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Abstract: Self-attention aggregates similar feature information to enhance the features. However, the attention covers nonface areas
in face alignment, which may be disturbed in challenging cases, such as occlusions, and fails to predict landmarks. In addition, the
learned feature similarity variance is not large enough in the experiment. To this end, we propose structural dependence learning based
on self-attention for face alignment (SSFA). It limits the self-attention learning to the facial range and adaptively builds the significant
landmark structure dependency. Compared with other state-of-the-art methods, SSFA effectively improves the performance on several
standard facial landmark detection benchmarks and adapts more in challenging cases.
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1 Introduction

Face alignment aims to identify the locations of the
facial landmarks, e.g., lips corners, eye corners and nose
tips in images or videos. It is a crucial preprocessing step
for tasks such as face recognition and facial age estima-
tion and has drawn a surge of interest from both in-
dustry and academia.

Self-attentionl!l can enhance a feature by aggregating
the information from the location where there is a simil-
ar feature with it so that contextual information is in-
volved. However, when applying it to the face alignment
network, we observe that the distribution of features
among all the locations usually has a small variance. The
attention of a single feature may cover the whole image
space, including the irrelevant areas, as shown in the
third row of Fig.1(b). In addition, when meeting challen-
ging cases such as occlusion, the feature similarity can be
easily disturbed by the abnormal appearance changes in
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the occlusion area. In this situation, it is significant to use
a facial structure prior to constraining the landmark
structure in the shape distribution of natural faces. To
this end, we propose a facial structure prior loss that lim-
its self-attention learning within the scope of facial struc-
ture to concentrate on building the dependencies of differ-
ent landmarks in the training process. As Fig.1(c) shows,
with our proposed facial structural prior, the attention
map shows less response on the background, and the net-
work deals with the occlusion case successfully, as the yel-
low squares mark. Extensive experiments on WFLW,
300W, AFLW and COFWG68 demonstrate the effective-
ness and robustness of our structural dependence learn-
ing based on self-attention for face alignment (SSFA).

In summary, our main contributions are as follows:
1) We explore the problem of using the self-attention
mechanism on the face alignment network, which is learn-
ing common attention maps that do not focus on the
most meaningful areas. 2) We further propose a facial
structure prior loss to limit the self-attention learning
within the scope of facial structure to concentrate on
building the dependencies of different landmarks, leading
to a better generalization ability on challenging cases.
3) Our proposed method SSFA effectively improves the
face alignment performance on the WFLW, 300W,
COFW68 and AFLW datasets.
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Fig. 1 Landmark prediction results and self-attention heatmap
visualization. (a) is the result of the baseline. (b) adds a self-
attention module. (c) is the result of SSFA. The top two rows
show the landmark prediction results, the green points are
ground truth and the magenta points are predictions. The
bottom row visualizes the contextual dependencies for the
feature at the location of the green point in the facial features.
The figures are chosen from WFLW/[2| dataset. (Colored figures
are available in the online version at https://link.springer.com/
journal/11633)

2 Related work

2.1 Face alignment

Recent deep learning based face alignment methods
have made great progress. They are mainly categorized
into coordinate regression based®? and heatmap regres-
sion based® 8. The former implicitly learn the statistical
characteristics of face shape. However, they ignore the de-
tailed facial structure information, resulting in unsatis-
factory detection accuracy.

Heatmap regression-based methods outperform co-
ordinate regression-based methods. They ordinarily use
convolutional neural networks (CNNs) to predict one
heatmap for one facial landmark and predict the land-
mark location according to the heatmap response value.
Stack hourglassl was originally proposed to estimate hu-
man pose and then adopted as a backbone by many heat-
map regression-based face alignment methods. Liu et al.["]
used a four-stage stack hourglass network and proposed a
novel probabilistic model to search for better ground
truth while training. HRNet[1% and its improved version
HRNet-v2[1] are likewise competitive backbone alternat-
ives in both human pose estimation and face alignment.
In this paper, we adopt HRNet-v2 as the backbone to
take advantage of its multi-resolution feature extraction
and fusion strategy. Specifically, our proposed SSFA does
not rely on HRNet-v2. Instead, it is compatible with the
backbones of any other heatmap regression-based meth-

