complex decision-mak-
ing tasks.

GPPO-SAG outperforms state-of-the-art approaches
across the board in terms of performance and sample effi-
ciency on the full StarCraft II game and Hearthstone. We
summarize our contributions as follows:

1) We introduce guided proximal policy optimization
with structured action graph, which effectively guides
policy learning and improves performance in complex de-
cision-making tasks with parameterized action space.

2) We formulate autoregressive action selection as the
structured action graph, which helps mathematically and
quantitatively probe action decomposition and optimiza-
tion in RL.

3) We propose and prove a monotonic improvement
guarantee for stochastic policy with a guiding policy and
structured action graph, which provides a fresh view-
point on RL policy optimization.

2 Related works

Tasks requiring complex decision-making often in-
volve action spaces that are parametrized, which presents
challenges for RL agents in both action selection and
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policy learning.

For the action selection problem, some researchers
propose compiling a commonly used parameterized-ac-
tion space from human data to replace the original ac-
tion space, and then using HRL or graph to learn the
policy schedulel19-20], However, while this approach sim-
plifies the action space, it also limits the possibility for
the agent to discover new parameterized-action combina-
tions. Some studies have attempted to learn parameter-
ized actions in a hierarchical way[2!-22l, While this ap-
proach can handle hybrid action spaces, it is typically
limited to two levels of action selection, which makes it
difficult to model more complex action spaces such as the
StarCraft II full game. Compared with the above meth-
ods, the autoregressive action selection method[?3 works
better when dealing with parameterized action spaces. It
decomposes the original action space into several smaller
action spaces and composes these smaller actions autore-
gressively to choose an action. Many works oriented to
complex decision-making problems have verified the ef-
fectiveness of this method[!l: 1415, With the rise of the
large language model (LLM), some recent researchers
combine LLM with autoregressive action selection to real-
ize complex decision-making and long-time planning.
These include solving StarCraft II via LLM?24, and com-
pleting complex tasks in open-world environments such as
Minecraft using LLM and RL[25 26, However, the prob-
lem of cooperative learning of different subaction spaces
in autoregressive action selection has not received much
attention from researchers. We claim that solving this
problem will further improve the efficiency of solving
complex decision-making problems.

Another significant challenge that reinforcement learn-
ing faces when dealing with complex decision-making
problems is the exploration and learning problem caused
by the enormous policy space. Many researchers have
found that if the RL agent is allowed to explore and learn
freely in complex problems without constraints, the agent
policy will be difficult to improve effectively, and may
even collapsell9 11, 6],

Some researchers construct a simpler abstract policy
space by artificially predefining entities, predicates, and
causal relations between them in the environment2729 to
simplify the problem. But it is tedious and time-consum-
ing to construct the abstract policy space when facing
complex environments, and the effectiveness of these
methods depends on the researcher’s understanding of the
environment. In the second kind of approach, many
works focus on guiding policy exploration and learning
through a priori policy or heuristic rules/l: 30-32], Nonethe-
less, these approaches either lack theoretical assurance or
have limitations on the form of the guidance rule. For
complex decision-making problems, some researchers have
employed the method of indirectly constraining policy
learning by including a penalty term based on the Kull-
back-Leibler (KL) divergence between the target policy
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and the guiding policy during policy updatesl4 6 11,
However, our experiments suggest that this method may
not effectively constrain the target policy distribution.
Therefore, there is currently a lack of a guided policy
learning method that is both theoretically guaranteed and
truly effective for complex decision problems.

3 Preliminaries and background

Markov decision processes. A Markov decision
process (MDP) is defined as a tuple (S, A,r, P,v). Set S
denotes the state space and set A represents the action
space. r: S x A — R is the reward function. P :Sx
A x S — [0,1] denotes the probability of transitions. v €
[0,1) is the discount factor. The policy 7 : S x A — [0,1]
and 7(al|s) denotes the probability of playing a in state
s. The goal of the agent policy 7 is to maximize the cu-
mulative discounted reward J(m)=Erx[> 10,77 (st
a:)], where T = (s0,a0,51,a1,---) is the trajectory in-
duced by 7. Besides, in the field of reinforcement learn-
ing, we commonly refer to the following definitions for the
state-action value function @, the value function V;:

Qx(st,at) = E5t+lvat+1v'” |:Z'7lr(8t+l):| )
=0

VTF(St) = Ea’tvst+l7“' |:Z ’er(st+l):|
=0

where a; ~ w(at|st), si+1 ~ P(st+1]st,ar) for t > 0.

Distribution difference measurement between
policies. Given two policies mg and my on S X A, we as-
sume that 7 and 7y have full support and smooth dens-
ities. For a state s € S, the KL divergence between
7o (|s) and 7y (+|s) is defined as

Dicr(mol1s),ms(15)) = [

mo(als
o (als)log ———
acA Ty als

Moreover, the total variation distance between g (-|s)
and 7y (+|$) is given by

Drv (mo(:ls), mu(:[s)) = sup [mo(als) = (als)].

Trust region policy gradients. Since the vanilla
policy gradientl”] method suffers from determining the up-
date step, trust region policy optimization (TRPO)U is
proposed to optimize the policy by solving a constrained
optimization problem:

mo(at|se) At:|

max E ~
9X (st,at)~mo, 4 |:7r001d(at|st)

s.t. E(St»at)NTreold [DTV(Wl‘)old('|5t)77r9('|st))] < J (1)

where At is the estimate of the advantage function
Ax(s,a) = Qx(s,a) — Vz(s) at timestep t. TRPO greatly

improves learning stability. Based on that, PPOI ig
proposed to simplify the policy update by optimizing the
surrogate objective function:

. mo(aclse) 7
E ~ ——A
X Blsv.a0)~mo, {mm (ﬂeold(atlst)

clip (MJQ A,
T0o1a (a’t |St)

where clip(p, 1, €) means bounding the value of p between

ty

(2)

[l —¢,1+ ¢]. Furthermore, heterogeneous-agent proximal
policy optimization (HAPPO)!'¥] extends PPO to
heterogeneous multi-agent reinforcement learning as
follows:

[min (pi x pH1A,,

max E ~
] (st,ag)~mo g

clip(p’, 1, e)plti_l/lt)] (3)

1:2—1 1:2—1
kg .

