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Abstract: Video harmonization is an important step in video editing to achieve visual consistency by adjusting foreground appear-
ances in both spatial and temporal dimensions. Previous methods always only harmonize on a single scale or ignore the inaccuracy of
flow estimation, which leads to limited harmonization performance. In this work, we propose a novel architecture for video harmoniza-
tion by making full use of spatiotemporal features and yield temporally consistent harmonized results. We introduce multiscale harmon-
ization by using nonlocal similarity on each scale to make the foreground more consistent with the background. We also propose a fore-
ground temporal aggregator to dynamically aggregate neighboring frames at the feature level to alleviate the effect of inaccurate estim-
ated flow and ensure temporal consistency. The experimental results demonstrate the superiority of our method over other state-of-the-

art methods in both quantitative and visual comparisons.
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1 Introduction

Video composition is one of the most common opera-
tions in video editing tasks. However, generating a com-
posite video by combining the foreground of one video
and the background of another video may look unrealist-
ic due to the incompatible appearances from the different
shooting environments, photo equipment, etc. To address
this issue, video harmonization can be used to ensure the
realism of the generated video. In general, video harmon-
ization aims to adapt the appearances of the foreground
video to make it compatible with the new background.

For video harmonization tasks, there are two main
challenges: One is to attain realistic harmonized results
by leveraging background information, and the other is to
exploit temporal information between consecutive har-
monized frames. To obtain realistic harmonized results,
image harmonization, which aims to obtain harmonized
images by adjusting foreground images, has been extens-
ively explored. Conventional methods[' 7 address the har-
monization problem by transferring statistics of hand-
crafted features between foreground and background re-
gions, such as color and texture. However, these methods
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mostly work in some simple cases, causing unreliable res-
ults when the appearances are vastly different. In recent
years, many deep learning-based approaches have been
proposed for generating harmonized images. Existing
methods usually use UNet-like structures as backbones,
cooperating with various strategies, such as attention
mechanisms® 1], semantic information!2-14], illumination
exchangell5-17, to achieve decent results. Among them,
Hao et al.l) and Hang et al.l!0] have proven the efficiency
of nonlocal similarity information in harmonization tasks,
by exploiting self-similarity across pictures in the bottle-
neck of their networks. Unlike their methods, we con-
sider leveraging multiscale features to reconstruct the
foreground region, which can effectively capture the cor-
relation among nonlocal patches to make the foreground
more consistent with its background.

Temporal consistency is a frequently studied topic in
video-related tasks(1820) and it is the bridge to expand
image-to-image methods to process video. Because of
massive redundant information in video sequences, there
is a high correlation between multiple neighboring frames.
Directly applying image harmonization methods to video
sequences frame by frame is an easy solution to video
harmonization; however, this operation may produce un-
sightly results that suffer from flickering. Therefore, it is
necessary to exploit temporal correlations to achieve tem-
porally consistent video harmonization results. Previous
approaches leveraged regional temporal loss(!8l or color
mapping consistency!9) to generate consistent harmon-
ized frames. Huang et al.[!8] used temporal loss, which can
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achieve temporal consistency to a certain extent, but
their method has poor performance at harmonization and
strict requirements for training datasets. Lu et al.l9 im-
proved their methods, using optical flow to align adja-
cent frames. However, obtaining accurate optical flow is a
challenging task because of inevitable errors in the estim-
ation process, and inaccurate alignment affects the tem-
poral performance. Additionally, Lu et al.['9 proposed a
new framework using the lookup table (LUT) of neigh-
boring color mapping to achieve consistency, but their
methods operate at the pixel level, which would be un-
stable.