ods that are end-to-end with CNNs.
2.2 Self-attention

The idea of attention is widely applied in many fields
from natural language processing to computer vision, e.g.,
person re-ID[12] and scene segmentation(!3l. Tt is an im-
portant type of attention that can model long-range de-
pendence. The concept of self-attention was first pro-
posed by Vaswani et al.l'4 to solve translation tasks. Af-
terward, Wang et al.lll combined self-attention with the
non-local idea in computer vision, so that distant pixels
could contribute to the filtered response according to the
pixel feature similarities as well. Later, many methods de-
veloped different variants of non-local blocks(l2 15, 16],
Woo et al.ll% used self-attention to improve the perform-
ance on the MS-COCOI7T and VOC[8] datasets. Cao et
al.[16] reduced the non-local module to learn query-inde-
pendent pixel-wise relation. LGFANY also adopts a self-
attention mechanism in face alignment. In contrast, it
uses self-attention stage by stage to guide further self-at-
tention, while our SSFA proposes a facial structure prior
to guiding self-attention learning directly, which is more
concise and effective.

SSFA aims to address the lack of global facial struc-
ture information in heatmap regression-based methods.
Jiang et al.20) noted that the self-attention mechanism
may notice some redundant long-range dependencies. We
presume that for one landmark, the interdependency
within the scope of facial structure matters more. There-
fore, we use the self-attention mechanism to model the
long-range dependencies and propose a facial structure
prior loss to suppress the dependencies of landmarks on
irrelevant areas to improve the effectiveness.

3 Method

In this section, we introduce the proposed structural
dependence learning based on self-attention for face align-
ment (SSFA), as Fig.2 illustrates. SSFA consists of a
heatmap regression-based backbone and a facial struc-
ture prior guided self-attention module. We introduce the
framework structure in Section 3.1. Section 3.2 shows
how to inject the self-attention module. Section 3.3 de-
scribes the proposed facial structure prior loss.

3.1 Framework structure

As shown in Fig.2, we take HRNet-v2[11] as the back-
bone. HRNet-v2 consists of a stem, a CNN-based feature
extraction module and a head. The stem extracts fea-

1
tures preliminarily and outputs features with 1 resolu-

tion of the input. The feature extraction module includes

parallel multi-resolution convolutions and cross-resolu-

1 1 1 1
tion fusions of 7% 16 and 39" Denote the input as {X,
Y}, where X is the input and Y is the ground truth. We
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Facial structure Ground truth

prior mask

Framework of the SSFA. We adopt HRNet-v2 as the backbone, which consists of a stem, a feature extraction module and a

head. “Up” means upsampling. The self-attention module is added after the feature extraction module. The facial structure prior mask
generated according to the ground truth is used to guide the self-attention learning by optimizing the proposed facial structure prior loss
Lyr. Ly sg denotes the MSE loss of the landmark predictions. The figures are chosen from WFLW2] dataset.

use Z for the multi-resolution features at location B,
Z =[Z1,Z2,Z3,Z4). Z1—a refers to heatmaps at resolu-

1
2 and —
8 16 " 32
The extracted multi-resolution features are sent to the

tions of T of the input image respectively.
head to predict landmark heatmaps.

To capture the global contextual information from
these multi-resolution features explicitly, we insert a self-
attention module into the backbone. We compare the
performance of several insertion methods and consider
their effectiveness and efficiency. Accordingly, adding the
self-attention module to location B between the feature
extraction module and the head performs best (It is intro-
duced in Section 3.2). In addition, we use a facial struc-
ture prior mask to guide the self-attention module to
learn.

3.2 Self-attention module

Since convolutional operations only have local recept-
ive fields, the structural relations between distant land-
marks are ignored. To overcome this, SSFA adds a self-
attention module to introduce contextual information and
global dependencies. Furthermore, we consider two types
of self-attention named spatial-wise and channel-wise to
explore the global contextual information of the land-
mark heatmaps in different views, and choose the spatial-
wise information according to the experiment.