1.-1(ag Ist)

T, represents the effect of
St

1 (a
1:2—1 t
old

all agents updated before agent i and p' =

Wéi (allst)
ﬂ;ild(a”St) )
For ease of distinction, we use normal font ¢ and 7w for
single action and policy and bold font a and 7 for joint
action and joint policy. Note that the order of updates
among agents is randomly assigned. The restriction that
derives PPO from on-policy to off-policy is the
distribution difference between the behavior policy
and the target policy m¢. According to the “generalized
policy improvement lower bound” theorem[(3l, off-policy
sampling can also be applied to trust region learning if
the distribution difference between the behavior policy
and the target policy is trivial. Given behavior policy mp,

target policy m, and future policy 7;, we refer to it as

follows:
#e(als) »
_ > = (s, _
J(ﬂ-t) J(Trt) =1 E(S,G)N"fb TI'b(a|8)A t(s a)
O™ By, [Drv (u(ls), mo (1)) (4)
where C — 2y maxg EaNﬁ_t(_,S)AA,,t(s,a)| '

(1-7)2

4 Modeling and analysis for complex
decision-making problems

In this section, we analyze the policy optimization
lower bound for complex decision-making problems with
parameterized action space and propose a practical RL al-
gorithm. Firstly, we formalize the problem as MDPs with
structured action graph in Section 4.1. Then, we follow
by a thorough analysis of the policy optimization lower
bound with the guiding policy in Section 4.2. Finally, in
Section 4.3, we derive a surrogate objective and propose a
practical algorithm: guided proximal policy optimization
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with structured action graph.

4.1 MDPs with structured action graph

In complex decision-making tasks, the action space A
is often diverse, large and parametric, which makes it dif-
ficult for the agent to play actions directly. For instance,
in SC2LEB4, the agent must select an action from ap-
proximately 10® valid actions per timestep. To address
this issue, we propose MDPs with structured action graph
(MDPs-SAG) to model and decompose the parametric ac-
tion space. In MDPs-SAG, we decompose the action
space A as a sequence of sub-action sets: A =
A x --- x A™. Hierarchy order is given to the sequence
by a directed acyclic graph ¢ = {{/, &}, whose vertex set
{) contains each sub-actions set, an initial vertex pinit
(the only root in ), and an end vertex ¢! (the only
leaf in G). The edge set & represents the hierarchical de-
pendencies between these vertices. The parameterized ac-
tion is defined as the joint action in a path on ¢ from
ot o pend. @ — LI ,oi,oend). Thus, if an(j) is
used to represent all the ancestor vertices of j vertices,
for a given state s € S and the joint action of ancestor
vertices a®) e A% of vertex v/ € ¥, an action o
can be selected from the sub-policy 77 (a’|s, a**)) associ-
ated with vertex v’. Then the joint policy m(a|s) =
[T Wj(aj|5aaan(j)), where an(j) € 2.

Similar to [35], in MDPs-SAG, we can define the
state-action value function of the vertex v7:

Qjﬁm(]')(& aj,an(j)) — Eaan(j)N.,,an(j) [Qj’an(j)(s, aj7 aan(j))]

(5)

where Q(s,a’,a®9) represents the state-action value of
action o’ when taken with the joint action a™() ¢
A*G) of ancestor vertices v*U) € ¥, And Q(s,a?*))
denotes the state-action value of the joint action a’*"(?).
Equation (5) denotes the expected accumulative reward
when vertex v’'s ancestor vertex actions are fixed to
a®) and the current vertex action is a’. Note that
Qinit (S, ainit) — V(S), and and,an(cnd)(s’ acnd,an(cnd)) _
Q(s,a" "), Then, the advantage function of vertex v’
is

Ad (s, aan(j)7 aj) _ Qj’all(j)(s, a]',an(j)) _ Qan(j)(s’ aan(j))_

(6)

We show the SAG for SC2LE in Fig. 1, where the par-
titions are adaptive to Alphastarl!ll. It is important to

note that different action types may have different paths
init to Vend

from o , and joint actions do not have to tra-

verse all vertices on the SAG. For instance, the action

“attack units” can be represented by a path:
(v"“t,01,92703,04,05&9“‘1}, and the action “attack target

i init 1 2 3 4 6 end
position” by a path: (o™ 07 0% 0% 0% 0° o).
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Fig.1 SAG for SC2LE. o™t and ¢*®d represent the initial
vertex and the end vertex, respectively. o', --- 0% represent

» G LLITS

“action type”, “delay”, “queue”, “select units”, “target units”,
and “target location” respectively, in the partition of Alpha-
Star(11]. (Colored figures are available in the online version at
https://link.springer.com/journal /11633)

Lemma 1. Given a structured action graph ¢, the
following equation holds if all sub-actions form a path
graph @ = (oM oF ... o) € ¢:

A% (s,a”) = ZAj(s,aj’an(j)), where an(j) ~ ®. (7)

Jj=k

For proof, see Appendix A.1. Lemma 1 shows that in
MDPs-SAG, the state-action advantage of the path con-
taining the initial vertex can be decomposed by the sum
of the state-action advantages of each vertex in the path.
Although Lemma 1 shares a decomposition similar to
“multi-agent advantage decomposition”[!8; 361 their res-
ults do not hold in our problem. In fact, each vertex in
Lemma 1 is constrained by graph ¢, which means that
there is no practical meaning for a single vertex when
some ancestors are missing, while the arbitrariness of ver-
tex selection is required in [18, 36].

4.2 Policy improvement
policy and SAG

with guiding

In strategy games, we usually expect the agent to
learn human-like policies to discover new tactics or assist
in decision-making. Besides, it is difficult for an agent to
learn an optimal policy through random exploration in
complex tasks due to the high dimensionality of states
and actions. Therefore, it is necessary to introduce a
guiding policy to guide exploration and constrain the
learning direction.

Based on the above, we propose Lemma 2, which in-
troduces the guiding policy into the trust region policy
gradient.

Lemma 2. Given behavior policy 7, guiding policy
Ty, target policy 7, and future policy 7, the following
policy improvement lower bound holds:

) — #i(a”]s) 0 ‘NI
J(#) = J(mi) 2 C1 X Ernm, o (a”|s) A, (s,a”)
Ca X Egmm, [Drv (7 (+]8), wq (-] 8))+
Dy (m(-]s), 74 (-]5))] (8)
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2ymaxg |E_p . A2 (s a'/')|
— _1 — Sl aP~Fp (8) e\
where C1 = > C> =y .

For proof, see Appendix A.2. In our setting, the beha-

vior policy m, interacts with the environment and col-
lects data. The guiding policy my is a prior policy that
makes decisions concurrently with the m, which provides
guidance during training, but it does not interact with
the environment. The target policy 7 is the policy being
updated during training, and the future policy 7: is an
estimate of the future target policy updated after the cur-
rent training step. Lemma 2 demonstrates a way to up-
date the policy within the trust region indirectly. This is
achieved by placing limits on the total variation distance
between the behavioral policy and the guiding policy, as
well as between the target policy and the guiding policy.
These constraints ensure that the updated policy stays
within the trust region. Combining with Lemma 1, we
propose a lower bound with SAG on the improvement of
the guiding policy.