In this paper, we propose a novel framework that can
alleviate flickering artifacts and achieve realistic harmon-
ized results. We find that the key factor is to fuse the
corresponding patches in the temporal dimension to fine-
tune the current frame. Specifically, first, we encoder
composite frames to high-dimension features. Second, we
introduce multiscale harmonization by taking advantage
of nonlocal self-similarity in multiscale features to obtain
harmonized frames and features. Then, for each harmon-
ized framewise feature, we utilize several carefully de-
signed modules, including flow-guided feature propaga-
tion modules and foreground temporal aggregators, to
model interframe correspondence and effectively aggreg-
ate foreground features between adjacent frames in bid-
irectional ways. Additionally, the feature propagation
module aims to utilize both backward and forward
propagation schemes to progressively align features of ad-
jacent frames, and a foreground temporal aggregator is
used to adaptively aggregate useful information between
frames and eliminate alignment errors of warping by es-
timated optical flow. Finally, we use a decoder to output
temporally consistent harmonized results. Generally, our
main contributions are summarized as follows:

1) We propose a novel framework for video harmoniz-
ation, which introduces a multiscale harmonization mod-
ule and a foreground temporal aggregator with a flow-
guided bidirectional propagation strategy, to further im-
prove the performance of both image harmonization and
temporal consistency.

2) Compared with other state-of-the-art methods, our
method achieves superior performance on the benchmark
dataset HYouTube. Extensive ablation studies and visu-
alizations validate the effectiveness of the proposed ap-
proach.

2 Related work

2.1 Image harmonization

Conventional methods for image harmonization
mainly focus on matching low-level pixel statistics
between the foreground and the background, such as col-
or distribution mapping® 3 % 7, gradient-domain com-

postingll: 4, and multiscale statistics matchingl®. Re-
cently, various approaches using deep neural networks
have been proposed to improve performance. Tsai et al.[4]
and Sofiiuk et al.l3l both introduced semantic informa-
tion to image harmonization networks and found the ef-
ficacy of high-level semantic features. Cun and Punll and
Hao et al.l¥ proposed effective attention mechanisms for
image harmonization. Cong2l: 22I formulated the image
harmonization task as foreground-background domain
translation. Ling et al.[23l and Zhu et al.!1] explicitly used
background style to guide the foreground harmonization,
and they designed the RAIN module and self-consistent
style contrastive learning scheme to harmonize the im-
ages. Guo et al.l!6; 24 disentangled composite images into
reflectance and illumination for further separate harmon-
ization. Cong et al.25l and Hu et al.l'”), Bao et al.['® used
rendered images and illumination exchange to achieve
more authentic results. Cong et al.[26l, Liang et al.27 and
Xue et al.[?8] focused on high-resolution image harmoniza-
tion and achieved better harmonization performance with
higher efficiency.

2.2 Video harmonization

Deep learning boosts image harmonization with excel-
lent performance and high efficiency, which inspires its
transition to video modality. Previous image harmoniza-
tion methods can be extended to videos if we directly
treat every video frame as an independent image.
However, owing to the motion and occlusion of fore-
ground objects, directly applying those approaches to an
input video may result in temporally inconsistent videos
of low visual quality. To suppress flicker results, Huang
et al.l'8] first trained a convolutional neural network us-
ing a pixelwise disharmony discriminator to achieve more
realistic harmonized results and then introduced a tem-
poral loss to preserve temporal consistency between con-
secutive harmonized frames. Lu et al.!9] designed a har-
monization network applying the color mapping strategy
at the pixel level to achieve temporal consistency. Differ-
ent from these methods, we introduce a new network for
video harmonization that can aggregate multiframe in-
formation of foreground regions for better video harmon-
ized results.

2.3 Temporal alignment

Motion compensation is an essential component for
most video tasks to handle displacement among frames.
Many approaches20: 29-33] have been developed to enforce
temporal consistency in video editing. Ruder et al.20] em-
ployed a temporal loss guided by optical flow for video
style transfer. Wang et al.[32] synthesized videos with tem-
poral consistency by training a network to estimate optic-
al flow and applied it to previously generated frames. Ye
et al.[33 explicitly leverage temporal information by build-
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ing a causal-anticausal, coarse-to-fine iterative scheme.
Lang et al.B! proposed an efficient framework to enforce
temporal smoothness across frames. They approximate a
global optimization and show very good results for applic-
ations such as disparity estimation, depth upsampling or
colorization. Bonneel et al.29 applied curvature-flow
smoothing in the space of color transformations to trans-
fer color palettes between videos and demonstrated that
it successfully produced temporally consistent results
without degrading the video content. Gupta et al.l30]
presented a recurrent convolutional network by using pre-
vious stylized frame and the current frame as input to
produce the stylized current frame. Unlike these methods,
we obtain foreground-feature fusion by utilizing neighbor
frame information in both forward and backward direc-
tions to solve the temporal consistency problem in video

harmonization tasks.

