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Abstract:   Palmprint recognition is an emerging biometrics technology that has attracted increasing attention in recent years. Many
palmprint recognition methods have been proposed, including traditional methods and deep learning-based methods. Among the tradi-
tional methods, the methods based on directional features are mainstream because they have high recognition rates and are robust to il-
lumination changes and small noises. However, to date, in these methods, the stability of the palmprint directional response has not been
deeply studied. In this paper, we analyse the problem of directional response instability in palmprint recognition methods based on dir-
ectional  feature. We then propose a novel palmprint directional response stability measurement (DRSM) to  judge the stability of the
directional feature of each pixel. After filtering the palmprint image with the filter bank, we design DRSM according to the relationship
between the maximum response value and other response values for each pixel. Using DRSM, we can judge those pixels with unstable
directional response and use a specially designed encoding mode related to a specific method. We insert the DRSM mechanism into sev-
en classical methods based on directional feature, and conduct many experiments on six public palmprint databases. The experimental
results show that the DRSM mechanism can effectively improve the performance of these methods. In the field of palmprint recognition,
this work is the first in-depth study on the stability of the palmprint directional response, so this paper has strong reference value for re-
search on palmprint recognition methods based on directional features.
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 1   Introduction

Palmprint recognition, as a promising biometric recog-

nition technology, has attracted wide attention from aca-

demia and industry. To date, researchers have proposed a

number of palmprint recognition methods[1], which can be

divided  into  two  categories,  i.e.,  traditional  methods[2−4]

and  deep  learning-based  methods[5, 6].  In  recent  years,

deep  learning  has  made  breakthrough  progress  in  many

tasks of computer vision[7−9]. However, deep learning tech-

nology requires a large amount of training data and com-

puting  resources.  In  palmprint  recognition,  traditional

methods  can  achieve  stable  and  good  recognition  results

on  some  databases  with  limited  data  and  computing  re-

sources. Therefore, traditional methods still have high re-

search  and  application  value.  The  traditional  methods

can  be  further  divided  into  the  following  subcategories:

palm line-based  methods,  directional  coding-based  meth-

ods, texture-based methods[10, 11], subspace learning meth-

ods  and  correlation  filter-based  methods.  Palm lines,  in-

cluding  principal  lines  and  wrinkles,  are  the  basic  ele-

ments of palmprints.

Palm lines contain obvious directional features, which

are robust to illumination changes and noise, so direction-

al feature-based methods have achieved good recognition

performance. According to the representation and match-

ing  modes  of  directional  features,  directional  feature-

based  methods  can  be  further  divided  into  directional

coding-based methods, directional histogram-based meth-

ods,  and combining direction and correlation filter-based

methods.

Directional coding-based methods first extract the dir-

ection  map  of  a  palmprint  image.  Then,  the  direction

map  is  downsampled,  and  the  direction  value  of  each

pixel  after  downsampling  is  binary  coded.  Finally,  the

coded  directional  features  of  different  palmprints  are

matched by Hamming distance. This kind of method can

effectively reduce the computational complexity and stor-

age cost.  Classical directional coding methods mainly in-

clude competitive code (CompC)[12],  ordinal  code,  binary
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orientation  co-occurrence  vector  (BOCV)[13],  double-

orientation  code  (DOC),[14] and  discriminative  and  ro-

bust competitive code (DRCC)[15], etc.

Directional histogram methods first extract the direc-

tional map of the palmprint image, then divide the direc-

tional  map  into  small  blocks,  calculate  the  histograms

based on directional features on the small blocks, and fi-

nally  connect  the  histograms  of  all  small  blocks  to  form

the  final  histogram.  Classic  directional  histogram  meth-

ods  include  histogram  of  oriented  lines  (HOL)[16],  local

line directional pattern (LLDP)[17], and collaborative rep-

resentation-based competitive code (CR_CompC)[18], etc.

Combining direction and correlation filter-based meth-

ods are performed in the frequency domain. This kind of

method first  obtains  the  direction  map of  the  palmprint

image, then extracts the frequency domain features from

the direction map and matches them in the frequency do-

main. Typical methods include complete direction repres-

entation (CDR) method[19] based on band-limited phase-

only correlation (BLPOC).

All methods based on directional features first need to

calculate  the  direction  map  of  the  palmprint  image.  To

calculate  the  direction  map,  a  group  of  line-like  filters,

such  as  Gabor  filters,  are  generally  used  to  filter  the

palmprint  region  of  interest  (ROI)  image,  and  then  the

direction  of  each  pixel  is  determined  according  to  the

magnitude relationship of the filter response values of this

group of filters. Furthermore, researchers have proposed a

series of strategies to improve the robustness and recogni-

tion accuracy of the method based on directional features.

The main strategies include trying to use different filters,

increasing the number of filters,  exploiting multiscale in-

formation, using feature learning to obtain more discrim-

inative  directions,  using  multiple  directions  to  modulate

features,  considering  the  magnitude  of  domain  response,

or using different types of classifiers, etc.

Through  the  analysis  of  directional  feature-based

palmprint recognition methods, we found that the stabil-

ity  of  directional  features  of  palmprints  has  not  been

deeply  studied.  In  the  research  of  CompC[7],  we  found

that when the difference between a set of response values

is small or the advantage of the maximum response value

relative to other response values is insufficient, the avail-

able  direction  information  easily  fluctuates,  which  will

lead to a change in direction feature selection.

(dir1, · · · , dir6)

Fig. 1 shows  two  ROI  images  collected  in  two  differ-

ent sessions from the same person. According to the oper-

ation in CompC[7], Gabor filters in six directions are con-

volved  at  each  position,  and  responses  in  six  directions

 are  obtained.  CompC  uses  the  winner-

take-all  rule  to  determine the  directional  feature  of  each

pixel. For Fig. 1(a), the direction of the orange position is

determined as 5 (dir5), and the direction of the blue posi-

tion is determined as 3 (dir3). For Fig. 1(b), the direction

of the orange position is determined as 5 (dir5), and the

direction  of  the  blue  position  is  determined  as  4  (dir4).

Because two ROI images are collected from the same per-

son, we hope that the directional features of two samples

in  blue  position  should  be  the  same.  Obviously,  in  two

samples,  there  is  a  difference  in  blue  positions  between

two samples, which will affect the recognition result.

The stability of a set of directional responses of a pixel

may be affected by many factors. One of the main factors

is  that  the  pixel  is  located  in  an  area  with  little  gray

change because the direction filter is  usually used to de-

tect the gray change of a region, so the direction feature

is  not  obvious.  Other  factors  include  lighting  changes,

noise, blurred images and hand posture changes.

In  the  research  of  iris  recognition,  in  the  modelling

and  analysing  of  the  false  acceptance  rate  (FAR)  and

false  reject  rate  (FRR)  of  iris  recognition  systems,  Bolle

et  al.[20] found  that  the  theoretical  accuracy  of  FRR de-

teriorates  rapidly  when  the  bit  inversion  rate  increases,

and the degradation is more obvious than the theoretical

prediction,  which  means  that  the  invariant  bits  in  iris

code are significantly robust to image noise. Bolle et al.[20]
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Fig. 1     Examples of stability of palmprint directional  features,
where  two ROI  images were  collected  in  two different  sessions
from  the  same  person.  (a) Filter  response  values  of  two  pixels
with  different  positions  in  the  first  image;  (b)  Filter  response
values of two pixels with different positions in the second image.
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guessed that the reason for this  phenomenon is  that not

all  bits  are  equally  stable.  The  so-called  stability  means

having  the  same  probability  of  flipping,  and  some  pos-

sible bits may be particularly easy to flip.  Bolle et al.[20]

called these bits fragile bits. Later, Hollingsworth et al.[21]

performed  a  scientific  analysis  of  the  fragile  bit  phe-

nomenon,  confirmed  Bolle′s  conjecture  through  experi-

ments,  and  specifically  pointed  out  that  the  fragile  bit

phenomenon easily occurs in different genders, filters and

different regions in the iris, indicating that the fragile bit

will affect the selection invariance of features, and this in-

fluence  cannot  be  eliminated  by  matching  translation  or

rotation  features.  Therefore,  Hollingsworth  et  al.[21] pro-

posed the fragile bits masking strategy, which can reduce

the side effects of fragile bits in the feature matching pro-

cess by covering up some features that are prone to fra-

gile bit positions.

In palmprint recognition, Zhang et al.[22] proposed the

method of BOCV (E-BOCV), which directly applied the

fragile  bits  masking  strategy  to  BOCV,  a  classical

palmprint  recognition  method  based  on  directional  fea-

tures.  Except  for  the  E-BOCV,  other  researchers  have

never  discussed  the  stability  of  palmprint  directional  re-

sponses.

The  direction  of  the  maximum  response  is  the  most

valuable  information  in  a  group  of  responses[12, 14, 15] be-

cause  it  largely  reflects  the  directional  feature  of  the

palmprint in the area where the sampling pixels are loc-

ated. Generally, for a pixel, when the difference between

a group of directional responses is small or the difference

between the value of the largest response and the value of

the  second  largest  response  is  small,  we  think  that  the

directional feature extracted from this group of responses

is unstable.

In this paper, we propose a novel palmprint direction-

al  response  stability  measurement  (DRSM)  of  pixels.