Theorem 1. Assume S and A7 are both finite. Giv-
en a structured action graph ¢, behavior policy 7, tar-
get policy 7, guiding policy 74, and future policy 7,
the following policy improvement lower bound holds if all
sub-actions form a path graph @ = (o™ oF ... o
ooy € @

3 1 .
J(#0) = T(me) > [METWW DIAT (s,a”")]

ko

j=

C X Eqgnn, [Drv (71 (|5), 75 (:|5))+

DTV(Wg('|5)77T;('|S))]:| (9)
2y maxgs [E . P h Al (Syaj,an(j)>|
. ad i (-5),a2m() w200 gy T
where C' = £ = ;
and pion(@) = T2 D) & @inD)s)

] (ad|s,a22(@) © 720 (gan(d) [s) ©

For proof, see Appendix A.3. Theorem 1 implies the
following characteristics of trust region learning with
SAG:

1) The target policy 7:'s promotion is dependent on
the sub-policies of each vertex 7] on the path graph &

and independent of any other vertex outside .
2) The advantage function of each sub-policy w] is

an(7) in addition to

based on all of its ancestor vertices m
itself.

3) With the guiding policy 7, as the medium, (9) im-
plies that we can bound the distribution distance between
the target policy 7 and the behavior policy 7y .

4.3 Guided proximal policy optimization
with SAG

Theorem 1 implies how to learn the joint policy based
on SAG, maximizing the advantage for each vertex on
the path while constraining the future policy distribution

distance from the guiding policy. Concretely, according to
Theorem 1, we use the lower bound in (9) as the surrog-
ate objective function to be objective. For our proposed
surrogate objective function to be solvable by commonly
used optimizers, we need a clipped version similar to (2)
and (3) for the distributionally constrained problem.
However, it is still very challenging for our problem.
First, the successive multiplication of importance
sampling results in variance accumulation, reducing the
stability of training. Second, we not only need to clip
between the current target policy estimation and the
guiding policy but also need to control the influence of
the ancestor policies, similar to the current policy. Thus,
we propose a double-clip version as the surrogate object-
ive function.
Let p?n(j ) =

an(j) _ .n.zn(j)(aan(j)ls) '

,;r;m(j)(aan(j)ls)
- 7‘_Eb"‘(j)(aan(j)IS)’ t

Wzﬂ(j)(aan(j)Js) ' g

7 (ad|s,a®(9)) S nd(ad|s et ()
4 - J — "9 i
7 (ad[s,a™ (@) 1 and p; = (@ |5 ) then the surrogate

objective function to optimize is as follows:

I3
S min [chp@?““% ) el AZ, (s,a”),
=k

clip (clip(p"?, p3"9 ke)pl, pi, €) A, (s,a”)| (10)

where clip(p1,p2,€) puts p1 into the interval [p2 — €,
p2 + €] and k € [0,400) is a constant scaling factor. For
the derivation, see Appendix A.4. Since the successive
multiplication of importance sampling will increase the
variance of advantage estimates[36-37), we need the func-

tion clip(pa“(j) , pgn(‘j)

,k€) to bound the ancestral impor-
tance sampling ratio to the corresponding vicinity of the
guiding ratio. The outer clipping function constrains the
joint importance sampling ratio to reduce the variance
caused by the ancestor vertices. It approximately limits
the total variation distance between the guiding policy
my and the target policy estimates 7r;. The behavior
policy’s parameters come from the current target policy
periodically. So limiting the total variation distance is
equivalent to limiting the distance between the behavior
policy and the guiding policy. We refer to (10) as guided
proximal policy optimization with structured action
graph and elaborate on it in Algorithm 1.

Guiding policy. Usually, we obtain the guiding
policy through supervised learning or offline reinforce-
ment learning via pre-collected data. It is important to
note that the algorithm imposes certain standards on the
quality of the guiding policy. If the quality of the guiding
policy is too low, it is difficult to provide effective guid-
ance for the advancement of the target policy. To illus-
trate this issue, we conduct ablation experiments, which
are detailed in Appendix B.1. In cases where there is a
shortage of prior guiding policy, our method still oper-
ates by reducing to “proximal policy optimization with
structured action graph.” In such cases, we can assume
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that the guiding policy is the behavior policy itself, i.e.,
p;m(” = 1,p§ =1 in (10), and the algorithm can run

without any prior guidance.

5 Experiments

In this section, we design experiments to explore the
following questions:

1) Does GPPO-SAG have an advantage over other
methods for complex decision-making tasks? Where does
the GPPO-SAG advantage come from?

2) Does the size of the action space affect the al-
gorithm advantages?

3) How sensitive is GPPO-SAG with respect to the
clipping ratio? How does the constant scaling factor « af-
fect the performance of the algorithm?

Algorithm 1. Guided proximal policy optimization with

structured action graph

Input: The structured action graph ¢ with n vertices,

batch size B, episodes K, steps per episode T, the

guiding policy my, = (Wéé’ e ,m?g)

1) Initialize the behavior policy g, = (71’;%,-“ ,ngb),
the target policy gy, = (ﬂé%,”' ;g ), critic network

Vy, and replay buffer B

2) for k=0to K —1 do

3) Synchronize 7,'s parameters with policy pool

4) for each environment step do

5) Collect transitions (s,a,s’,r) with behavior
policy 7, and push them into B

6) end for

7) for each update step do

8) Sample a minibatch of B transitions from B

9) Compute advantage A% (s a) and reward to
g R,

10) Set vertex o' be o™ and query path graph
® from @ for each action

11) while vertex o has child vertex o' in @
do

12) pt = ottt

13) Update sub-policy 7; by maximizing

BT Let Limt

5" ke)p! AY, (s,a”),
clip (clip(pan(j), pgn(j) , K€
p{f G)Agt (s, a@)]

min|[clip(p™)

),

14) end while

15) Update centralized critic Vi by minimizing
16) ﬁ Zf:l ZtT:1 (Vw (s1) — ]%t)2

17) end for

18) Update policy pool with o,

19) end for

To answer these questions, we compare the perform-
ance of GPPO-SAG with AlphaStar (we use DI-star[l3,
an open-source implementation of AlphaStar, as our code
base), and PPOIY with additional KL penalty between
the target policy and the guiding policy in the StarCraft
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II full game and Hearthstone. All methods in our experi-
ments are implemented based on importance weighted
actor-learner architecture (IMPALA)BSl. With batch size
B and episode steps T', the main objective function of Al-
phaStar is the penalized policy gradient as follows:

1< o :
37 | 2o logd x A7, (s,a”) = Dicr(m)([s),w/(]s)
j=k
(11)

and the surrogate objective function of PPO with
additional KL penalty is

1 L
—_— min

DKL(W?)CS)WZOIS))) (12)

T L oy . (7 A0 >
—J.Am(s,a ), clip —5.Le Az, (s,a”)| —
4 U

For the experiments, we use 4 NVIDIA-A100 GPUs
and 256 AMD EPYC 7 742 CPU cores.