3 Our method

3.1 Framework overview

Given a composite video sequences {I; € RU7*W>3)
i=1,---,T} as input, with corresponding framewise bin-
ary foreground masks {M; € RF>XWxD y—1 ... T},
we aim to generate realistic composite frames that are
consistent in both spatial and temporal dimensions. The
pipeline of our framework is shown in Fig.1. First, a fea-
ture pyramid network is used as our feature encoder to
extract high-dimensional features from the i-th compos-
ite frame. Second, the extracted features are handled in a
multiscale harmonization module to obtain harmonized
features F'. Third, a flow estimation module Ej ; is in-
troduced to estimate the bidirectional optical flow of
composite frames to model foreground movements.
Fourth, guided by optical flow, features F would be
aligned in bidirectional propagation ways. Fifth, to allevi-

ate the misalignment of warping, a foreground temporal
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Feature encoder
Multi-scale harmonization
module

nn.

Corresponding masks

| Harmonized neighboring

Machine Intelligence Research 21(1), February 2024

aggregator is proposed to fuse the temporal features in
foreground regions. Finally, a decoder, which contains
several residual blocks and convolutional layers, is used to
output temporal harmonization frames I7 .

3.2 Multiscale harmonization module

Nonlocal self-similarity is one of the important charac-
teristics of natural images and has been proven to be an
effective prior for image restoration tasksB4. For image
harmonization, Hao et al.¥! and Hang et al.[l% introduced
self-attention mechanisms to calculate nonlocal informa-
tion and proved the effectiveness of nonlocal information
across image regions. However, these methods simply op-
erate on single-scale feature maps. Instead, we consider
correlations at multiple scales and exploit nonlocal self-
similarity in multiscale features to ensure consistency
between foreground and background regions. As shown in
Fig.2(a), each scale level consists of an upsampling layer,
a nonlocal block, and three 3 x 3 convolution layers in
our method. We adopt the nonlocal module proposed in
[34], as illustrated in Fig.2(b), m is the number of chan-
nels of the input feature, and [ is the number of channels
of the intermediate feature. The output at each location
in the foreground region is computed by using its g X ¢
neighborhood.

3.3 Flow-guided bidirectional propagation
strategy

Camera or object motion leads to displacement among
frames. Directly operating on the nonaligned features
may cause substandard performance. This is because con-
volutions, as local operations, have relatively small re-
ceptive fields and are inefficient in aggregating the in-
formation from corresponding locations. Thus, it is im-
portant to adopt operations that have a sufficiently large
receptive field to aggregate information from distant spa-
tial locations. To better establish interframe correspond-

N
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|
|
|
|

Foreground temporal
aggregator
Decoder

features )

I,

i

Feature propagation
module

Overview of the proposed framework. It consists of 1) a feature encoder, 2) a multiscale harmonization module, 3) a flow

estimation module, 4) a feature propagation module, 5) a foreground temporal aggregator, and 6) a decoder.
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ence, we adopt simple flow-based alignment methods be-
fore aggregation. By computing optical flow and warping
on feature maps, we extract motion features to guide our
model to focus on moving foreground objects. In addition,
to make full use of multiframe information, we utilize a
bidirectional propagation strategy, in which features can
independently propagate in both forward and backward
directions of time. In general, our methods use composite
frames I; to estimate bidirectional optical flow and per-
form warping on the features F* in both forward and
backward directions in the temporal dimension. Formally,
we have

ST = S(1, Liwy)

mh{b,f h{b,f b, f

O =W s (1)
where F’ih{b’f } denotes aligned features, S and W denote
the flow estimation and spatial warping modules,
respectively. In addition, b denotes backward flow, and f
denotes forward flow.