The C x H x W feature Z output from the multi-res-
olution feature extraction module is sent into the spatial-
wise self-attention module, as shown in Fig.2. C is the
channel number, H is the height and W is the width.
The feature is allocated in three ways. The bottom way
further sends the feature to 1x1 convolutional operations
separately and obtains two C’ x H x W features. Then
they are reshaped to C’ x (H x W), indicated as fi(Z)
and fq(Z), and the (H x W) x (H x W) spatial-wise self-
attention matrix Sasp(Z) is calculated as (1) shows:

Sasp(Z) = [ (Z) * fu(Z). (1)

@ Springer

C' is a designated channel number smaller than C for
saving computational cost. The feature in a middle way is
transformed by a 1x1 convolution and then reshaped to
C x (H x W) indicated as f,(Z). The calculation of the
spatial-wise self-attention featsp(Z) follows the non-local
methodll:

feat(Z) = Z + 7 % (fo(Z) % (Sasp(Z))cxmxw  (2)
where the multiplication of Sasp(Z) and f,(Z) is resized
to C x HxW. 7 is a learnable weight. The summation
in (2) is element-wise.

3.3 Facial structure prior loss

Although the self-attention mechanism brings global
contextual dependencies, the innate face structure is still
not involved. In addition, we find that the correlation re-
sponse on the background is not sufficiently weak, which
could introduce disturbance, as illustrated in Fig. 1.

Considering these shortcomings of the self-attention
mechanism, we propose a facial structure prior loss to su-
pervise the learning of the self-attention module. The loss
is based on such an intuition: On feature maps, the most
valuable locations in terms of facial structure are the
landmark locations and their neighboring areas.

Here we take the single-sample-training process as an
example. We denote the ground truth of the sample as Y.
Y is the set of N facial landmarks, ¥ = [, 6] . o
and b represent the zy coordinate of the j-th landmark,
j €0, N). For each coordinate [a"?), b")], we generate an
H x W submask mask;(a,b) with a Gaussian distribu-
tion:

~ (a—a(9))24 (b—b(9))2
2

e 20

mask;(a,b) = (3)

if la —a?),b— 0P| <R

0, ifla—a?],b—0Y|>R

where R is the radius of a Gaussian distribution. The
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mean of the Gaussian distribution is the landmark ground
truth, and the standard deviation o is a hyperparameter.
The facial structure prior mask(a,b) is the element-wise
summation of all the submasks:

mask(a,b) =

Zmask (a,b). (4)
We define the landmark neighborhood as

NEI = {[m,n]|mask(m,n) > 0}. (5)

NEI =
{[p, qllmask(p,q) = 0}. An L1 loss Lp, is used in our

The non-neighborhood is defined as
method to restrain the accumulated self-attention value,
which evaluates the similarity of the landmark neighbor-
hood features and the non-neighborhood features:

LpT(NEI, Sasp(Z)) =

|NEI| ZZmGSk(m n)(saw( )[m,n,p. q) (6>

m,n p,q

where [m,n] € NEI, [p,q] € NEI. The (H x W) x (Hx
W) spatial-wise self-attention Sasp(Z) is reshaped to
HxW x HxW as Sa;,(Z), and [m,n,p,q| is the index
to Sa},(Z). The mask value mask(m,n) of the correspon-
ding landmark neighborhood is adopted as the weight.
The closer to the landmarks and their neighbours, the
larger the weight is.

The visual interpretation of (6) is shown in Fig.3.
First, the H x W facial structure prior mask is generated
centered on facial landmarks, as Fig.3 (a) shows. The
mask is processed with binarization to obtain the land-
mark neighborhood NET in (5) (here we use the 2D map
to visualize the landmark neighborhood as the white

Build
(a) mask Bmauzanon
mask
" =
-+
LR
Iox
T
® &
1\ é
T Sa,,' (m,n,:, )

Hadamard
product \

Sa,,' (m, n, p, q)

area). Then the H xW NFEI map is reshaped to
(H x W) x 1 as the indication for the following steps: for
any [m,n] in NEI, the corresponding index is
((m—=1) x W +n).