Based  on  DRSM,  we  propose  a  new  recognition  frame-

work  for  methods  based  on  directional  features.  This

framework contains  the judgment mechanism of  the sta-

bility of the directional response of each pixel. For those

pixels  with  unstable  directional  responses,  we  carry  out

special  processing  to  improve  the  recognition  perform-

ance of methods based on directional features. For those

pixels with unstable directional values, the general idea is

to discard them. But we think that these pixels can also

become  the  unique  attributes  of  each  palmprint  image

and can be converted into the same exploitable and dis-

tinctive features as normal points. In this way, the poten-

K

K

tial  of  coding  methods  based  on  directional  features  can

be  fully  tapped. Fig. 2 shows  a  flow  chart  of  a  general

coding  method  based  on  directional  features  combined

with  DRSM.  Given  a  palmprint  ROI  image,  we  use

Gabor filters in  directions to filter it. Then we can ob-

tain responses in  directions. For a pixel, a DRSM mod-

ule  is  added  to  determine  whether  the  directional  re-

sponse of the pixel is stable. If the DRSM module judges

that  the  directional  response  of  the  pixel  is  stable,  the

directional response of this pixel will be coded in the nor-

mal way; otherwise, it will be coded in a special way.

The main contributions of this paper are as follows:

1) We summarize the development of palmprint recog-

nition methods based on directional features so that read-

ers  can  have  a  deeper  and  more  comprehensive  under-

standing of  palmprint recognition methods based on dir-

ectional features.

2)  We  analyse  the  directional  response  instability  in

the  palmprint  recognition  method  based  on  directional

features in detail and propose a palmprint DRSM. Based

on  DRSM,  we  further  propose  a  new  recognition  frame-

work  for  directional  feature-based  palmprint  recognition

methods.  The  stability  of  the  directional  response  of

palmprints  is  seldom studied.  The  work  of  this  paper  is

the  first  time  in  the  field  of  palmprint  recognition  to

deeply  analyse  the  stability  of  the  palmprint  directional

response and propose an effective solution. Therefore, this

work  has  made  a  significant  and  special  contribution  to

palmprint recognition based on directional features.

3)  DRSM is  very flexible  and free  in  use  and design.

The  fragile  bits  masking  strategy[21] proposed  in  iris  re-

cognition  can  only  be  applied  to  specific  feature  coding

methods. DRSM is not limited by specific feature coding

forms and can be easily applied to various methods.  We

insert DRSM into seven classical methods based on direc-

tional  features  and  conduct  many  experiments  on  six

public  palmprint  databases.  Experimental  results  show

that  DRSM  can  effectively  improve  the  performance  of

these methods.

The rest of this paper is organized as follows. Section

2  presents  the  development  of  palmprint  recognition

methods  based  on  directional  features.  Section  3  intro-

duces the DRSM methodology. Section 4 introduces how

to  insert  DRSM  into  seven  classical  palmprint  recogni-

tion methods based on directional features.  Section 4 re-

ports  the  experimental  results.  In  Section  5,  we  discuss

some design principles and design choices of DRSM in de-

tail. In Section 6, the conclusions are given.
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Fig. 2     The flow chart of a general coding method based on directional feature combined with DRSM
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 2   Related work

 2.1   Directional feature-based palmprint
recognition methods

To better  understand  the  development  of  recognition

methods  based  on  directional  features  in  the  field  of

palmprint  recognition,  some  details  of  recognition  meth-

ods based on directional features are listed in Table 1 ac-

cording to the method type and the proposed time. As we

mentioned  above,  directional  feature-based  methods  can

be divided into directional coding-based methods and dir-

ectional  histogram-based  methods  and  combined  direc-

tion and correlation filter-based methods. Thus, in Table 1,

the  method  types  of  directional  feature-based  methods

are marked as “coding”, “histogram”, and “correlation fil-

ter”.

In  2003,  Kong  et  al.[23] and  Zhang  et  al.[24] proposed

the PalmCode method. PalmCode can be regarded as the

first  method to  encode  palmprint  directional  features,  in

which  a  circular  Gabor  filter  with  a  certain  direction  is

used  to  filter  the  palmprint  ROI  image,  and  then  the

signs of the filtered images are coded as a feature vector.

In  the  matching  stage,  two  PalmCodes  are  matched  by

using  the  normalized  Hamming  distance.  In  2004,  Kong

and  Zhang[12] proposed  the  method  of  CompC,  in  which

the real part of the Gabor filters in six directions are used

to filter the images of palmprint ROI. In each pixel,  the

indexing  number  of  the  minimum  response  obtained  by

the  winner-take-all  rule  is  treated  as  the  directional  fea-

ture.  To match more  efficiently,  CompC encodes  the  in-

dexing number representing the directional feature into 4

bit-planes. Kong and Zhang[12] also proposed the angular

distance  to  measure  two  CompCs.  In  2005,  Wu et  al.[25]

proposed a  method similar  to  CompC,  named palmprint

orientation  code  (POC),  in  which  directional  templates

with 4 directions are used to define the direction of each

pixel, and Hamming distance is used to measure the sim-

ilarity of two POCs.

In 2005, Sun et al.[26] proposed the ordinal code meth-

od, in which three pairs of orthogonal Gaussian filters are

used to filter the palmprint ROI image. Based on the or-

dinal measure, each pixel gets 3 bit codes. The matching

of ordinal code is also based on the Hamming distance. In

2006, Kong et al.[27] proposed the method of fusion code,

an improved version of palm code. In fusion code, elliptic-

al  Gabor  filters  with  4  directions  are  first  used  to  filter

the palmprint ROI image, and then, the magnitude of fil-

tering  responses  is  used  for  information  fusion,  and  the

phase is used for encoding the final feature. In 2008, Zuo

et al.[28] extended competitive code to multiscale compet-

itive code (MCC),  in which 2D Log-Gabor filters  with 2

scales  and  6  directions  are  used  for  extracting  direction

coding,  and  a  hierarchical  matching  scheme  was  pro-

posed. In the same year, Jia et al.[29] proposed the meth-

od of robust line orientation code (RLOC). RLOC uses a

modified finite Radon transform (MFRAT) to obtain the

dominant direction of each pixel and uses a pixel-to-area

comparison algorithm for matching. Because MFRAT ac-

cumulates pixel  values along lines in different directions,

it has a very fast speed when calculating directional fea-

tures. In the original CompC, the directions of filters are

uniformly  distributed.  Yue  et  al.[30] proposed  an  im-

proved  CompC,  in  which  optimal  filtering  directions  are

calculated  by  a  fuzzy  C-means  clustering  algorithm.  In

2019, Guo et al.[13] noticed that using only one dominant

direction to represent a local region may lose some valu-

able  information  because  there  are  cross  lines  in  the

palmprint.  Therefore,  they  proposed  the  method  of  bin-

ary orientation co-occurrence vector (BOCV), which cal-

culates a 6-bit binarized vector by concatenating the nor-

malized  responses  along  6  directions[13].  Zuo  et  al.[31] ex-

tended  the  MCC  method  to  sparse  multiscale  competit-

ive  code  (SMCC).  The  SMCC  uses  the  11-norm  sparse

coding to obtain a robust estimation of the multiscale ori-

entation field by using a filter bank of second derivatives

of Gaussians with 6 different directions and 3 scales.

In  2011,  Khan  et  al.[32] proposed  the  method  of  con-

tour code, in which the non-subsampled contourlet trans-

form  (NSCT)  was  used  to  obtain  the  dominant  direc-

tions  of  each  pixels.  Zhang  et  al.[22] analysed  the  fragile

bits  phenomenon and then extended BOCV to E-BOCV

by  incorporating  fragile  bits  information.  Sun  et  al.[33]

proposed  the  method  of  linear  programming  ordinal

measures  (LP-OM) using  a  feature  selection  mechanism,

which is  an improved version of  the ordinal  code.  Fei  et

al.[14] also noticed that it may not be very robust to use

only  one  indexing  number  of  the  dominant  response  as

the  directional  feature.  Therefore,  they  proposed  to  use

the  two  maximum response  directions  for  coding  named

the  double-orientation  code  (DOC)[14].  Because  some

palm  lines  are  curves,  using  the  Gabor  filter  bank  may

not  accurately  detect  the  direction  of  a  pixel  located  on

these curves. Fei et al.[34] proposed the method of half ori-

entation code, which uses two half Gabor filters to fit the

curves  better.  In  2016,  Fei  et  al.[35] proposed  the  neigh-

boring  direction  indicator  (NDI)  method,  which  can  not

only  represent  the  most  dominant  directional  feature  of

the  palmprint  but  also  denote  the  multiple  directions  of

some  special  points  having  double  dominant  directions.

To better detect the dominant direction of pixels located

in  the  curves,  Tabejamaat  and  Mousavi[36] proposed  us-

ing a banana filter instead of a Gabor filter.

In 2016, Zheng et al.[37] proposed the fast-competitive

code  (Fast-CompC)  method,  which  uses  one  pair  of  or-

thogonal Gabor filters to filter the palmprint ROI image

and then obtains 1 bit code by the ordinal measure. Be-

cause fast-competitive code only uses two Gabor filters to

filter palmprint ROI images and only uses 1 bit to repres-

ent the directional feature, it has a fast processing speed.