3.4 Foreground temporal aggregator

Optical flow can generate high-quality output but is
computationally expensive, and its estimation may suffer

from inevitable errors, which may affect the reconstruc-
tion performance. Therefore, dynamically aggregating
neighboring frames at the feature level is indispensable
for effective and efficient aggregation. To address the
above problem, we propose an attention module to at-
tain more accurately aligned features by assigning fea-
ture-level aggregation weights to the neighboring fore-
ground, as shown in Fig.3. We first use 1 x 1 convolu-
tions to map feature maps of both the current frame and
its adjacent frames to embedding spaces and then calcu-
late the similarity in embedding spaces. Theoretically,
compared with the misaligned pixels, the correctly
aligned pixels in adjacent frames are more similar to the
current frame, which should be given more attention. For
each frame ¢ € [1: T, the similarity distance can be ob-

tained by
f(Fih—tz Fz‘h) = Singid(e(Fih—t)Tv @(Fih)) (2)

where 6 and ¢ denote two embeddings.

Then, we apply the attention map A and mask M;,
and we obtain the attention feature map as ﬁ'z-h , which is
then concatenated with the feature map of the current
frame. Finally, we feed concatenated features into the de-

coder and obtain output frames. We have

1
I
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Fig.2 Architecture of the proposed operation for harmonization, including: (a) detailed operations of each scale level harmonization;

(b) nonlocal block we used
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Fig. 3 Architecture of the proposed foreground temporal aggregator
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Fl'=M; 0 F'o f(F',,F")+ (1 - M;) o F/ (3)
where ® denotes the elementwise multiplication.

4 Experiment

4.1 Dataset statistics

To evaluate the proposed model and make fair com-
parisons with state-of-the-art approaches, we use the HY-
ouTube dataset proposed by Lu et al.l!9 The HYouTube
dataset contains 3 194 training and 636 test video se-
quences with foreground masks. The dataset is synthes-
ized from the large-scale video dataset YouTube-
VOS2018 and is constructed by using abundant 3D color
lookup table to adjust the appearance of foregrounds to
make frames incompatible with backgrounds. The video
length in HYouTube is 20 frames. Furthermore, to elim-
inate the gap between real composite videos and synthet-
ic composite videos, HYouTube contains another 100 real
composite videos via copy-and-paste for testing. Each real
composite video has 20 frames.

4.2 Implementation details

The network takes 5 (or 3) consecutive frames as in-
put. Similar to CO2Net!!9, we use iS2AM[3] as our basic
module. We use two nonlocal blocks in two scale levels,
and ¢ is set to 4 as the default. We use pretrained
SPyNet3 as our flow estimation module for more accur-
ate flow estimation. In the decoder, we implement 5 re-
sidual blocks with channel size 32.

We apply a two-stage training strategy. The first
stage is to obtain harmonized images frame by frame and
train the network by using the foreground-normalized
(FN)-MSE loss proposed by [13], and the second stage
concentrates on obtaining temporal consistency results,
with L1 loss for training. We train our network on a
single RTX 3090 GPU for 150 epochs and adopt the
Adam optimizer with 81 = 0.9, f2 = 0.999 and e = 1075,
The initial learning rates are set to 5 x 10~* and reduced
by a factor of 10 at epochs 85 and 125. The batch size is
16 (or 24), and the size of composite frames is 256 x 256.
The input frames are scaled to [0, 1] and normalized with
RGB mean (0.485, 0.456, 0.406) and standard deviation
(0.229, 0.224, 0.225).

4.3 Comparison with existing methods

We compare our method with both image harmoniza-
tion methods and video harmonization methods. For im-
age harmonization methods, we consider the effectiveness
of the proposed algorithm and compare it with existing
methods iS2AM3], RainNet23, DoveNet[2l], and intrinsic
image harmonization (IIH)6), which harmonize videos
frame by frame. For the video harmonization methods,
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we compare with the two existing methods [18] and
COgNet[19].

For fair comparison with [18] and CO2Net, we utilize
the temporal loss (TL) metric to measure temporal con-
sistency between frames. We also provide fMSE, MSE,
PSNR and fSSIM metrics following [19] on the test sets of
the HYouTube dataset. Specifically, PSNR and SSIM are
frequently used metrics for distortion-oriented image and
video assessment. fMSE or fSSIM means only calculating
the MSE or SSIM in the foreground region. The results
are listed in Table 1. Among the image harmonization
methods, our method achieves the best results, and can
exactly improve the harmonization performance. As we
can see, our method can also improve the temporal con-
sistency for video harmonization, and outperforms the
state-of-the-art video harmonization approaches. All these
results verify the effectiveness of our method. We also
provide some visual comparisons in Fig.4. It can be seen
that our method obtains consistent harmonization results
across frames and our harmonized results are closer to
ground-truth frames.