The calculation of L, is shown in Fig.3(b). The
(H x W) x (Hx W) spatial-wise self-attention matrix
Sasp is reshaped to H x W x H x W Sal,. We select a
landmark neighborhood feature at [m,n] for illustration.
Its corresponding self-attention features are at the ((m—
1) x W+ n)th row in Sasp, and are reshaped to an
H x W feature map Saj,(m,n,:,:).

Then we obtain the response on the non-neighbor-
hood area of the Saj,(m,n,:,:) according to NEI. To
constrain the response on the non-neighborhood area and
avoid irrelevant information, we calculate the L1 summa-
tion of the non-neighborhood response, weighted with the
corresponding mask(m,n). The closer [m,n] is to a land-
mark location, the larger mask(m,n) is. All the non-
neighborhood self-attention values of neighborhood fea-
tures are weighted and added together to finally obtain
the facial structure prior loss Ly,.

Meanwhile, following the heatmap-based methods, we
adopt MSE loss for the facial landmark detection results
Ypred, as shown in (7) and (8).

Ypred = Fhead(featsp) (7)

LMSE (Y Yp'red

v, ®

where Fpeqq denotes the head block of HRNet-v2. In addi-
tion, we use a weighting parameter 3 as (9) indicates, to
balance the two losses:

Loss = LIMSE(K Ypred) + ﬁ X LpT(NEI, Sasp(Z)). (9)

Reshape to

(H x W)x1 (m=1)xW+n

L NEL {(m, n) | mask (m, n) >0}

NEI {(p. q) | mask (p, ¢) = 0}

L,(NEI, Sa,,)

Fig. 3 The visual interpretation of (6). (a) The generalization process of the facial structure mask. (b) The calculation process of the
facial structure prior loss Lyp,. The figures are chosen from WFLWI[2 dataset.
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4 Experiment

4.1 Datasets, evaluation metrics and im-
plementation details

4.1.1 Datasets

WFLW® is built on the WIDER Facel2ll. It has a 7 500
image training set and a 2500 image testing set. There
are 98 manually annotated landmarks for every face. It
also contains several testing subsets that belong to differ-
ent topics: large pose, illumination, occlusion, make-up,
blur and expression.

300W is made up of several datasets: HELENI22,
AFWE IBUG, LFPWE24 and XM2VTS. The training
set contains 3 148 images, including the full set of AFW
and the training subsets of HELEN and LFPW. The eval-
uations are on three protocols: full test set, challenging
subset and common subset.

AFLW25 contains 20 000 images for training, and 4 386
images for testing, providing 19 landmarks for each face.

COFW&6826] is the re-annotated for 68 landmarks in
the COFW testing dataset. It is only used for tests. In
our experiment, we train SSFA on the 300W dataset (68
landmarks) and test it on COFW68 to evaluate the cross-
data performance.
4.1.2 Evaluation metrics

Referring to other related work, we evaluate our al-
gorithm using the common standard normalized mean er-
ror (NME), failure rate (FR), and area under the curve
(AUC) for quantitative analysis. NME is defined as the
average point-to-point Euclidean distance between the
ground truth Y and the predicted landmarks Yp,eq, which
is normalized by the reference distance d:

) ‘;z<j) —Yyrea?
T

NME = (10)

where V) is the j-th ground truth landmark coordinate
in Y, and Yp(rj i 4 is the j-th predicted landmark coordinate
in Ypred- N is the number of landmarks of each face on
the image. For the normalization factor d, we provide
inter-ocular distance (the distance of a person's outer eye
corners) for datasets WFLW, 300W, and COFW68, and
image size for AFLW.

FR indicates the percentage of the test images of
whose NME is higher than a given threshold. AUC is the
area under the CED curve, which indicates the fraction of
test images whose NME is less than or equal to the
thresholds from zero to a given value.