In 2018, Xu et al.[15] proposed the method of discriminat-
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Table 1    List of directional feature-based palmprint recognition methods

Method type Method name Filter type Filter number Scales Direction
levels

Mechanism for
obtaining direction

representation
Matching strategy Ref Year

Coding

PalmCode Circular
Gabor filter 1 1 1 One direction

filtering Hamming distance [23, 24] 2003

Competitive
code Gabor filter 6 1 1 Winner-take-all Angular distance [12] 2004

POC Directional
filter 4 1 1 Winner-take-all Hamming distance [25] 2005

Ordinal code Gaussian
filter 3 pairs 1 1 Ordinal measure Hamming distance [26] 2005

Fusion code Elliptical
Gabor filter 4 1 1 Winner-take-all and

phase coding Hamming distance [27] 2006

MCC 2D Log-Gabor
filter 12 2 1 Winner-take-all Angular distance [28] 2008

RLOC MFRAT 6 1 1 Winner-take-all Pixel-to-area
matching [29] 2008

Improved
competitive

code

Circular
Gabor filter 6 1 1 Winner-take-all Angular distance [30] 2009

BOCV Gabor filter 6 1 1 Six direction
filtering Hamming distance [13] 2009

SMCC

Second
derivatives of

Gaussian
filter

18 3 1 Winner-take-all Angular distance [31] 2010

Contour code Contourlet 8 1 1 Winner-take-all Binary hash table [32] 2011

E-BOCV Gabor filter 6 1 1 Six direction
filtering

Hamming distance [22] 2011

LP-OM Multi-lobe
ordinal filters

Random
setting

Random
setting 1 Ordinal measure Hamming distance [33] 2013

DOC Gabor filter 6 1 2 Responses′ sorting Nonlinear angular
matching [14] 2016

HOC Half-Gabor
filters 6 1 1 Winner-take-all Hamming distance [34] 2016

NDI Circular
Gabor filter 6 1 1 Winner-take-all Hamming distance [35] 2016

Concavity-
orientation

coding
Banana filter 3 pairs 1 1 Winner-take-all Hamming distance [36] 2016

Fast-
competitive

code
Gabor filter 1 pair 1 1 Ordinal measure Hamming distance [37] 2016

DRCC Circular
Gabor filter 6 1 1 Winner-take-all Hamming distance [15] 2018

MOSDL Gabor filter
bank 24 4 1 Feature learning Hamming distance [38] 2019

DVDM Circular
Gabor filter 6 1 1 Winner-take-all Hamming distance [39] 2020

EDM Circular
Gabor filter 6 1 1 Winner-take-all Hamming distance [40] 2020

Histogram

HOL Gabor filter 12 1 1 Winner-take-all Euclidean distance [16] 2014

LLDP Gabor filter 12 1 2 Responses′ sorting Chi-square distance [17] 2016

CR_competiti
ve code Gabor filter 6 1 1 Winner-take-all Euclidean distance [18] 2016

LMTrP Gabor filter 6 1 1 Winner-take-all Euclidean distance [41] 2017

ALDC Gabor filter 6 1 1 Winner-take-all Chi-square distance [42] 2019

DDBC Gabor filter 12 1 1 Feature learning Chi-square distance [43] 2019

LDDBP Gabor filter 12 1 2 Twelve direction
filtering Chi-square distance [44] 2020

Correlation
filter CDR MFRAT 12 3 3 Winner-take-all Peak-to-sidelobe

ratio [19] 2017
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ive and robust competitive code (DRCC), which extracts

not  only  the  dominant  direction  code  but  also  the  side

code  of  the  dominant  direction  code  by  comparing  two

nearest  neighbor  responses.  In  2019,  Ma  et  al.[38] pro-

posed  the  method  of  multi-orientation  and  multi-scale

features discriminant learning (MOSDL). MOSDL uses a

Gabor filter bank with 4 scales and 6 directions to filter

the  palmprint  ROI  images  and  then  uses  a  discriminant

learning  strategy  to  select  the  optimal  direction.  Differ-

ent from the work of other researchers, Leng et al.[39] paid

attention  to  the  downsampling  problem  in  the  direction

coding  method.  They  proposed  a  democratic  voting

downsampling  method  (DVDM)  to  improve  the  robust-

ness  and  accuracy  of  coding-based  methods.  Later,  they

proposed  extreme  downsampling  method  (EDM)[40],  in

which the extreme response pixel in each local block is se-

lected as the representative of this local block.

Jia  et  al.[16] proposed  the  first  directional  histogram-

based method named HOL, which is a variant of the his-

togram of  oriented  gradients  (HOG).  HOL exploits  line-

shape  filters  or  tools  such  as  the  real  part  of  the  Gabor

filter  and  modified  finite  Radon  transform (MFRAT)  to

extract  the  line  responses  and  orientation  of  pixels  in-

stead  of  the  gradient.  Later,  Luo  et  al.[17] proposed  the

local  line  directional  pattern  (LLDP)  method,  in  which

both  the  index  numbers  of  the  minimum  line  response

and  the  maximum  line  response  are  utilized  for  coding.

Zhang  et  al.[18] proposed  the  CR-competitive  code  (CR-

CompC) method. CR-CompC first computes the CompC

map of the palmprint by using a set of Gabor filters, then

uses blockwise histogram statistics of CR-CompC as fea-

tures,  and  uses  collaborative  representation-based  classi-

fication  with  regularized  least  square  (CRC_RLS[45])  as

the  classifier.  Using  line  shape-based  filters  such  as  the

Gabor filter and MFRAT and considering quadrant direc-

tions  as  well  as  thickness,  Li  and  Kim[41] extended  the

local  tetra  pattern  (LTrP)  to  the  local  microstructure

tetra pattern (LMTrP).

Fei et al.[42] proposed the method of apparent and lat-

ent direction code (ALDC), which is a double-layer direc-

tion method for palmprint representation and recognition.

ALDC extracts not only the apparent direction from the

palmprint surface layer but also the latent direction from

the  energy  map  layer  of  the  apparent  direction.  Two

simple and effective schemes are used to combine the ap-

parent  and  latent  directional  features  forming  a  histo-

gram  feature  descriptor  for  palmprint  matching.  Fei  et

al.[43] proposed  a  discriminant  direction  binary  code

(DDBC)-based  palmprint  descriptor.  DDBC  first  com-

putes  the  convolution  difference  vector  (CDV)  for  each

palmprint image. Then, DDBC learns mapping functions

to project CDV into discriminant direction binary codes.

Finally, the block-wise histograms of DDBC are concaten-

ated  into  a  discriminant  direction  binary  palmprint

descriptor. Fei et al.[44] proposed a Gaussian fusion model

(EGM)  to  characterize  the  essential  discriminability  of

different  directions  of  palmprints  and  then  proposed  a

local  direction binary pattern (LDDBP) for  discriminant

directional  feature  extraction.  LDDBP  can  better  de-

scribe  the  direction  changes  and  implicitly  denotes  the

multiple  dominant  directional  features  of  a  palmprint.

Guided  by  the  EGM,  the  top  three  discriminant  direc-

tional features are exploited from the LDDBP.

Jia  et  al.[19] proposed  the  method  of  complete  direc-

tion representation (CDR), which uses a correlation filter,

i.e.,  band-limited phase-only correlation (BLPOC) to ex-

tract frequency domain features from the direction repres-

entation of palmprints.

 2.2   Brief introduction to the E-BOCV
method

From  Section  2.1,  we  can  see  that  many  methods

based  on  directional  features  have  been  proposed,  but

most  of  them  have  not  discussed  the  stability  of  direc-

tional  features.  Only  one  method,  that  is,  the  E-BOCV

method  proposed  by  Zhang  et  al.[22],  takes  into  account

the  stability  of  palmprint  directional  features,  and  im-

proves  the  BOCV method  by  using  fragile  bits  masking

strategy proposed for iris recognition[46].

In E-BOCV, fragile bits in BOCV are first extracted.

Given a palmprint ROI image, six Gabor filters at the six

directions  are  used  to  filter  it  to  obtain  six  response

maps.  By  binarizing  each  response  map,  the  BOCV bit-

plane  can  be  obtained.  E-BOCV sorts  magnitude  values

in  each  response  map  to  identify  some  of  the  smallest

ones.  E-BOCV  regards  the  corresponding  bits  binarized

from these smallest magnitudes as fragile. Then, the fra-

gility mask is stored in a separate matrix. Consistent bits

are  represented as  ones,  while  fragile  bits  are  marked as

zeros  in the fragility mask.  In the matching stage,  when

computing  the  Hamming  distance,  the  fragile  bits  are

masked.  In  E-BOCV,  Zhang  et  al.[22] found  that  further

useful information could be extracted from fragile-bit pat-

terns. Thus, Zhang et al.[22] presented a metric fragile-bit

pattern distance (FPD) to quantitatively measure the dis-

similarity of two fragile-bit patterns. By fusing the modi-

fied Hamming distance and the FPD together, the origin-

al BOCV is extended to E-BOCV.

 3   Methodology

For the directional feature of palmprint, after the ROI

image is  filtered by the filter bank, the directional value

of  each  pixel  is  usually  related  to  the  direction  of  the

maximum response. Therefore, under the guidance of the

maximum response value, we first judge whether the dir-

ectional value of each pixel is stable. As shown in Fig. 2,

in  different  recognition  methods,  after  using  the  filter

bank to filter the ROI image, we add the DRSM module

to judge the stability of each pixel′s directional response.
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If  the  direction  of  a  pixel  is  judged  to  be  stable  by  the

DRSM module, then the direction is encoded in a normal

way. If the direction of a pixel is judged to be unstable by

the DRSM module, we make a special coding of the direc-

tion  of  this  pixel.  Because  of  the  different  coding  modes

of different recognition methods, the special coding modes

of pixels judged as unstable in direction are also different.

That is, the special coding is determined by each method.

Therefore,  our method is  a general  solution to the prob-

lem of feature instability in coding methods based on dir-

ection information.  In this  paper,  we will  apply the pro-

posed  DRSM module  to  several  classical  methods  based

on  directional  information,  including  CompC[3],  Fast

CompC[19],  DOC[15],  LLDP[25],  DRCC[20],  CR_CompC[26],

and  BOCV[10].  When  we  insert  the  DRSM  module  into

different recognition methods and make special coding of

the direction of those unstable pixels, the modification of

these recognition algorithms is very small.