Table 1 Comparisons between our method and existing
methods on the HY ouTube dataset

Methods fMSE| MSE| PSNR 1 fSSIM 1t TL |

Composite 1029.50 151.20 30.14 0.7197 25315

DoveNet 347.73 47.84  35.06 0.8392 18.1533
IIH 333.65 45.91 34.99 0.8324 3.3277
RainNet 310.47 42.52 35.49 0.8411 4.502 4
iS2AM 203.78 28,90 37.38 0.8817 6.4765

Huang et al.[18] 198.86 27.81 37.47 0.8824 6.4893
CO2Net 186.71 26.50  37.61 0.8827  5.1126

Ours 174.81 24.20 37.89  0.8826 5.0328

4.4 Ablation studies

In this section, we conduct ablation studies to evalu-
ate the effectiveness of each component in our methods.
The results are shown in Table 2, Rows 1 and 2 present
the image harmonization results. Row 1 denotes the res-
ults of the harmonization module in iS?AM as our base
harmonization module. Row 2 denotes the results of our
harmonization method within base harmonization mod-
ule and nonlocal modules. As we can see, the modifica-
tion of the base method can generally improve harmoniz-
ation performance. Row 3 shows the validity of the uni-
directional propagation scheme. Compared to Row 6, it
can be seen that using bidirectional optical flow can bet-
ter improve the performance than unidirectional only.
Rows 4 and 6 reveal the effectiveness of the pretrained
optical flow. By observing Rows 5 and 6, we can find the
effectiveness of our foreground temporal aggregator, and
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Frame 45 Frame 35 Frame 30 Frame 35 Frame 30

Frame 50

mposite IH

CO,Net Ours

Ground truth

Fig. 4 Visual comparison on HYouTube between our network and other state-of-the-art methods. Zoom in for better visualization.

Table 2 Ablation studies of our framework

moe O i e cnporiaimgator | MSEL THL
1 + 203.78 6.476 5
2 + + 176.39 6.510 5
3 ¥ n ¥ + + 179.18 5.615 4
4 + + + + 180.83 5.609 3
5 + + + + 178.44 5.5230
6 + + + + + 174.81 5.0328

our module shows the improvement of temporal consist-
ency.

We conduct the experiment on the number of scale
levels of our harmonization module. Our multiscale har-
monization module contains three scale levels for placing
nonlocal blocks, so we evaluate the effectiveness of this
block by using different numbers. We can see from Table
3 that placing a nonlocal block in two scale levels
achieves the best results.

In Table 4, we evaluate the performance of using dif-
ferent numbers of input frames. In consideration of com-
puting resources, we conduct experiments on 3, 5 and 7
frames and set the batch size to 10. It can be seen that
the larger numbers of frames would get better results.

5 Conclusions

In this paper, we have proposed a new video harmon-
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Table 3 Evaluating the effectiveness of multiscale
harmonization module with different numbers
of scale levels

Numbers fMSE | MSE | PSNR 1
0 191.24 25.11 37.40
1 179.89 24.06 37.60
2 176.39 23.32 37.74
3 180.25 24.84 37.62

Table 4 Evaluating the performance of different numbers of
input frames

NFrames fMSE | fSSIM 1 Time (s) |
3 184.03 0.880 5 0.168
5 179.14 0.8816 0.187
7 176.27 0.882 3 0.298

ization network, combining multiscale harmonization,
flow-guided feature propagation, and foreground tempor-
al aggregation to address the temporally consistent har-
monization of composite videos. By exploiting multiscale
nonlocal self-similarity and foreground temporal aggrega-
tion, our method can achieve appearance consistency and
temporal consistency of composite video sequences. Ex-
perimental results have shown that our method outper-
forms state-of-the-art methods in both quantitative and
visual performance on the HYouTube dataset.
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