4.2 Implementation details
The inputs are cropped and resized to 256 x 256. The

preprocessing operations contain a +£10 degree random
rotation, 0.75-1.25 times scaling, and random flipping.

@ Springer
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The RGB value is normalized. We adopt Adam as the
optimizer. The learning rate starts from 2 x 1072 and
drops to 2 x 107 and 2 x 107° at epochs 40 and 55, re-
spectively. The model is trained for 80 epochs with a
batch size of 16. The training is implemented with Py-
thon 3.7, PyTorch 1.5.0, and two 1080Ti GPUs. In the
test stage, we adopt the flipping strategy to evaluate the
average prediction results of the input image and its
flipped image.

4.3 Ablation study on WFLW

4.3.1 Ablation study on self-attention module

First, to explore the best insertion fashion of the self-
attention module, and introduce the contextual informa-
tion, we try two locations (A and B in Fig.2) to add the
spatial-wise self-attention module. As Fig.2 shows, at the
end of the feature extraction module (location B), the
outputs of four convolutional branches are upsampled to

1
the 1 input resolution and concatenated. Three insertion

methods are evaluated: Adding the self-attention module
at location A, at location B, and at A and B simultan-
eously. The first method sets four self-attention modules
separately to the four branches at A, upsamples the fea-
tures enhanced by self-attention, and concatenates them
before sending them to the head block. The upsampling
of the features leads to the degeneration of the effect of
the self-attention mechanism. In contrast, the feature
scale at B is the same as the feature in the landmark pre-
diction stage, so the self-attention module can explore the
landmark dependencies more accurately. As the NME res-
ults on WFLW in Table 1 show, the performance is the
best when the spatial-wise self-attention module is added
at B. Therefore, we keep the self-attention module at B
in the later experiments.

Tablel The WFLW NME test results of the self-attention
module added at location A, location B, locations
A and B, as shown in Fig. 2. Bold is the best.

Baseline A B A&B

Test(NME) 4.17 4.13 4.09 4.11

Second, we explore different self-attention modules
such as spatial-wise and channel-wise[l3], and evaluate the
effectiveness of self-attention in different views. We try
several combinations of modules, including a single mod-
ule and parallel/series combinations of the channel-wise
and spatial-wise self-attention modules. For the parallel
case, the feature at position B is modified by spatial-wise
and channel-wise self-attention modules separately and
then added together. For the serial case, the feature at
position B is sent to the two kinds of self-attention mod-
ules sequentially. As Table 2 shows, on WFLW, the
single spatial-wise self-attention module performs Dbest.
The additional channel-wise module causes degeneration,
which as we consider has great relations with the prop-
erty of channel-wise operation. Channel-wise self-atten-
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Table2 The WFLW NME test results of different sets of the spatial-wise (sp_att) and channel-wise(ch_att)
self-attention at location B, as shown in Fig. 2. Bold is the best.

Test Largepose Expression Ilumination Makeup Occlusion Blur

Baseline(pretrained) 4.17 7.33 4.61 4.14 4.05 5.03 4.80
ch att 4.26 7.34 4.54 4.23 4.28 5.18 4.80
ch_att+sp_att(series) 4.24 7.29 4.49 4.17 4.31 5.16 4.76
sp_att+ch_att (parallel) 4.10 7.08 4.39 4.07 3.99 4.95 4.67
sp_att+ch_att (series) 4.12 7.12 4.47 4.06 3.97 4.92 4.71
sp_att 4.09 7.06 4.43 4.04 3.96 4.90 4.65

tion compresses the spatial information like global pool-
ing, as CBAM[® manipulations, which abandon the bene-
ficial detailed spatial information. However, one of the
significant characteristics of the human face is the spe-
cial confirmed spatial structure. Therefore, we choose spa-
tial-wise self-attention to explore the landmark interde-
pendency.
4.3.2 Ablation study on the facial structure prior
mask