 3.1   The mechanism of directional re-
sponse stability measurement

K

K
(R1, R2, · · · , RK)

(R1, R2, · · · , RK)

(R1, R2, · · · , RK)

(SR1, SR2, · · · , SRK) SRK

SR1

We use the real part of a set of Gabor filters in the 

directions to filter the palmprint ROI image. It should be

noted  that  these  Gabor  filters  are  turned  to  zero  direct

current (DC). Because the palmprint lines are dark lines,

the  Gabor  response  values  along  the  palmprint  line  are

negative.  For  the  convenience  of  observing  and  display-

ing the filtering results, we add a negative sign to all re-

sponse values so that the response values along the palm

line become positive. For each pixel, we can obtain its 

response  values .  These  response  values

 may  have  three  situations:  1)  All  of

them are positive; 2) All of them are negative; 3) Part of

them are positive and part of them are negative. Accord-

ing  to  the  maximum response,  we  design  two  measures,

i.e.,  direction  stability  response  measurement  1

(DRSM_1)  and direction  stability  response  measurement

2  (DRSM_2),  to  address  these  three  different  situations.

We  sort  these  response  values  in  as-

cending  order  to  obtain  a  new  sorted  value  sequence

.  Obviously,  is  the  maximum

response value, and  is the minimum response value.

(SR1, SR2, · · · , SRK)

flag = 0 flag k1 k2
k3

The processing of  the DRSM judgment mechanism is

presented  in  Algorithm  1.  For  each  pixel,  we  take

 as the input of the DRSM module

and set , where  is a logical variable. , ,

 are three input parameters, which can be obtained by

experiments.

(SR1, SR2, · · · , SRK)

flag

flag

If  the  values  of  are  all  positive

(Situation  (A)  in  Algorithm  1),  we  use  the  DRSM_1
measure to judge whether the directional response of this

pixel is stable. For a pixel, if the DRSM_1 module judges

that its directional response is stable, we set =1; oth-

erwise, we set =0. DRSM_1 is defined by (1), which

includes two components. The first component is the dis-

T1 SR1 T1 − SR1 T1

SRK

T1∑N1
i=2(SRK − SRi) N1

N1 ∈ [2, · · · ,K]

tance between  and , that is, , where  is

a  value  related  to  the  maximum  response .  We

present  the  calculation  procedure  of  in  Algorithm  1.

The second component is , where  is

a  parameter  and .  DRSM_1  is  defined  as

follows:

DRSM_1(T1, N1) = sgn
((

N1∑
i=2

(SRK − SRi)

)
−

(T1 − SR1)

)
. (1)

(x)

x x x

In  (1),  the  sign  function  sgn  is  a  special  function

that returns 1 for all  > 0 and – 1 for all  < 0. For  =

0, the value of the sign function is just zero.

T1

SRK (T 1 − SR1) (SRK−
SR1)

SRK SR1

(SRK − SR1)∑N1
i=2(SRK − SRi) N1 k1

The implementation of DRSM_1 can be found in part

(A) of Algorithm 1. The value of  is actually the value

of .  Thus,  the  value  of  equals 

,  which  is  the  difference  between  the  maximum re-

sponse value  and the minimum response value .

The  meaning  of  DRSM_1  is  that  if  the  directional  re-

sponse  of  a  pixel  is  stable,  the  difference  between  the

maximum  response  value  and  the  minimum  response

value  should  be  less  than  that  of

,  where  is .  Therefore,  the  prob-

ability that the maximum response direction flows in oth-

er directions is reduced.

Algorithm 1. DRSM judgment mechanism

(SR1, SR2, · · · , SRK) flag k1,
k2, k3

Input: ,  = 0; parameters 

flagOutput: 
SR1(A): If  is bigger than 0: // The responses are all

positive.

T1 = SRK　    
N1 = k1　    

DRSM_1 (T1, N1) flag　    If  equals 1:  = 1

SRK(B):  If  is  less  than  or  equal  to  0://The  re-

sponses are all negative.

SR1　    SR′ = SR + (−1) × 

T2 = SR′
K　    

N2 = k2　    
DRSM_2 (T2, N2) flag　    If  equals 1:  = 1

SR1 SRK(C): If  is less than 0 and  is bigger than 0: //

Part of responses are negative.

SR1　    Val =         //Val is a temporary variable

　    SR′ = SR + (−1) × Val

T1 = SR′
K k1　      + (  − 1) × (−1) × Val

T2 = SR′
K k3　      + (  − 1) × (−1) × Val

N1 = k1　    
N2 = k3　    
DRSM_1 (T1, N1) DRSM_2(T2,

N2) flag

　    If  (  equals  1)  or  (

 equals 1):   = 1

flagRETURN 
(SR1, SR2, · · · , SRK)

−SR1

If the values of  are all negative

(situation  (B)  in  Algorithm  1),  we  add  to  each
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(SR1, SR2, · · · , SRK)

(SR′
1, SR

′
2, · · · , SR′

K)

(SR′
1, SR

′
2, · · · , SR′

K)

flag flag

value of  to ensure that each modi-

fied  value  is  zero  or  a  positive

value.  Then,  we  take  as  the  input

of  DRSM_2.  This  implementation  can  be  found  in  part

(B) of  Algorithm 1.  For  a  pixel,  if  the DRSM_2 module

judges  that  its  directional  response  is  stable,  we  set

=1; otherwise, we set =0. DRSM_2 is defined as

follows:

DRSM_2 (T2, N2) = sgn
(
T2 −

N2∑
i=1

SR′
i

)
(2)

N2 N2 ∈
[2, · · · ,K] T2

SRK

T2 (−1)× SR1

(SR1, SR2, · · · , SRK)

(SR′
1, SR

′
2, · · · , SR′

K)

(SR1, SR2, · · · , SRK)

T2

SR′
K (SR′

1,

SR′
2, · · · , SR′

K)

SR′
K N2∑N2

i=1 SR
′
i

where  is  a  positive  integer  parameter  and 

.  is a value related to the maximum response

.  Part  (B)  of  Algorithm  1  presents  the  calculation

procedure  of .  Here,  we  add  to  all  the

values  of .  In  this  way,  all  the

values  of  are  zero  or  positive.

When all  the  Gabor  filter  response  values  of  a  pixel  are

negative,  the  stability  of  the  directional  response  of  this

pixel  is  poor.  Therefore,  when  the  value  of

 is  updated  to  a  positive  value,  we

do  not  use  DRSM_1  to  judge  the  stability  of  the  pixel

orientation  response  but  use  more  strict  DRSM_2  to

judge.  Part  (B)  of  Algorithm  1  shows  that  is  the

maximum  value  in  the  value  sequence  of 

.  In  DRSM_2,  when  the  maximum  value

 is greater than the sum of  minimum values, i.e.,

,  DRSM_2 judges  that  the directional  response

of this pixel is stable; otherwise, it is unstable.

−SR1 (SR1, SR2, · · · , SRK)

(SR′
1, SR

′
2, · · · , SR′

K)

k1 − 1

SR1 k3 − 1

T1 T2

If  some  response  values  are  positive  and  others  are

negative  (situation  (C)  in  Algorithm  1),  we  perform

DRSM_1  and  DRSM_2  on  this  group  of  responses

through the logical OR operation. The processing of situ-

ation  (C)  can  be  regarded  as  a  combination  of  the  pro-

cessing of  situation (A) and situation (B).  We first  turn

this  set  of  responses  into  all  positive  ones.  That  is,  we

add  to  each value  of  to  en-

sure  that  each  modified  value  is

zero  or  a  positive  value.  To  execute  DRSM_1  and

DRSM_2,  we  add  times  Val  (Val  is  temporary,

whose value is , as shown in Algorithm 1) and 

times Val to  and , respectively, for two reasons:

k1 − 1 k3 − 1

T1 T2

Reason 1. It  can be seen that  Val  is  added to each

response,  so  if  the  original  maximum  value  is  directly

used to compare with these updated responses, the judg-

ment  rules  will  be  too  strict,  so  that  a  large  number  of

sampling pixels will be mistaken for unstable pixels, lead-

ing  to  the  adoption  of  the  same  coding  rules,  which

makes  the  feature  vectors  lack  specificity.  Therefore,  we

add an additional val of  times and a val of 

times  to  and .  For  the  strict  and  loose  design  of

rules, see Section 5 later.

k3Reason  2. A  new  parameter  has  been  added  to

situation  (C).  From the  most  direct  and  understandable

k3 k4 T1 T2

ki K K

k

point of view, situation (C) should actually introduce two

new parameters  and  because there are  and  to

be set. If this is done, the solution space will be very large

because  belongs to 1– , where  is the number of dir-

ectional responses, which will lead to more experiments to

determine a set of suitable  configurations.

k1 T1 k3 T2

k1 T1 k2 T2 k1

k1 T1

flag = 1

flag = 0

So why is  used for  and  used for  instead of

 for  and  for ?  The reason is  that  is  associ-

ated with situation (A), and situation (A) deals with the

case of all positive responses. We think that when the re-

sponses  are  all  positive,  the  probability  of  this  group  of

responses  being  stable  is  greater.  When  Val  is  added  to

this  group of  responses,  it  becomes  all  positive,  so  using

 for  can  control  this  part  of  the  rules  to  be  less

strict. For DRSM_2, because this set of responses is posit-

ive  and  negative,  it  cannot  be  as  strict  as  when  dealing

with all  negative responses. If k2 is directly used as situ-

ation (C),  it  is  easy to make the sampling points  fail  to

pass the filtering rules, so it is more convenient to adjust

the filtering strength of the rules by using an extra para-

meter  for  DRSM_2.  Both  filtering  rules  and  parameter

settings  can  adjust  the  filtering  strength  of  sampling

points  with  a  certain  kind  of  response,  so  we  combine

them  to  enhance  the  flexibility  of  the  framework.  An

identification  flag  is  output  for  each  sampling  point

through the DRSM judgment mechanism. If , se-

lect  the  direction  according  to  the  rules  of  the  original

method, and code normally. If , DRSM coding is

performed without selecting direction information.