5.1 Environment description and model
configuration

StarCraft II. We only consider the Zerg civil war in
our experiments to save computer resources. We first use
9000 zerg-vs-zerg human replays to train a policy net-
work with 71000 epochs using a supervised learning
paradigm. Then the supervised model is used for initializ-
ing the agent's policy model for RL with the level-3 built-
in bot. During RL training, the first 4 000 steps are used
for value pre-training, after which the actor networks’
gradients are enabled. The clip ratio for each head is lis-
ted in Table 1. In the following experiments, unless other-
wise noted, the default values are used. More hyperpara-
meters for supervised learning are listed in Appendix B.2.

Table 1 Clip ratio with GPPO-SAG

Action head €def Kdef
Action type 0.4 0.5
Delay 0.6 0.5
Queued 0.6 0.5
Target unit 0.6 0.5
Selected units 1.2 0.5
Target location 0.8 0.5

For a fair comparison, all methods adopt Alpha-
Star’s(!!l network structure, UPGO loss, and entropy loss.
We set the learning rate to 107°, the batch size to 8, and
the trajectory length for the long short-term memory
(LSTM) to 32. More hyperparameters for RL are listed in
Appendix B.3. Except for the hyperparameters specific to
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our method, all other hyperparameters in StarCraft II are
consistent with the settings in DI-star(!3].

Hearthstone. Hearthstone is a trading card game
that allows players to build a deck of 30 cards before a
match and defeat their opponents in two-player battles.
Hearthstone’s cards are more diverse than traditional
board games, and almost every card has its unique effect.
The RL environment for Hearthstone used in our experi-
ments is inherited from Cardsformer by Xia et al.[3%]

We represent the Hearthstone action space as a struc-
tured action graph, as shown in Fig.2. In our experi-
ments, we use one warlock deck and optimize the policy
by self-play. We first use 5 000 replays to train the guid-
ing policy and adopt an autoregressive policy network
structure. We set the learning rate to 1075, the batch
size to 32, and the clipping ratio to 1.2. The details about
the environment, network structure, and hyperparamet-
ers can be found in Appendix B.4. Except for the hyper-
parameters specific to our method, all other hyperpara-
meters in Hearthstone are consistent with the settings in
Cardsformer(39],

()
(=) &)

The structured action graph of Hearthstone. v

the initial vertex, v5¢ means selecting card vertex, vT¢ means
selecting a target card vertex, vTT means selecting a target
position vertex, vV means selecting a target unit vertex, and
v°"d means the end vertex. (Colored figure is available in the

online version at https://link.springer.com/journal/11633)

Fig. 2 it means

5.2 Experiments for question 1

Fig.3 shows the training curves of GPPO-SAG, Al-

phaStar, and PPO-KL against the built-in level 3 AI on
three standard matchmaking maps, where the red curve
represents GPPO-SAG, the green curve represents the
AlphaStar with constrained policy gradients, and the blue
curve represents PPO algorithm with a KL constraint.

During the early training steps, the win rate of each
method steadily increases, but at approximately 2 x 10°
game steps, AlphaStar and PPO-KL hit a bottleneck, and
their performance stops improving. Our method is unaf-
fected, and its win rate continues to rise steadily, eventu-
ally reaching about 90% at around 7 x 10° game steps.
Compared with AlphaStar, the final performance of
GPPO-SAG after 10 000 games against the built-in level
3 Al is about 30% higher than AlphaStar on average.
PPO with a KL constraint is slightly less effective than
AlphaStar.

We believe that GPPO-SAG achieves better results
than AlphaStar and PPO-KL because GPPO-SAG can
better constrain the target policy near the guiding policy,
thus improving exploration efficiency. Therefore, we re-
corded the KL divergence between the target policy ¢
and the guiding policy 74 during training on the Kairos-
Junction map. The results shown in Fig.4 demonstrate
that our method can constrain the distribution distance
between the target policy 7 and the guiding policy w4
to be stable within a certain range in almost all action
heads. In contrast, the distribution distance between ¢
and 7, is not stably bounded and grows as training pro-
gresses.

Our method constrains the distribution of vertices for
each sub-action equally. However, the constraints ap-
plied by other methods on the distribution of each sub-
action node are positively related to the depth of the cor-
responding sub-action vertex in the path graph #. As
shown in Figs.4(a)-4(c), these vertices are near v™" in
the path graph. Among these vertices, our method’s
Dk (e, mg) is about 3—4 times smaller than other meth-
ods after convergence. But as shown in Figs.4(d)—4(f),
the gap between AlphaStar, PPO-KL, and our method
shrinks to 1-3 times. We claim that this is because these
vertices are usually located at the end of the path graph
and are constrained more tightly in other methods. This

1.0 1.0 1.0
—— GPPO-SAG —— GPPO-SAG
05 || = foe o 00
08 |—— 08 |- 0.8
bt £ 2
s 0.7 s 0.7 = 0.7
= = =
Z 0.6 = 0.6 = 0.6
= = 05 =
0.5 . 0.5 7%,1;0?“}
0.4 0.4 0.4 T Apphaar
0.3 0.3 0.3
0 100 200 300 400 500 600 700 0 100200300400500600700800 0 200 400 600 800
Stepx10* Stepx10* Stepx10*
(a) (b) (©)

Fig. 3 The win rate curve for each method against level 3 AI on StarCraft II full game. (a) Win rate curve on map KairosJunction;
(b) Win rate curve on map KingsCove; (c) Win rate curve on map NewRepugnancy. (Colored figures are available in the online version

at https://link.springer.com/journal/11633)
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Fig.4 The KL divergence curve between the target policy 7+ and the guiding policy 7, during training for each method on the
StarCraft II's KairosJunction map. (a) Action type vertex; (b) Delay vertex; (c) Queued vertex; (d) Selected units vertex; (e) Target
location vertex; (f) Target unit vertex. (Colored figures are available in the online version at https://link.springer.com/journal/

11633)

phenomenon indicates that the “uniformity” of con-
straint strength ensures that our approach can better bal-
ance the optimization progress among the sub-action ver-
tices, resulting in more stable performance improvement
during training. On the other hand, both PPO-KL and
AlphaStar are unable to effectively constrain the distribu-
tion distance between m; and 7m,. This means 7, cannot
effectively constrain exploration during rollout. The
policy space for StarCraft II is very large, and if it is not
properly constrained during exploration, the agent will
have difficulty getting high-quality training data, which
will hinder performance improvement during policy op-
timization.