Although self-attention introduces the interdepend-
ency of facial landmarks, there is a moderate response in
the irrelevant regions due to a lack of facial structure
guidance. It disturbs the landmark localization, as Fig.1
shows. To guide the self-attention to concentrate more on
the facial structure, we employ a facial structure prior
mask. Given a facial image with landmark ground truth,
we obtain the facial structure prior mask by building
Gaussian distributions centered around each landmark, as
(3) and (4) show. The facial structure prior loss is the L1
summation of the self-attention map response in the irrel-
evant regions of all the landmarks and their neighbor
points as (6) indicates. In addition, we adopt a weighting
parameter 8 to balance the losses. As Table 3 shows, we
explore the value of 8 at 0.1, 0.01 and 0.001, the Gaussi-
an distribution standard deviation ¢ at 1, 2 and 3, and
the range R for Gaussian distribution at 3 and 5. The

Table 3 The NME test results of training with masks of
different standard deviations o, ranges R, and weights 3 on
WFLW. Bold is the best.

£8=0.001 £8=0.01 8=0.1
R=3 R=5 R=3 R=5 R=3 R=5
o=1 4.07 4.07 4.05 4.06 4.12 4.14
o=2 4.09 4.10 4.08 4.09 4.11 4.11
o=3 4.09 4.12 4.10 4.09 4.17 4.15

E
-
/'3

NME performance is the best when ¢ =1, R =3 and
B = 0.01. The visualization of masks with different o and
R is as shown in Fig. 4.

4.4 Comparison with the state of the art

4.4.1 Results on WFLW

We compare SSFA with previous methods on WFLW
in Table 4. The baseline here is the recurrent result of
HRNet-v2, and the NME of SSFA is 0.12 better than the
baseline on the test set. Both DeCaFA[27 and AC-DCEY]
are trained with multiple datasets while SSFA uses only
one. AWINGI[? is dedicated to the loss function design.
DAGI focuses on the different global and local features
and uses adaptive graph learning. LGFA!Y adopts two

c=3

Fig. 4 Visualization of a sample and its facial structure prior masks with different standard deviations o and ranges R . The figures are

chosen from WFLW2! dataset.
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Table 4 Face alignment results on WFLW

Metric Method Test Pose Express. Ilum. Makeup Occlusion Blur
DeCaFAL~27] 4.62 8.11 4.65 4.41 4.63 5.74 5.38
AWING[] 4.36 7.38 4.58 4.32 4.27 5.19 4.96
LUVLil9I 4.37 - - - - - -
AC-DCBO 4.49 7.76 4.45 4.35 4.25 5.57 5.21
DAGIE] 4.21 7.36 4.49 4.12 4.05 4.98 4.82
LGFARY 4.28 7.63 4.33 4.16 4.27 5.33 4.95
Mean error (%) SLPTB1 4.14 - - - - - -
GlomFace[32 4.81 8.17 - - - 5.14 -
RHTB3 3.96 6.77 4.38 4.02 4.03 4.77 4.58
DSLPTB 4.01 6.87 4.29 3.99 3.86 4.79 4.66
CHSB] 4.04 6.76 4.33 3.98 3.87 4.71 4.64
Baseline(ours) 4.17 7.33 4.61 4.14 4.05 5.03 4.80
Baselinetsp_att(ours) 4.09 7.06 4.43 4.04 3.96 4.90 4.65
SSFA (ours) 4.05 6.96 4.37 4.04 3.92 4.84 4.61
DeCaFAL~27] 4.84 21.40 3.73 3.22 6.15 9.26 6.61
AWINGI28] 2.84 13.50 2.23 2.58 2.91 5.98 3.75
LUVLik9] 3.12 - - - - - -
AC-DCBOI 4.29 17.30 2.69 2.45 4.66 9.20 5.82
DAGI 3.04 15.95 2.86 2.72 1.45 5.29 4.01
FR @0.1 % LGFARY 3.44 16.26 2.23 2.58 2.91 7.47 4.40
SLPTB 2.72 - - - - - -
GlomFace[32 3.77 17.48 - - - 6.73 -
DSLPTB 2.52 13.19 2.23 2.44 0.97 4.89 3.49
CHSB3 1.80 9.51 1.59 1.72 1.46 3.13 2.46
SSFA (ours) 2.60 12.47 1.81 2.40 2.19 4.83 3.57
DeCaFA=27 56.30 29.20 54.60 57.90 57.50 48.50 49.40
AWINGI28] 57.20 31.20 51.50 57.70 57.10 50.20 51.20
LUVLiR9 57.70 - - - - - -
AC-DCBO 57.50 31.50 56.60 58.70 58.30 49.50 51.10
DAGI] 58.90 31.50 56.60 59.50 60.30 52.30 53.30
AUC @0.1 %
LGFAMY 58.70 31.70 58.10 59.90 58.80 50.40 52.90
SLPTBY 59.50 - - - - - -
DSLPTB 60.70 35.30 58.60 61.40 62.30 53.50 54.90
CHSB3) 60.15 35.52 57.92 60.80 61.55 54.03 54.62
SSFA (ours) 59.60 35.04 59.21 61.70 60.60 53.92 54.86