N1 N2

k1 k2 k3

The values of  and  will be determined by three

hyperparameters ,  and .

 3.2   Insert DRSM mechanism into differ-
ent directional feature-based methods

We insert the proposed DRSM mechanism into seven

classical  methods  based  on  directional  response,  includ-

ing  CompC[7],  Fast  CompC[32],  DOC[9],  LLDP[12],

DRCC[10],  CR_CompC[13],  and  BOCV[8].  For  different

methods, the insertion mode of the DRSM mechanism is

also different.  In this  subsection,  we introduce the inser-

tion modes one by one. In addition, when introducing dif-

ferent  methods,  we use the formulas  and symbols  in the

original paper so that readers can better understand these

methods.

For  different  methods,  to  encode  the  features  of  the

pixels  whose  directional  responses  are  judged  to  be  un-

stable  by  DRSM  as  a  part  of  the  final  feature  vector,

which can be applied to the corresponding feature match-

ing  methods,  we  adopt  the  same  encoding  form (feature

form)  as  the  original  method.  In  feature  matching,  we

realize  the  distinction  on  the  feature  level,  that  is,  the

feature similarity between any two sampling points.  The

distance  between  DRSM  coding  and  any  normal  coding

should be as same as possible.
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 3.2.1   Insert DRSM mechanism into CompC

jπ/6 j = {0, 1, · · · , 5}

(x, y)

The  method  of  CompC[12] uses  the  real  part  of  the

Gabor  filter  in  six  directions  ( , )  to

convolve  the  palmprint  image  and  then  obtain  six  re-

sponse  values.  For  each  pixel  at  the  position ,  the

winner-take-all  rule is used to determine the direction of

this pixel, that is, the index number of the maximum re-

sponse.

arg min
j

(I (x, y)× ΨR(x, y, ω, θj )) (3)

ΨRwhere I is the palmprint ROI image and  denotes the

real part of the Gabor filter.

The direction value of each pixel is between 0 and 5,

which  can  be  represented  by  the  three  bits  listed  in

Table 2. Let P and Q be two CompCs, and their distance

D can be measured by the Hamming distance.

D (P,Q) =

∑N
y=0

∑N
x=0

∑3
i=1 (Pi(x, y)⊗Qi(x, y))

3N2
(4)

Pi Qi i

⊗ N

where  and  are  the -th  bit  planes  of P and Q,

respectively;  is  the  bitwise  XOR  operation;  is  the

size of the palmprint image.

 
 

Table 2    3 bit coding method for six directions

Orientation Bit 1 Bit 2 Bit 3

0 0 0 0

1 0 0 1

2 0 1 1

3 1 1 1

4 1 1 0

5 1 0 0

 

flag

To insert the DRSM mechanism into the CompC, the

DRSM mechanism is used to judge whether the direction-

al response of each pixel is stable in the process of obtain-

ing  directional  features  by  the  CompC.  If  the  DRSM

mechanism judges that the directional response of a pixel

is  unstable,  we  set =0  on  this  pixel  and  define  the

direction  of  this  pixel  as  the  seventh  direction,  which  is

also  called  the  code  of  DRSM_CompC.  The  coding  of

DRSM_CompC is defined as follows:

[−1,−1,−1] . (5)

To  make  the  distance  from  the  DRSM_CompC  code

to any CompC in Table  2 equal,  we modify the similar-

ity measurement (4) as follows:

D (P,Q) =

N∑
y=0

N∑
x=0

3∑
i=1

sgn (abs (Pi (x, y)−Qi (x, y) )) (6)

Pi Qi i P Qwhere  and  are  the -th  bit  planes  of  and ,

respectively;  abs ()  is  the  absolute  value  operation

function; sgn () is a symbolic function.

It  is  worth  noting  that  this  modification  will  not  af-

fect the experimental results of the original method, just

to be able to calculate the distance between DRSM_Com-

pC  code  and  other  CompCs.  Moreover,  after  modifica-

tion, it is more convenient to realize and faster to calcu-

late the distance measure.

Under  this  setting,  we  set  the  distance  between

DRSM_CompC  code  and  other  CompC  codes  to  3.  Of

course, this distance can also be adjusted to a positive in-

teger of other values, such as 1, 2, 4, etc., but to retain a

certain  degree  of  discrimination.  This  code  will  not  oc-

cupy a large proportion in the whole feature vector. The

final  experimental  results  show that  setting  the  distance

to  3  can  achieve  better  results.  Through  the  above  set-

tings,  DRSM can  be  successfully  inserted  into  the  Com-

pC.
 3.2.2   Insert the DRSM mechanism into BOCV

T

In  CompC,  only  the  minimal  response  direction  fea-

ture is used according to the winner-take-all rule. Guo et

al.[13] thought that if only one direction feature is used to

represent local features, some structural information may

be  lost.  Therefore,  they  proposed  the  BOCV  method.

BOCV binarizes the Gabor responses in six directions by

introducing the threshold , so each sampling point posi-

tion obtains the 6 bit feature, thus retaining all the direc-

tion information to the greatest extent.

P b
j (x, y) =

{
1, if Rj (x, y) < Tj

0, otherwise (7)

Rj j

Tj = 0, j = {0, 1, 2, 3, 4, 5}
where  represents  the  response  in  the  direction,

.

BOCV uses the Hamming distance to calculate simil-

arity:

D
(

Pb,Qb
)
=

∑M
y=1

∑N
x=1

∑5
j=0

(
P b
j (x, y)⊗Qb

j (x, y)
)

6×N2

(8)

P b Qb IP IQ ⊗
N

where  and  are  the  bit  planes  of  and ,  is

the  bitwise  XOR  operation,  and  is  the  size  of  the

palmprint image.

flag = 0

If  the  DRSM  mechanism  judges  that  the  directional

response  of  a  pixel  is  unstable,  then  we  set  on

this  pixel  and  define  the  code  of  DRSM_BOCV  as  fol-

lows:

[−1,−1,−1,−1,−1,−1] . (9)

We  calculate  the  distance  according  to  the  distance

measurement  of  DRSM_CompC.  Under  this  setting,  the

distance  between  DRSM_BOCV  code  and  any  BOCV

code is 6. Similar to the operation of DRSM_CompC, this

distance can also be set to any integer, and only a simple
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judgment is needed in the calculation. Because this is not

the focus of this paper, we have not performed many ex-

periments  to  find  the  best  distance  value.  From the  ex-

perimental results, when the distance is set to 6, the per-

formance can still be improved.

 3.2.3   Insert the DRSM mechanism into DOC

nθ

Double-orientation  code  (DOC)[14] uses  Gabor  filters

in  directions  to  filter  palmprint  ROI  images  and  se-

lects  two  directional  index  values  of  the  smallest  re-

sponse for coding by the winner-take-all rule.

[Op (x, y) , Os (x, y)] = arg min
j1,j2

Rj (x, y) ,

j = {0, 1, · · · , nθ − 1} . (10)

codedisαβ

A B

codedisαβ

To  improve  the  recognition  rate,  Fei  et  al.[14] pro-

posed a nonlinear angle matching score method to evalu-

ate  the  similarity  of  DOC  codes.  Before  calculating  the

similarity  score  of  two  positions,  some  variables  need  to

be  defined.  is  the  distance  between two single-

orientation  codes.  Assuming  that  and  represent

sampling points at two locations,  can be calcu-

lated by the following formula:

codedisαβ = min
(∣∣∣OA

α −OB
β

∣∣∣ , nθ −
∣∣∣OA

α −OB
β

∣∣∣) .
(11)

P1score P2score and  can be calculated by the following

formulas:

P1score = oriscore
(
codedispp

)
+ oriscore (codedisss) (12)

P2score = oriscore
(
codedisps

)
+ oriscore

(
codedissp

)
(13)

where

oriscore(codedis) =
1

ek×codedis
(14)

k

nθ

nθ = 6

k = 1.6

and  is a hyperparameter, which is related to the Gabor

filter  with  directions.  In  the  original  text,  the  best

experimental  results  are  obtained  when  and

 are set, so the same configuration as the original

text is adopted in this experiment.

A

B

Finally,  the  DOC  similarity  between  position  and

position  is calculated as follows:

Pscore(A,B) = max
(
P1score(A,B), P2score(A,B)

)
. (15)

To be  more  compatible  with  the  distance  calculation

formula of DOC and meet the unique coding principle as

much as possible, we set DRSM_DOC coding as follows:

[Op (x, y) , Os (x, y)] = [−1,− 1] . (16)

Due  to  the  introduction  of  DRSM_DOC  code,  when

calculating  the  distance,  there  are  the  following  three

situations in the distance calculation of any two positions:

1) If  the two codes are both positive,  they are calcu-

lated and matched in the original way.

2) If one of the two codes is positive and the other is

negative, we make the following definition:

codedispp , codedisps , codedissp , codedisss = 3. (17)

3) If both codes are all negative, the following defini-

tion is made:

codedispp , codedisps , codedissp , codedisss = 0. (18)

To  ensure  that  the  distance  between  DRSM_DOC

code  and  any  DOC  code  is  equal,  we  set  the  distance

between  DRSM_DOC  code  and  any  DOC  code  to  3.

When  calculating  the  distance,  we  only  need  to  add

simple logic judgment to the original matching formula.

 3.2.4   Insert the DRSM mechanism into DRCC

Discriminative  and  robust  competitive  code

(DRCC)[15] extracts  the  direction  information  of  palm-

print images by using a set of 6-direction circular Gabor

filters. Because there may be a problem of poor discrimin-

ation when using the direction of the maximum response

alone,  DRCC  adopts  the  direction  of  the  maximum  re-

sponse and the relationship between its left and right ad-

jacent  directions  as  the  object  of  subsequent  coding  and

uses  a  Gaussian  template  to  weight  the  positioning  in-

formation of adjacent areas to improve the accuracy and

stability  of  the  positioning  code  with  advantages  of  dis-

crimination and robustness.