With 64 environments collecting data in parallel, each

@ Springer

algorithm in StarCraft II requires approximately seven
days to complete 8 x 107 training steps on a pair of
NVIDIA A100 GPUs, with one allocated for training and
the other for inference and data collection. The temporal
divergence between our proposed algorithm and the com-
parative benchmarks is negligible. Such a minimal dis-
crepancy is attributed to the reduced efficiency of the
agent'’s interactions and data acquisition from the envir-
onment. While the network update latency in our meth-
od is marginally higher than that of the baseline al-
gorithm — owing to the necessity of navigating through
sub-action vertices in a graph-like structure during train-
ing — the increment is substantially less than the latency
associated with data gathering. Notably, our training
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paradigm ensures synchronization between data collec-
tion and training phases, rendering the inference time a
decisive factor in the overall training timeframe.

The distribution between the target policy m; and the
guiding policy 7y is not constrained by our method be-
fore they activate the clipping mechanism, which allows
GPPO-SAG to achieve more accessible exploration in the
vicinity of the guiding policy space. As a result, combin-
ing Figs.2 and 4, we can see that during the early train-
ing steps, the agent’s win rate of GPPO-SAG rises rap-
idly. Contrarily, the agent policy exploration is perman-
ently constrained by the KL constraint in AlphaStar and
PPO-KL, which causes a slower policy improvement in
the early phase.

In summary, our proposed GPPO-SAG can more ef-
fectively constrain the target policy in the flow space near
the bootstrap policy, providing a more consistent policy
improvement for bright body learning in complex de-
cision spaces.

5.3 Experiments for question 2

We discover through the experiments in Section 5.2
that one advantage of our approach is that it can handle
the optimization progress between different sub-action
vertices in a more balanced manner. As a result, we con-
sider testing how well our method works in environments

1500 GPPO-SAG
1275 1| PG-KL
1250 |[|— PPO-KL
1225
o 1200
=17
1150
1125
1100
0 25 50 7.5 100 12.5 15.0 17.5 20.0
Stepx10* x103
(a)
0.05 -
— GPPO-SAG A =
— PG-KL N
1)
2
= 0.03
o
5]
200.02
<
h
0.01

0 25 50 7.5 10.0 125 15.0 17.5 20.0
Stepx10*

(©)

Fig. 5

x10°

with simpler action spaces. Compared to the structured
action graph in StarCraft II (Fig.1), Hearthstone'’s
(Fig.3) longest path graph only contains three vertices
from the start node to the end node, while the longest
path graph in StarCraft II has five vertices. To this end,
we used an autoregressive model to model the Hearth-
stone action space and migrated our approach to Hearth-
stone.

In the Hearthstone environment, all methods are
trained through self-play. We save model checkpoints
periodically, add all checkpoints to the battle pool after
training, randomly draw two players, and record the Elo
scores for each model based on wins and losses. Finally,
50 000 games are played to provide the Elo score curve
for each method with the training process (Fig.5(a)).
Figs. 5(b)-5(d) represent different sub-action vertex's KL
divergence between the target policy 7 and the guiding
policy 7, during training. Three random seeds are used
to average each of the curves displayed. We replace the
Starcraft II comparison method AlphaStar with PG-KL
because we skip the UPGO loss that AlphaStar em-
ployed in the Starcraft II trial.

Our method has a faster convergence speed than the
others, as demonstrated in Fig.5, although all methods
produce similar results in the end. Since Hearthstone is
considerably simpler than StarCraft II, agents without
the constraints of a guiding policy can also quickly find
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(d)

The training and KL divergence curve between the target policy 7 and the guiding policy 7y in Hearthstone. (a) The Elo

rating scores for different training stages in Hearthstone; (b) Action type vertex; (c) Target entity vertex; (d) Target position vertex.
(Colored figures are available in the online version at https://link.springer.com/journal/11633)
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optimization directions in the policy space. Therefore, all
methods have shown good performance. The KL diver-
gence of each sub-action vertex at different training
stages shows that our method can constrain the explora-
tion range of the target policy more effectively, even in
the relatively straightforward Hearthstone. Compared
with StarCraft II, Hearthstone has a much smaller policy
space. Therefore, even if the guiding policy constraints of
PPO-KL and PG-KL are not effective, they can still ex-
plore effectively and achieve relatively robust policy im-
provements. So their performance on Hearthstone does
not drop later in training.

5.4 Experiments for question 3

We demonstrate the effectiveness of the clipping rate
on the performance of GPPO-SAG through experiments
on the full game of StarCraft II, and the results are
shown in Table 2, where € and k represent the clipping
ratio and constant scaling factor taken from Table 1, re-
spectively. We can conclude that both too-small and too-
large clipping rates affect learning performance. This is
due to the fact that an excessively low clipping rate
severely constrains the policy space and acts as a barrier
to further policy improvement, while an excessively high
clipping rate hinders the ability of the guiding policy to
effectively guide the policy exploration during the optim-
ization step and lowers learning efficiency.

Table 2 Different clip ratio in GPPO-SAG

Clip ratio Win rate
0.25€def 59.2% + 1.5%
0.5€qef 68.4% + 2.1%

€def 84.2% + 3.1%
2€def 83.1% + 1.5%
4dedet 71.0% £ 3.9%

Unlike vanilla PPO, GPPO-SAG no longer limits the
step of each update compared with the previous one by
using a clipping rate. Still, it limits the distance between
the target policy and the guiding policy throughout the
training process. Therefore, the clipping rate in GPPO-
SAG is relatively higher. Combining the experimental res-
ults in Table 2, we believe that a steady and effective res-
ult can be achieved with a clipping rate of 0.4-1.2.

In our methodology, the hyperparameter x is intro-
duced to modulate the influence of ancestral sub-policy
constraints within the trust region upon the current sub-
policy updates. A diminutive x value corresponds to a
more restrictive trust region, thereby diminishing the an-
cestral sub-policies impact on the current sub-policy up-
date, and conversely, a larger x value enlarges the trust
region, increasing this influence. To rigorously assess the
ramifications of x on the performance of our algorithm, a
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comprehensive investigation of its various settings was
conducted.

Fig.6 delineates the performance trajectory of our
GPPO-SAG across an array of x configurations. At k =
0, ancestral sub-policies exert no influence on the current
sub-policy decisions, rendering each sub-policy update
conditionally independent and devoid of information from
ancestral sub-policies. Conversely, at x = 1, the ancestral
sub-policies fully inform the current sub-policy decisions,
but this complete reliance leads to an escalation in vari-
ance, which is caused by the multiplication of import-
ance sampling. Ultimately deteriorating the algorithm's
performance. For x > 1, the ancestral sub-policies influ-
ence on the current sub-policy update is magnified by a
factor of k, exacerbating the variance issue exponentially,
which further degrades the algorithm's effectiveness. In
the regime where 0 < kK < 1, the contribution of the an-
cestor sub-policies to the current sub-policy update will
be reduced by k times, but the high variance problem
will be reduced by an exponential multiple of . There-
fore, there is an optimal value of k£ at this time, which
makes the algorithm performance optimal.