stacked hourglass modules, uses self-attention stage by
stage to explore contextual information, and guides fur-
ther self-attention. Both LGFA and our SSFA use self-at-
tention. However, we propose the facial structural prior
to guide the learning of self-attention directly, which is
concise and effective. SLPTBY and its improved version
DSLPTB4 both utilize a transformer to arrange local
patches and obtain the inherent relation, where the trans-
former framework is time-consuming compared to SSFA.
GlomFacelB? concentrates on the occlusion data using

@ Springer

hierarchical facial information, while our SSFA gets 0.3
better on the occlusion subset of WFLW. RHT®3] intro-
duces the face with ground truth landmark heatmaps as
the reference face to learn the facial structure commonal-
ity. This method requires landmark information at first,
which has requirements for the application scenarios.
CHSB achieves better results than SSFA and other
state-of-the-art methods. However, the model complexity
of CHS is much higher than that of SSFA, as stated in
Section 4.5.
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4.4.2 Results on 300W, AFLW and COFW68

We also carry out experiments on the 300W and
AFLW datasets separately, as shown in Tables 5 and
6. We also evaluate the performance on the COFW68 of
the model trained on the 300W as the cross-dataset test-
ing to further check out the effectiveness, as shown in
Table 7.

Table 5 Face alignment results (NME) on 300W

Methods Common Challenging Full
DANBS 3.19 5.24 3.59
DSRNB7] 4.12 9.68 5.21
SANBS] 3.34 6.60 3.98
LAB(w/B)l 2.98 5.19 3.49
DeCaFAL=27] 2.93 5.26 3.39
HSLEBY 3.21 5.69 3.70
DAGI! 2.62 4.77 3.04
3FabRecl40] 3.36 5.74 3.82
LUVLil~29] 2.76 5.16 3.23
LGSA[Y] 2.92 5.16 3.36
SLPT9 2.75 4.90 3.17
RHTB3I 2.34 4.37 2.74
DSLPT[34 2.57 4.69 2.98
CHSB] 2.52 4.48 2.91
SSFA (ours) 2.78 4.90 3.21

decoders to refine the regression of the landmarks. All
three methods mention the effect of self-attention.
However, SSFA not only takes advantage of self-atten-
tion to design a framework to capture the global contex-
tual information, but also proposes the facial structure
prior mask to guide the self-attention learning and fur-
ther solves its problem of the disturbance from irrelevant
areas.