(x, y)

According  to  the  winner-take-all  rule,  the  maximum

response direction of the  position is

C (x, y) = arg max
j

Rj (x, y) , j = {0, 1, · · · , 5} . (19)

C

The  adjacent  direction  setting  rule  of  the  maximum

response  direction  and  the  coding  mode  of  the  relation-

ship  between  its  responses  are  obtained  from  (20)–(22),

respectively, where  is the direction of the maximum re-

sponse.

Cleft =

{
C + 1, if 0 ≤ C ≤ 4

0, if C = 5
(20)

Cright =

{
C − 1, if 1 ≤ C ≤ 5

5, if C = 0
(21)

C̃s =

{
1, if RCleft(x, y)≥RCright (x, y)

0, otherwise. (22)

[C, C̃s]Therefore, the DRCC code  is obtained, and for-

 606 Machine Intelligence Research 21(3), June 2024

 



mula (23) is used to determine the similarity between the

two palmprint images.

M (X,Y ) =
1

2N2

N∑
i=1

N∑
j=1

[(
C̃X (i, j) ∩ C̃Y (i, j)

)]
+

((
C̃X (i, j) ∩ C̃Y (i, j)

))
∩

¬
((

C̃sX (i, j)⊕ C̃sY (i, j)
))

(23)

C̃X C̃sX C̃sY C̃sY

X Y

N ∩
⊕

where ,  and  and  represent the maximum

response direction coding plane and the adjacent relation

coding plane of  the input images  and ,  respectively.

 is the image size,  represents the AND operation and

 represents the XOR operation.

flag = 0

According  to  its  encoding  method,  we  set  the

DRSM_DRCC encoding with .[
C, C̃s

]
= [−1,−1] . (24)

When  calculating  the  distance,  (23)  can  be  equival-

ently converted into:

temp = C̃X ∩ C̃Y (25)

scoremax =

N∑
i=1

N∑
j=1

temp(x, y) (26)

scoreneib =

N∑
i=1

N∑
j=1

temp (x, y)×

(
C̃sX(x, y) ∩ C̃sY (x, y)

)
(27)

score =
scoremax + scoreneib

2×N2
(28)

∩where  represents the AND operation, and N represents

the size of the image.
 3.2.5   Insert the DRSM mechanism into Fast

CompC

Fast CompC convolves the palmprint image with two

orthogonal Gabor filter templates. Each position has two

directional  responses,  and  then  obtains  the  logical  rela-

tionship between them.

bit = Rj (x, y) > Rj+90◦ (x, y) (29)

jwhere  can be 0°, 30°, or 60°.
Therefore, each position is represented by one bit fea-

ture.  To  ensure  the  same  distance  between  DRSM_
Fast CompC coding and any Fast CompC, similar to the

operation in competitive coding, we set it to [–1].

We  calculate  the  distance  according  to  the  modified

distance measurement (6).

 3.2.6   Insert the DRSM mechanism into the LLDP

Local  line  directional  pattern  (LLDP)  first  convolves

the  palmprint  ROI  image  by  using  the  real  part  of  the

circular  Gabor  filter  with  12  directions  and  obtains  the

response  value  of  12  directions  at  each  position.  By  en-

coding  the  maximum response  direction  and  the  minim-

um  response  direction,  the  LLDP  code  is  finally  gener-

ated:

LLDP code = (t1 − 1)× 121 + (t2 − 1)× 120 (30)

t1 t2where  is the direction of the maximum response and 

is the direction of the minimum response.

{A1, · · · , AN}
Then, the whole coded image is divided into nonover-

lapping  small  areas ,  and  the  histogram  is

extracted from each area.

C

t1 = 12 t2 = 13

LLDP adopts a set of 2D Gabor filters with 12 direc-

tions  for  convolution,  so  the  maximum  subscript  is  12,

and  the  minimum  subscript  is  1,  so  the  range  of  is

0–143.  That  is,  each  sampling  point  will  be  assigned  a

number  between  0  and  143.  LLDP  adopts  local  histo-

gram statistics. Therefore, to realize the uniqueness of the

DRSM_LLDP code, according to its matching mode, the

DRSM_LLDP code of this position is set to 144 as an ad-

ditional feature dimension so that , .

After  adding  DRSM_LLDP  coding,  the  coding  range

of  each  position  is  0–144.  Therefore,  the  DRSM module

can be  easily  inserted  into  the  LLDP method by simply

modifying  the  range  of  histogram  statistics.  Notably,

when  the  DRSM_LLDP coding  is  processed,  it  does  not

fully  conform  to  the  DRSM  coding  principle  because  of

the histogram statistics.
 3.2.7   Insert the DRSM mechanism into CR_CompC

hs S

N

The CR_CompC method is the histogram-based vari-

ant of  CompC. First,  CompC is  run on the input image

to obtain the competitive coding map of the input image.

Then,  the  map  is  divided  into  several  regions,  and  the

number of  times in each region in all  directions is  coun-

ted so that the histogram features of each region are ob-

tained, which are expressed as , where  represents the

subscript of the region, and then all of them are connec-

ted to obtain the CR_CompC representation of the input

image, where  is the number of regions.

h = [h1, h2, · · · , hN ] . (31)

Then, the CRC_RLS model is adopted to classify the

CR_CompC features of the image.

j j = {0, · · · , 5}

j = {0, · · · , 6}

The process of obtaining feature vectors by CR_Com-

pC is mainly related to the execution process of competit-

ive  coding.  In  the  original  competition  code,  each  posi-

tion will  be  assigned a direction ,  where .

To insert DRSM into CR_CompC, we replace the origin-

al  CompC  with  DRSM_CompC  so  that  the  direction  of

each position is  now .  From the histogram
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point of view, there is only one more dimension, and oth-

er parts of this method remain unchanged.

 4   Experiments

 4.1   Palmprint databases used for experi-
ments

In this paper, seven palmprint image databases are ex-

ploited  for  performance  evaluation,  including  the  Hong

Kong  Polytechnic  University  palmprint  database  II

(PolyU II)[24], the blue band of the Hong Kong Polytech-

nic  University  Multispectral  (PolyU  M_B)  palmprint

database[47],  the  Hefei  University  of  Technology (HFUT)

palmprint  database[19],  the  Hefei  University  of  Techno-

logy Cross Sensor (HFUT CS) palmprint database[48], the

Tongji  University  palmprint  (TJU-P)  database[18],  and

the IIT Delhi palmprint image database[49]. After prepro-

cessing,  the  ROI subimages  were  cropped.  The ROI size

of all databases is 128 × 128. The detailed descriptions of

the above databases are listed in Table 3.

 4.2   Experimental results

We conduct both identification and verification exper-

iments.  In  the  identification  experiment,  the  nearest

neighbor  rule  is  used  for  classification.  The  statistical

value,  i.e.,  recognition  rate,  is  exploited  to  evaluate  the

identification performance, which is the rank 1 identifica-

tion rate. We also conduct a verification experiment. The

statistical  value,  i.e.,  equal  error  rate  (EER),  is  used for

performance  evaluation.  For  the  PolyU  II,  PolyU  M_B,

CS,  HFUT,  and TJU-P databases,  the  first  three  in  the

first stage are used as training sets, and all in the second

stage  are  used  as  test  sets.  For  the  IITD  database,  be-

cause the number of each category is small (most of them

are less than or equal to 5), we take the first one of each

identity as the training set and the others as the test set.

k1 k2 k3

k1 k2 k3

Before  the  experiments,  the  values  of  the  parameters

of ,  and  for different databases should be determ-

ined.  For  each  method,  after  many experiments  on  each

dataset, a set of ,  and  values of each method on

each dataset are obtained. We list their values in Table 4.

The  performance  comparisons  between  the  original

methods  (CompC,  BOCV,  DOC,  DRCC,  Fast  CompC,

LLDP,  CR_CompC)  and  their  versions  by  inserting  the

DRSM mechanism  (CompC + DRSM,  BOCV + DRSM,

DOC + DRSM, DRCC + DRSM, Fast CompC + DRSM,

LLDP + DRSM,  CR_CompC + DRSM)  are  listed  in

Tables 5–11, respectively.

j

j

j

j

In the original paper of the Fast CompC method, the

author of the paper did not specify the value of . To de-

termine the direction of  in the subsequent experiments,

we  conducted  experiments  on  the  HFUT  CS  database

and  chose  the  direction  with  the  best  performance  as

the  final  experimental  setting.  The  experimental  results

are shown in Table 12. As shown in Table 12, when the

value of  is 30°, the recognition performance of the Fast

CompC method is the best. Therefore, in the Fast Com-

 

Table 3    The details of six palmprint databases

Database Type Touch?
Individual
number

Palm
number

Session
number

Session
interval

Image number
of each palm

Total image
number

PolyU Ⅱ 2D Palmprint Yes 193 386 2 2 months 10×2 7 752

PolyU M_B 2D Palmprint Yes 250 500 2 9 days 6×2 6 000

HFUT 2D Palmprint Yes 400 800 2 10 days 10×2 16 000

CS 2D Palmprint No 100 200 2 10 days 10×2×3 12 000

TJU-P 2D Palmprint No 300 600 2 61 days 10×2 12 000

IITD 2D Palmprint No 230 460 1 N/A 5 – 6 2 601
 

 

k1 k2 k3Table 4     ,  ,   experimental configurations of seven methods on six databases