’(D‘ ¢

0.6

‘Win rate

0.5
0.4

0.3

Fig. 6 Effect of the relative magnitude of inner and outer
clipping ratio on performance in KairosJunction. The horizontal
axis represents the different values of k. The vertical axis
represents the win rate. Each set was obtained by averaging the
win rates of the last 500 games during training in three seeds.
(Colored figures are available in the online version at https://
link.springer.com/journal /11633)

Within this interval, an optimal x value is discerned,
at which the algorithm’s performance is maximized. We
ascertained that the algorithm attains peak performance
at K = % This equilibrium facilitates a harmonious bal-
ance between leveraging the guidance of ancestral policies
and preserving the stability of policy updates. At this
juncture, the algorithm capitalizes on the ancestral policy
constraints while attenuating the destabilizing effects of
high variance introduced by the compounded importance
sampling of ancestral policies, thus fostering consistent
and efficacious learning. The empirical insights gleaned
from this analysis informed our selection of x for the en-
suing experiments. By eschewing extreme x values and
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opting for the interval 0 < k < 1, we fortified the GPPO-
SAG algorithm's robustness and learning efficiency. This
meticulous hyperparameter tuning accentuates the cru-
cial role such parameters play in reinforcement learning
algorithms, particularly their influence on successful out-
comes in intricate decision-making tasks.

5.5 Limitations

The role of the guiding policy is to guide and con-
strain the learning direction, thereby accelerating and
stabilizing the learning of the model. Our approach re-
quires that the guiding policy be an effective one, mean-
ing that during the process of interacting with the envir-
onment, it must be capable of collecting some high-value
data. If there is no prior policy available or the quality of
the prior policy cannot meet the requirements, we can
simplify the problem to proximal policy optimization with
structured action graph. In this case, we can assume that
the behavior policy itself is the guiding policy, which is
expressed as pan = 1,pg =1 in (10), enabling the al-
gorithm to run without any prior guidance. Structured
action graphs are mainly used for modeling action spaces
in RL problems that involve parameterized action spaces.
In scenarios with parametrized instructions, a simple par-
titioning of the original action space suffices, as is the
case in strategy games like StarCraft II and Hearthstone.
However, in scenarios that lack parameterized action in-
structions, such as dm_control%, the applicability of our
method may be limited.

6 Conclusions

In this paper, we propose GPPO-SAG to solve the re-
inforcement learning challenges in complex decision-mak-
ing problems. By formulating the environment as MDPs-
SAG, and proposing and proving the policy improvement
lower bound with guiding policy, we demonstrate the the-
oretical basis of GPPO-SAG. Furthermore, we provide a
practical algorithm for GPPO-SAG and validate its su-
perior performance in the StarCraft II and Hearthstone
environments. We further corroborate our theoretical
analysis by observing the change in KL divergence
between the guiding policy and the target policy during
training. We also give a multidimensional analysis of the
sensitivity of our method to the clipping ratio.

In future work, we will introduce a guiding policy
judgment mechanism to enable the agent to identify the
shortcomings in the guiding policy and adopt it with
trade-offs.
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Appendix A. Mathematical proofs

A.1 Proofforlemmal

Proof. For simplicity, we use an(-) pronouns
an(-) ~ % and an’(-) pronouns an(-) ~ ¢. We have

~1n/(k)’a’i,,an(i)>

A@(S, a(ﬁ) — Ai,an(i)(s,a‘

Then we use multi-agent advantage decomposition/3¢]
to the right-hand side.

Remove the irrelevant vertices with ¢’ in a7, and we
have

A% (s,a”) = Z Al (s,a?™™9)),
j=k

o

Note that when removing ¢™° from @, this lemma

does not hold. Because in SAG, only ¢™* has no ancest-
or.

A.2 Proof for lemma 2

Proof. From “generalized policy improvement lower
bound” theorem[33!, we have

1
T) — > ——Erin, | — %
J(fee) = J(me) > 1=~ v | mo(a

t(-[), m(:[5))]

3

C Egur, [Drv(

2y maxs EQNﬁt(-,s)Awt(s’a)‘
(1—7)2 ’

Since Dy as a metric satisfies the triangle inequality,

where C =

we have
Drvy (7, 7g) + Drv(ms, mg) > Drv (Fre, ).
Then we have
J(#7)=J () > C1Brrom, [L‘”S;Am (s,a):| -
Co Esm, [Drv (74 (-]s), w0 (-]))] =
A7, (s, a‘@)} —

Co Es~7rb [DTV(‘frt('|5)7 779("3))+
Drv (my(-[s), 74 (-[5))]-

#e(a”|s)
m(a?|s)

>

CIE‘rwwb [

O
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A.3 Proof for theorem 1

Proof. Step 1. We derive the relationship between
the joint policy and each vertex sub-policy under path
graph & based on lemma 2.

From lemma 1, we have

. P
wi(a’|s) ;o N
Err, |:7Tb(a@| Az, (s,a )} =

Errr,

Errr,

fr?n(j) (aan(j)

7rZm(j) (aan(j)

ﬁ_im(j) (aan(j) |

w
\./\_/ —— = = ——

ﬁgnm (@ 0)|s

Step 2. We need to prove

Esr, [Drv (73 (:|s), 74 (:]5))] <

> Eor,

=k

DTV(?Ti('S)»Wﬁ('IS))} (A1)

According to proposition 4.2 in [41], when S and A’
are both finite, then (A1) is equal to

Bour, | 3 ‘ﬁﬂi(aanm H” (@™ |s)| | <

a€A? j=k

1
5 Z S~
Jj=

- (@]9

Z |7r aﬂ(J)|

a€A?

And then we put the sum of the sub-policies into the

expectation
Es~‘rrb Z ‘ H 7T1], (aan(])| H 7r an(J)| <
aceA? j=k
Esr, Z > @ ]s) = my (@™ |s)|

j=k acA?

Next, we prove a stronger version of the above inequa-
tion, that is Vs € S,Va € A:

i
H WZ (aan(j) ‘ H 7r aII(J) |
j=k
Z'W an(J)|

—ml(@V]s)]. (A2)
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Substep 1. For any k € N*, we have

|ﬂ_ll)c(aan(k)|5) % 7l'§+l(aan(k)| an(k)‘s)x

s) —mh(a
TrkH(aan(k) |s) ‘ =7 (aan(k>|s)><

k:+1( an(k) ‘ ) _ 7T§+1(aan(k) ‘S)|+

|7

k+1, an(k) k, _an(k) k/ _an(k) <
mg (@™]s) x |my (@™ ]s) — mg (@™ M]s)] <
|7Tllf (aan(k)|5) _ ﬂ_lgc (aan(k)‘s)|+

k+1 (aan(k) ‘S) _

s i (@M s)|.