Table 7 Cross-dataset evaluation results (NME) on COFW68

Method NMEocutar FR@0.1(%)
LAB(w/B) 4.62 2.17
SLDI6] 4.22 0.39
GlomFacel32 4.21 0.79
SDFLM3I 4.18 0
SLPT[I 4.11 0.59
CHSB3 3.78 -
SSFA (ours) 4.03 0.40

Table 6 Face alignment results (NME) on AFLW

Methods Pretrained NME
LAB(w/B)& - 1.85
Wingl#l Y 1.47
AWingl28] N 1.53
LUVLi~29] N 1.39
PIPNet-1841] Y 1.48
DTLD-sl42] N 1.39
RHTB3 N 1.87
DSLPTB4 Y 1.36
CHSB] N 0.96
SSFA (ours) N 1.40

4.5 Model complexity

The comparison of the model complexity with state-
of-the-art is shown in Table 8. SSFA is based on the HR-
Net-v2 framework, with the additional self-attention
mechanism and the facial structure prior mask. Com-
pared to HRNet-v2, the additional design in SSFA only
slightly increases the FLOPs and parameters. Further-
more, the complexity of SSFA is lower than that of the
compared SLPT, CHS and DSLP methods. It is worth
mentioning that although the face alignment perform-
ance of CHSB? is better than that of other methods, it re-
quires a relatively high computational load.

Table 8 Model complexity

Among the state-of-the-art methods, SSFA achieves
competitive results on these datasets. DAGI® adopts a
graph convolutional neural network for better perform-
ance, however, it also introduces more parameters. LU-
VLil29 performs competitively in 300W and AFLW,
however, SSFA performs much better on WFLW. Consid-
ering the complexity of these datasets, SSFA is more ad-
aptive to difficult data. SLPTB3! and DSLPTB4 both take
the face image as a set of landmark local patches and put
them into the transformer, while DTLDM 2 uses cascaded

Method #Params(M) FLOPs(G)
LAB(w/B)l! 9.66 18.85
AWINGI2] 24.15 26.8
HRNet-v2[!1] 9.66 4.75
SLPT 13.19 6.12
CHSP] 154.04 41.69
DSLPTIB34 19.35 7.83
SSFA (ours) 9.67 4.99

4.6 Visualization

In this section, we visualize some landmark predic-
tions in the challenging cases and their corresponding
self-attention heatmaps on WFLW, as Fig.5 shows. For
each person, the pictures in the top row are the results of
adding only a self-attention module to the baseline, and
the pictures in the bottom row show the results of SSFA.

The first man's face is half illuminated and half dark,

@ Springer
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Fig. 5 Visualization of samples and their heatmaps on WFLWI2. Green points are the ground truth and magenta points are predic-
tions. The green point on a heatmap represents the position of the landmark whose self-attention heatmap is calculated. For each per-
son, the pictures in the top row show the performance of training with the self-attention module only, while the pictures below refer to the
results of SSFA. Better viewed in color. (Colored figures are available in the online version at https://link.springer.com/journal/11633)
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which disturbs the self-attention, and results in the pre-
dicted deviation to the lighter half. SSFA constrains the
landmark prediction by the facial landmark interdepend-
ency so that the disturbance of illumination is overcome.
Similarly, the colors of red and white on the third man's
face and the black and white color of the fourth person
also influence the self-attention mechanism. Both the
second person’s and the fifth person’s images show the oc-
clusion case. The former’s hat covers the eyes and eye-
brows and the latter's nose and mouth are occluded by
the foreground. Compared to the prediction on the top,
SSFA achieves more structural and robust predictions.

We also visualize the self-attention heatmaps of some
landmarks in Fig.5. The green point on a heatmap marks
the location of the landmark feature of which self-atten-
tion is calculated. The brighter pixel shows a higher sim-
ilarity to the marked landmark feature. According to the
visualization, heatmaps learned by SSFA have weaker re-
sponses on the nonface areas such as the background, the
nonface skin area, and the person's clothes. That is with
the guidance of facial structure dependencies, the self-at-
tention module can be constrained to learn within the
scope of the facial structure better.

5 Conclusions

In this paper, we propose a structural dependence
learning based on self-attention for face alignment
(SSFA) method. Considering the shortcomings of heat-
map regression-based methods, we adopt self-attention to
capture global contextual information. Furthermore, we
propose a facial structure prior loss to guide self-atten-
tion, which helps to focus on areas within the scope of fa-
cial structure. The evaluation results on several popular
benchmarks show that SSFA can effectively improve the
performance of face alignment and deal with challenging
situations such as illumination and occlusion.
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