Methods PolyU Ⅱ PolyU M_B CS TJU-P HFUT IITD

CompC k1 k2 k3 = 3,   = 3,   = 3 k1 k2 k3 = 3,   = 3,   = 3 k1 k2 k3 = 2,   = 2,   = 3 k1 k2 k3 = 2,   = 4,   = 3 k1 k2 k3 = 4,   = 5,   = 3 k1 k2 k3 = 3,   = 5,   = 3

LLDP k1 k2 k3 = 6,   = 9,   = 5 k1 k2 k3 = 6,   = 5,   = 9 k1 k2 k3 = 9,   = 8,   = 10 k1 k2 k3 = 7,   = 7,   = 5 k1 k2 k3 = 5,   = 5,   = 5 k1 k2 k3 = 5,   = 5,   = 5

DOC k1 k2 k3 = 3,   = 5,   = 4 k1 k2 k3 = 4,   = 4,   = 4 k1 k2 k3 = 4,   = 4,   = 5 k1 k2 k3 = 2,   = 5,   = 3 k1 k2 k3 = 2,   = 5,   = 2 k1 k2 k3 = 5,   = 5,   = 3

DRCC k1 k2 k3 = 5,   = 4,   = 3 k1 k2 k3 = 5,   = 5,   = 2 k1 k2 k3 = 4,   = 4,   = 3 k1 k2 k3 = 4,   = 5,   = 3 k1 k2 k3 = 4,   = 5,   = 3 k1 k2 k3 = 5,   = 5,   = 4

Fast CompC k1 k2 k3 = 2,   = 5,   = 2 k1 k2 k3 = 2,   = 5,   = 2 k1 k2 k3 = 2,   = 5,   = 2 k1 k2 k3 = 2,   = 5,   = 2 k1 k2 k3 = 2,   = 5,   = 2 k1 k2 k3 = 2,   = 5,   = 3

CR_CompC k1 k2 k3 = 3,   = 4,   = 3 k1 k2 k3 = 5,   = 5,   = 3 k1 k2 k3 = 3,   = 4,   = 3 k1 k2 k3 = 3,   = 5,   = 5 k1 k2 k3 = 3,   = 5,   = 3 k1 k2 k3 = 5,   = 5,   = 2

BOCV k1 k2 k3 = 3,   = 5,   = 3 k1 k2 k3 = 3,   = 4,   = 3 k1 k2 k3 = 2,   = 2,   = 5 k1 k2 k3 = 4,   = 2,   = 3 k1 k2 k3 = 2,   = 4,   = 3 k1 k2 k3 = 2,   = 5,   = 5
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jpC method experiment, we fixed the value of  to 30°.
From Tables 5−11, it can be seen that the recognition

performances  of  seven  recognition  methods  on  six

palmprint  databases  are  all  improved  after  inserting  the

DRSM mechanism. The experimental results show the ef-

fectiveness of our proposed method.

 

Table 10    The performance comparison between the LLDP and
LLDP + DRSM

Recognition rate (%) EER (%)

LLDP LLDP + DRSM LLDP LLDP + DRSM

PolyU II 100 100 0.051 7 0.027 4

PolyU M_B 100 100 0.002 6 0.001 2

HFUT CS 99.58 99.68 1.48 1.36

TJU-P 100 100 0.57 0.32

HFUT 99.88 99.93 0.34 0.20

IITD 91.45 94.26 5.52 4.03
 

 

Table 11    Performance comparison between CR_CompC and
CR_CompC + DRSM

Recognition rate (%) EER (%)

CR_
CompC

CR_CompC
+ DRSM

CR_
CompC

CR_CompC
+ DRSM

PolyU II 99.74 99.82 0.19 0.18

PolyU
M_B 99.47 99.67 0.17 0.13

HFUT CS 95.08 95.63 1.89 1.66

TJU-P 98.68 99.15 0.54 0.40

HFUT 98.38 98.61 0.64 0.53

IITD 82.30 83.79 7.2 6.45
 

 

jTable 12    The recognition result of Fast CompC for different 
on the HFUT CS database

Recognition rate (%) EER(%)

j  = 0° 98.10 1.40

j  = 30° 98.98 1.02

j  = 90° 98.60 1.49
 

 

Table 5    Performance comparison between
CompC and CompC + DRSM

Recognition rate (%) EER (%)

CompC CompC + DRSM CompC CompC + DRSM

PolyU II 100 100 0.005 3 0.001 7

PolyU M_B 100 100 0.000 233 8 0

HFUT CS 99.58 99.68 0.52 0.41

TJU-P 100 100 0.14 0.066 8

HFUT 99.88 99.93 0.21 0.18

IITD 91.45 91.97 5.25 5.22
 

 

Table 6    Performance comparison between BOCV
and BOCV + DRSM

Recognition rate (%) EER (%)

BOCV BOCV + DRSM BOCV BOCV + DRSM

PolyU II 100 100 0.000 26 0.000 1

PolyU M_B 100 100 0 0

HFUT CS 99.90 99.93 0.23 0.21

TJU-P 100 100 0.006 8 0.006 9

HFUT 99.90 99.93 0.10 0.081 7

IITD 92.25 92.34 5.23 5.23
 

 

Table 7    Performance comparison between DOC
and DOC + DRSM

Recognition rate (%) EER (%)

DOC DOC + DRSM DOC DOC + DRSM

PolyU II 98.48 98.82 0.80 0.70

PolyU M_B 98.00 98.37 1.10 0.87

HFUT CS 88.85 89.75 5.68 5.38

TJU-P 95.22 95.80 2.75 2.42

HFUT 94.64 95.53 2.43 2.11

IITD 65.3 67.07 18.60 18.00
 

 

Table 8    Performance comparison between DRCC
and DRCC + DRSM

Recognition rate (%) EER (%)

DRCC DRCC + DRSM DRCC DRCC + DRSM

PolyU II 98.74 98.92 0.76 0.69

PolyU M_B 98.27 98.47 0.93 0.87

HFUT CS 89.58 90.03 5.16 4.90

TJU-P 95.57 95.80 2.44 2.17

HFUT 95.05 95.63 2.16 1.92

IITD 65.95 67.07 17.8 17.38
 

 

Table 9    Performance comparison between Fast CompC and
Fast CompC + DRSM

Recognition rate (%) EER (%)

Fast
CompC

Fast CompC +
DRSM

Fast
CompC

Fast CompC +
DRSM

PolyU II 99.95 99.97 0.13 0.078 8

PolyU
M_B 99.97 99.97 0.23 0.077 9

HFUT
CS

98.98 99 1.02 1.01

TJU-P 99.28 99.67 0.63 0.44

HFUT 99.23 99.60 0.88 0.48

IITD 87.30 88.74 7.06 6.77
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 4.3   Running time

All  the  experiments  are  carried  out  on  Intel(R)  i5-

10300H (3.2 GHz) quad-core PC and Windows 10 operat-

ing system using MATLAB 2021b. It can be found from

Table 13 that due to the simplicity of DRSM design, the

introduction  of  the  DRSM  module  into  these  methods

only brings a small extra time overhead in feature extrac-

tion and hardly brings burden to the original  method in

feature  matching.  Therefore,  compared  with  the  benefits

of  the  DRSM module,  this  time  cost  is  worthwhile.  We

believe  that  the  efficiency  and  simplicity  of  this  method

will  be  conducive  to  further  research  and  application  in

the future.

  
Table 13    Running time (ms) of different methods

Methods Feature extraction Matching Total

CompC 15.70 0.210 0 15.910 0

CompC + DRSM 17.40 0.211 0 17.611 0

LLDP 36.01 0.074 6 36.084 6

LLDP + DRSM 37.40 0.075 0 37.475 0

DOC 25.40 0.320 0 25.720 0

DOC + DRSM 26.40 0.330 0 26.730 0

DRCC 19.10 0.142 0 19.242 0

DRCC + DRSM 27.50 0.145 0 27.645 0

Fast CompC 4.90 0.095 0 4.995 00

Fast CompC + DRSM 16.60 0.095 0 16.695 0

CR_CompC 34.60 0.004 0 34.604 0

CR_CompC + DRSM 64.10 0.004 0 64.104 0

BOCV 14.60 0.723 5 15.323 5

BOCV + DRSM 16.80 0.726 0 17.526 0
 

 4.4   Ablation study

To further study the function of each part of DRSM,

we conduct experiments on the decision rules designed in

three scenarios (they are simplified as rule A, rule B and

rule C). All experiments are based on the DRSM_ Com-

pC method and PolyU II databases.
 4.4.1   Single rule VS. multiple rules

In DRSM, rule A, rule B and rule C are used to deal

with  all  positive  (A),  all  negative  (B),  and part  positive

and  part  negative  responses  (C),  respectively. Table  14

shows the experimental results after the original CompC

and the application of various rules alone. As mentioned

above,  any  sampling  point  may  contain  any  one  of  the

three  types  of  responses,  and  it  may  occur  anywhere.