Substep 2. For any i € N* and ¢ > k, we have

i+1 i+1

H 7.rz'(aan(j)| H 7 dn(J)‘ _
j=k

i [
7rz+1(aan(i+1)‘s) ~ H ﬂ'g(aan(j)|8) _ H 7_r!];'(aan(j)|8) +

j=k j=Fk

H an(J)| |7rl+1( an(i+1)|s) o

i (@) <

+
S Imi(@"ls) - mj @)
ji=k

From the discussion above:

1) We have shown that (A2) is true for any k€ N*
and i =k +1.

2) Given that (A2) applies to any ¢ € N* and i >k,
then we have shown that the formula also applies to ¢ + 1.

Through mathematical induction, we can confirm that
(A2) is true.

So (A1) is true.

The same goes for the proof of the formula

ESNTrb [DTV(ﬁ-t(.|S)7 Wg(‘s))] <

> Bann, [Drv (& (]s), mj(-]s))].

j=k
From the two steps above, we have

J(7re) — J(me) >
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Z |:7E‘r~7'rb [P]’ (J>A£t(sva@)] -

b

C Esnr, [Drv (7] (-|s), w5 (]5))+

DTV(Wg('|S)v 71'?](‘8))]

AJ Jran(j)

here O — 2+ maxs Eaert( 5.0 20 () A, (s,@ )
where C' = =2 )
and pian0) = Filellsa™ ) wtn () (@t D))s) -

w2 (ad|s,@n @) mEG) (@ (G)]s)



Y. Yang et al. / Guided Proximal Policy Optimization with Structured Action Graph for Complex Decision-making 13

A.4 The relation between Theorem 1 and
the surrogate objective function

Aan(].)<aan(j)‘ ) an(j) _ 7.‘_3::(3')(a’an(j)|5)

g =

Let pan(]) — J

*J(aJ s, adn(J))
7 aem)) d
7 (ad|s,amn () B pg

"“(J)(aan(]) \S)
71.J (a¥|s,a*n(9))
7(0,3 |5 adn(]))

objective function to optimize is as follows:

7.‘.:“(J')(CLan(j) |s) ’

then the surrogate

> min [aip(", 5", ) A% 5, 0”),
j=k

n(j) an(j)

clip(clip(p;™7, 39 ke)pl, pl, €) A%, (s, a”)

where clip(p1,p2,€) puts p1 into the interval [p2 — €,
p2 + €] and k € [0, +00) is a constant scaling factor.

Within our paradigm, the behavior policies are from the
target policy. So we only need to bound Esr, [Drv (7 (-]s),

g ([s))]:

Eom, [Drv (7:(-]5), w4 (+]s))] < (A3)

Eonm, [Drv (7 (5), 7 (-]))] < (A4)

ervﬂ'b

Z ‘H” (@™ s)
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H7r (@) \] = (45)

=k =k
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i=k i=k
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J= J=

37— - (A7)
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where we have proven (A4) in Appendix A.3. From (A4)
through (A5) holds since we have beared out it in step 2
of Appendix A.3.

So we can use Chp(,}rb7 :b,e) to bound Dty (7, 7g)

between Ze.
There have been lots of works showing that the con-

tinuous multiplication of importance sampling can arise
variance, and a simple and effective way to deal with this
problem is to clip the combination of importance
sampling ratios3% 38 42, Based on this consideration, we
design the clip of the importance sampling ratio of the
ancestral sub-policies.

Appendix B. Experiments setting and
additional experiments

B.1 Ablation study with varying quality
of ,

In this experiment, we aim to investigate the impact
of the quality of the guiding policy on the learning per-
formance of GPPO-SAG. As shown in Fig.Bl, we have
conducted the ablation experiment on StarCraft II map
KingsCove. The red curve represents the training curve of
the model with an 80% win rate achieved through rein-
forcement learning, which is used as both the guiding
policy and the initialization target policy. The blue curve
represents the training curve of the model with a 20%
win rate achieved through supervised learning, which is
used as both the guiding policy and the initialization tar-
get policy. The green curve represents the training curve
of the model with a 20% win rate achieved through su-
pervised learning, which is used only as the initialization

target policy and not as the guiding policy (pi"?) =1,

ol =1).

1.0
0.8
o 06 -
5 — Guiding-0.4
= —— Guiding-0.2
£ 04 S
= —— w/o guiding-0.2

02 | e

0.0

0 100 200 300 400 500 600 700 800
Stepx10*

Fig. B1  Ablation of varying quality of 74 on StarCraft II map
KingsCove (Colored figure is available in the online version
athttps://link.springer.com/journal/11633)

It is evident that the quality of the guiding policy can
have a significant impact on the learning effectiveness of
the intelligent agent in complex problems. In the absence
of a guiding policy (“w/o guiding-0.2”), the large policy
space can quickly destroy the prior flow space provided
by the initialization policy, leading to a rapid decline in
win rate and ineffective policy improvement. Similarly,
when the quality of the guiding policy is poor (e.g.,
“guiding-0.2”), although the constraint of the guiding
policy ensures that the win rate does not decrease as rap-
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idly as the green line, the lack of high-quality trajectory
samples still makes it difficult to achieve effective policy
improvement for the target policy. However, when we
provide a higher quality guiding policy (“guiding-0.4”),
our method can achieve robust policy improvement with-
in the prior policy flow space.

In summary, for complex decision-making problems,
our method imposes certain performance requirements of
the guiding policy, namely that it must be capable of col-
lecting high-value data during the process of interacting
with the environment.

B.2 Supervised learning in SC2
Detail hyperparameters for supervised learning in

StarCraft II full game have been shown in Table B1. We
show the training results in https://tensorboard.dev/ex-

Machine Intelligence Research
periment /IpznauMnTraAYrL8S7TuEQw/.

B.3 Reinforcement learning in SC2

Table B2 shows the hyperparameters used for rein-
forcement learning in the full StarCraft II game. In our
method, the “kl loss weight” and “action_type kl loss
weight” are set to 0, and the sub-action loss weight is set
to 1 in RL training. In PPO-KL, we set € to 0.3 in the
following experiment. We also present plots of KL diver-
gence with reinforcement learning training for each meth-
od on the other two maps in Figs. B2 and B3, which are
consistent with the analysis in our main paper.

B.4 Experiment in Hearthstone

We show the experimental hyperparameters for

Table B1 SL hyperparameters in SC2

Name Value Description
Beginning_order_prob 0.8 Probability of using building order in SL training
Learning_rate 10~3
Weight_decay 102 Weight decay in adam
‘Warm_up_steps 2 x 10% Max warm-up step
Steps 10° Max training step
Epochs 10 Repeating number of replay paths
Batch_size 12
Trajectory_length 32 Context states length for training
Action_type _loss_weight 30.0 Loss weight for action type vertex
Delay loss_weight 9.0 Loss weight for delay vertex
Queued loss weight 1.0 Loss weight for queued vertex
Selected_units loss weight 4.0 Loss weight for selected units vertex
Target_unit loss_weight 4.0 Loss weight for target unit vertex
Target_location _loss weight 8.0 Loss weight for target location vertex

Table B2 RL hyperparameters in SC2

Name Value Description
Steps 107 Max steps for training
Learning_rate 10~9°
Value_pretrain _iters 4% 103 Max step for value pre-training
Optimizer warm _up_steps 100 Warm-up adam optimizer without updating model
Batch_size 8
Trajectory_length 32 Context states length for training
Value loss _weight 10.0 Loss weight for critic
Pg loss weight 1.0 Loss weight for policy
Upgo_loss_weight 1.0 Loss weight for UPGO
Kl loss weight 0.002 Loss weight for KL divergence with guiding policy (only enabled in the baseline)
Action_type_kl _loss weight 0.1 Extra action type KL loss weight with guiding policy (only enabled in the baseline)
Entropy_loss weight 10~ 4 Entropy loss weight
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Hearthstone's environment in Table B3. Fig.B4 shows
two example cards, and fireball.
“Mana spent” represents the resource consumption of this
card, and the player's resource per turn is limited. If the
card is a minion card, it has attack and health, and when
played, it will be placed on our field. “Special effect” rep-
resents the special effect that this card has. According to

“abusive sergeant”

different effects, some cards are non-directional, some are
directional, and some are selective. “Abusive sergeant” is
a minion card with a directionality battle cry, which
means we need three steps to play this card: Select this

card, then select a target position to place, and finally se-
lect a target unit to make the battle cry take effect. The
card “fireball” is a directional spell card, which means we
need to use it by step: Select this card and then a target
unit. Therefore, similar to StarCraft II, the action space
of Hearthstone's agent is also well suited to be modeled
using the structured action graph.

We implement the Hearthstone environment using
SabberStone!, an open-source Hearthstone simulator for
AT research. To simplify the modeling process, we skip

L https://github.com/HearthSim/SabberStone

Table B3 RL hyperparameters in HS

Name Value Description
Steps 2 % 108 Max steps for training
Learning_rate 10~°
Value pretrain _iters 4 % 107 Max step for value pretrain
Batch_size 24
Unroll_length 100 The maximum time step of a game
Value loss _weight 1.00 Loss weight for critic
Pg_loss_weight 1.00 Loss weight for policy
Upgo_loss weight 1.00 Loss weight for UPGO
K1 loss weight 0.10 Loss weight for KL divergence with guiding policy (only enabled in the baseline)
Action_type kl loss weight 0.10 Extra action type KL loss weight with guiding policy (only enabled in the baseline)
Entropy_loss _weight 0.01 Entropy loss weight

@ Springer


https://link.springer.com/journal/11633
https://github.com/HearthSim/SabberStone

Y. Yang et al. / Guided Proximal Policy Optimization with Structured Action Graph for Complex Decision-making 17

Mana spent

Special effect

; N
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ey Fire V=

Minion attack
Minion health

Fig. B4 Example cards in Hearthstone, “abusive sergeant” is a
minion card, and “fireball” is a spell card.

the mulligan phase at the beginning of the game, which is
not relevant to our research goals. We use a warlock deck
for all games, and the composition of the card set is
shown in Table B4. Each card appears twice in the deck.

We set batch size as 24, and learning rate to 1075,
and we simultaneously use 12 collectors interacting with
the environment to provide data for a trainer.

The network structure used in our Hearthstone experi-
ments is illustrated in Fig.4(a). For simplicity, in Hearth-
stone, we do not use context information but only input
the current moment agent's observations for the action
and value networks.

Fig.4(b) shows the functions represented by each sub-
action vertex in our method. The state observations are
encoded and compressed into a 512-dimensional vector by
transformer encoder layers, which are then passed to the
iterative action selection module. The structure of each
sub-policy network is the same as that of the “action
head” network in AlphaStar.

Here we explain with the help of an example how we
represent parameterized actions with structured action
diagrams: In Fig.B5, we can see a player taking the ac-
tion of “using the first ‘molten reflection’ card in their
left hand to target their left minion ‘sorcerer’s
apprentice’, which results in a copy of that minion be-
ing placed onto the field. This action can be broken down
into two sub-actions: First, the player “chooses the ‘mol-
ten reflection’ card from the left hand side”, and second,
they “target the card to the left minion ‘sorcerer’s ap-
prentice’”. Note that the currently active sub-action

Table B4 The deck for our experiment

Name

Soulfire
Abusive sergeant
Argent squire
Flame imp
Leper gnome
Mortal coil
Voidwalker
Young priestess
Dire wolf alpha
Knife juggler
Harvest golem
Shattered sun cleric
Dark iron dwarf
Defender of argus

Doomguard

header is marked on the bottom side with a bolded red
circle. It is important to note that the decision made in
the second sub-action is conditional on the first sub-ac-
tion: The player must know which card was chosen in the
first sub-action to determine the entire action of “using
the first ‘molten reflection’ in your left hand, targeting
your left attachment, ‘sorcerer’s apprentice’.

Fig.4(c) shows the details of the input state encoding.
At each step, we input the observed information of 27 en-
tities as states into the transformer encoder and encode
the current state as a 256-dimensional vector to the ac-
tion selection network (state value decoder). Finally, the
action (state value) is outputted based on this encoded
state, Fig.B6 shows in detail our process of splitting ac-
tions into sub-action sequences using the structural ac-
tion graph: First select a card, which is represented by
the vertex v°¢ in SAG, and then select the action target
of this card, which is represented by the vertex vV in
SAG. Finally, based on the above two decomposed sub-
actions, the action using the “molten reflection” card is
actually made.

Select
card

Target Target
card position

Target
unit

3

Linear
embedding

[ 4xTransformer encoder J

Linear embedding

2xhero feature

, N
( )
[ 14xminion feature J }

\
{ )

R -
(Gbservation J=- — — ~ == = -

()
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©

Modeling of state space, action space, and strategy network in Hearthstone environment. (a) The blue part is the policy

network structure in the Hearthstone agent. The green part is the composition of the observation; (b) The function of each sub-action
vertex in the Hearthstone agent; (c) The detailed composition of the observation in Hearthstone. (Colored figures are available in the
online version at https://link.springer.com/journal/11633)

Choose a sub-action in V¢

Choose a sub-action in v’V

Fig. B6 Using structured action graph to represent a parameterized action (Colored figures are available in the online version at
https://link.springer.com/journal/11633)
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