Therefore, it is expected to reduce the damage to the per-

formance of the original method caused by instability by

processing any type of response alone. However, this does

not mean that it has to be the case. As seen from the ap-

plication of  rule C alone,  because the actual  situation of

palmprint  images  is  very  complicated,  different  acquisi-

tion  environments  and  acquisition  strategies  will  all  af-

fect  the  images,  so  it  is  a  safer  way  to  comprehensively

use the three rules. And it is also hopeful to deal with the

complex  feature  instability  problem  to  the  greatest  ex-

tent.
k1, k2, k3 4.4.2   Performance under different 

k1, k2, k3
k1, k2, k3

k1, k2, k3

V

As  mentioned  above,  the  setting  of  parameters

 controls  the  strictness  of  judgment  rules.  To

analyse  the  role  of  parameters  in  controlling

DRSM,  we  show  the  proportion  of  DRSM  sampling

points  in  the  total  sampling  points  under  different

 configurations  and  the  experimental  results  in

Table 15. As seen from Table 14, with the change in the

 value,  the  proportion  of  DRSM  points  in  the  total

sampling points is constantly changing, which also means

that  the  strictness  of  filtering  rules  is  constantly  chan-

ging. From the experimental results, it can be found that

the  stricter  the  better.  The  stricter  the  filtering  is,  the

lower  the  difference  of  original  features  is.  Because  the

proportion  of  DRSM  points  is  increasing,  and  the  fea-

tures of each DRSM point are the same. For items 4 and

5,  why  do  they  reduce  the  performance  of  the  original

method  when  the  proportion  is  very  small?  Our  under-

standing  is  that  the  EER  of  the  original  method  is

already in a small position in this database, and any fea-

ture change may bring about a large change. DRSM does

not erase all the points with low responses or points with

similar  responses  but  selects  some of  these  potential  un-

stable  points  instead  of  setting  a  threshold  directly.

Therefore,  this  is  a  “softer”  way  because  not  all  points

are  useless.  For  these  points,  the  probability  of  instabil-

ity is high but not certain. Therefore, for the situation of

item 4 and item 5, we think that it may be that the valu-

able  points  among  these  potential  unstable  points  have

just been selected, thus affecting the difference of the ori-

ginal features, even if the proportion is very small.

 

Table 14    The ablation experiments for different rules

Portion (%) k1, k2, k3 Rule A Rule B Rule C Recognition rate (%) EER (%)

Baseline 1 0.005 3

A 2.3 k1 = 3 √ 1 0.002 1

B 0.097 k2 = 5 √ 1 0.005 0

C 0 k2 k3 = 4,   = 3 √ 1 0.005 3

A+B+C 2.54 k1 k2 k3 = 3,   = 3,   = 3 √ √ √ 1 0.001 7
 

 610 Machine Intelligence Research 21(3), June 2024

 



 4.5   Comparison with the E-BOCV method

E-BOCV  directly  introduces  fragile  bit  masking  into

BOCV to address the unstable bit problem in BOCV. We

applied DRSM in BOCV, so we want to make a perform-

ance comparison between E-BOCV and our method, i.e.,

BOCV + DRSM. Table  16 lists  the recognition perform-

ance comparison between E-BOCV and BOCV + DRSM.

Table 17 lists the computational cost comparison between

E-BOCV and  BOCV + DRSM.  As  seen  from Tables  16

and 17,  although  E-BOCV  has  achieved  better  recogni-

tion  results  on  the  PolyU  II  and  IITD  databases  than

BOCV + DRSM, it needs to consume more time and stor-

age space because it needs to use six extra planes to store

the corresponding fragile bits matrix. Second, fragile bits

masking  cannot  be  applied  to  other  palmprint  recogni-

tion methods. It can be applied to BOCV because there is

a  one-to-one  correspondence  between  its  coding  features

and  responses,  that  is,  six  directional  responses  corres-

ponding to six bit codes. Therefore, as long as there is no

one-to-one  correspondence  between responses  and coding

features,  the  fragile  bit  masking  strategy  in  iris  recogni-

tion  cannot  even be  applied  to  other  methods  of  bit-by-

bit coding features, let alone other types of features, such

as histogram statistical features and other artificially de-

signed coding features. Compared with fragile bits mask-

ing′s  practice  of  specifying  specific  types  of  features,

DRSM is  independent  of  specific  feature  representations

and  stands  at  a  higher  level.  It  considers  and  designs  a

general  mechanism for  directional  feature-based  methods

in palmprint recognition, which does not require addition-

al space overhead and is more flexible and universal.

 5   Discussions

Theoretically, there are many possible ways to imple-

ment the DRSM mechanism. For example, when calculat-

ing the total amount and distance, it decreases from the

second maximum response instead of increasing from the

minimum response. This seems to be more reasonable be-

cause it  can highlight the strength advantage of  maxim-

um  response  to  the  greatest  extent.  However,  there  are

several  problems  with  this  operation.  First,  this  opera-

tion  will  lead  to  too  strict  filtering  rules,  so  that  many

normal sampling points are wrongly regarded as unstable

points, which will lead to a sharp increase in the number

of  sampling  points  using  the  same  code  in  the  total

sampling points, thus greatly weakening the difference of

feature vectors themselves. Second, there is a lack of con-

trol  over  the  strictness  of  filtering  rules.  Because  at  the

beginning we stand at a very strict level, and the adjust-

ment of a set of parameters cannot significantly affect the

already strict level. Therefore, DRSM adopts a soft meth-

od,  increasing  from  the  minimum  value.  However,  as

mentioned above, there are still many possibilities for the

design of DRSM mechanisms, and more operations can be

derived by the idea of DRSM coding, which also reflects

the flexibility of DRSM mechanisms.

X

X

X

flag = 0

From  the  judgment  rules  of  DRSM,  it  can  be  seen

that for the sampling points passing through the filtering

module,  the  relationship  between  the  top  responses

may be vague. DRSM is not designed to ensure the max-

imum  response  strength  relative  to  the  top  response.

Therefore, the potential direction information may fluctu-

ate between top  responses. Fig. 3 shows an example of

an  area  in  the  top-3  direction.  Perhaps  this  is  not  what

we want to see because we want either the response value

to be stable and the direction not to flow or  and

the direction to remain fixed. However, the DRSM judg-

 

k1, k2, k3Table 15    The performance under different   settings

Portion (%) k1, k2, k3 Recognition rate (%) EER (%)

Baseline 100 0.005 3

A+B+C 2.54 k1 k2 k3 = 3,   = 3,   = 3 100 0.001 7

A+B+C 2.34 k1 k2 k3 = 4,   = 3,   = 3 100 0.002 1

A+B+C 2.83 k1 k2 k3 = 4,   = 3,   = 4 100 0.003 1

A+B+C 0.20 k1 k2 k3 = 3,   = 2,   = 3 100 0.006 5

A+B+C 0.098 k1 k2 k3 = 4,   = 2,   = 3 100 0.006 2
 

 

Table 16    The recognition performance comparison between E-
BOCV and BOCV + DRSM

Recognition rate (%) EER(%)

E-BOCV BOCV + DRSM E-BOCV BOCV + DRSM

PolyU II 100 100 0 0.000 1

PolyU M_B 100 100 0 0

HFUT CS 99.95 99.93 0.30 0.21

TJU-P 100 100 0.033 4 0.006 9

HFUT 99.93 99.93 0.14 0.081 7

IITD 93.09 92.34 4.72 5.23
 

 

Table 17    The computational cost (ms) comparison between E-
BOCV and BOCV + DRSM

Feature extraction Matching Total

BOCV + DRSM 16.80 0.726 0 17.526 0

E-BOCV 24.00 0.745 0 24.745 0
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ment  module  is  not  used  to  judge  whether  a  sampling

point  is  on  the  obvious  palmprint  line.  Because  the  line

segments in the palmprint image are very messy, it can-

not be done with the help of a set of rules alone. Second,

the principle of directional feature coding is to make the

similarity  between  adjacent  directions  the  closest,  while

the distance between nonadjacent directions is as large as

possible. Compared with the direction information fluctu-

ating in a random large range, it  is  acceptable in a con-

trollable small range. This not only reduces the influence

of  feature  instability  to  a  certain  extent  but  also  pre-

vents the filtering rules from being too strict to affect the

normal  sampling  point  features.  DRSM  achieves  a  bal-

ance between the two.

Through  statistics,  it  is  found  that  the  proportion  of

DRSM points in all sampling points is very small. For ex-

ample,  on  the  PolyU  II  database,  when k1 =  3, k2 =  3,

k3 = 3, and the number of sampling point is 32 × 32, it

accounts  for  approximately  2.5%  of  the  total.  In  the

design of  the DRSM filter  module,  we only focus on the

maximum response instead of responding in multiple dir-

ections or even all directions. The reason for this is that

the unit value of the maximum response is the largest in

a group of responses. Second, if more directional response

information  is  added  to  set  rules,  the  coupling  between

rules will increase sharply, which is not conducive to the

design of rules because these responses have mutual influ-

ence.  Moreover,  the  rules  will  become  increasingly  com-

plex, which will  affect the speed of feature extraction. It

is worth noting that all the methods we use this time use

Gabor  filters  as  feature  extraction  tools.  We  have  also

conducted  extensive  experiments  on  the  methods  of  us-

ing Gaussian filters and MFART as direction extractors,

but we cannot see obvious performance improvement. We

think  the  reason  is  that  the  current  DRSM design  may

not be suitable for methods other than Gabor filters, be-

cause  there  are  certain  shape  differences  among  various

filters,  so  the  areas  involved  in  the  process  of  obtaining

direction responses are different. However, this is our first

attempt in the field of palmprint recognition. We believe

that the problem of feature instability in palmprint recog-

nition  is  widespread,  our  follow-up  work  will  focus  on

how to design a unified scheme for all  kinds of filters to

improve  the  performance  of  all  kinds  of  directional  cod-

ing information.

 6   Conclusions

In  this  paper,  we  proposed  the  DRSM  for  the

palmprint  recognition  method  based  on  directional  fea-

tures  for  the  first  time  to  address  the  problem of  direc-

tional  response  instability.  Our  method  can  be  success-

fully  applied  to  many  classical  methods  based  on  direc-

tional features and has achieved recognition performance

improvement on six public databases, providing an effect-

ive  solution  to  the  problem  of  unstable  directional  re-

sponses.  Finally,  our  research  shows  that  although  the

current  palmprint  recognition  methods  have  achieved

very  good  recognition  results,  the  problem of  directional

response instability still more or less weakens its best res-

ults, so it is of great significance to study the problem of

directional response instability.
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