Machine Intelligence Research 21(6), December 2024, 1192-1200

www.mi-research.net DOI: 10.1007/s11633-023-1434-8

Branch Convolution Quantization for Object Detection

Miao Li Feng Zhang Cuiting Zhang

The National Engineering & Technology Research Center for Application Specific Integrated Circuit Design (NECFAD),
Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China

Abstract: Quantization is one of the research topics on lightweight and edge-deployed convolutional neural networks (CNNs). Usu-
ally, the activation and weight bit-widths between layers are inconsistent to ensure good performance of CNN, meaning that dedicated
hardware has to be designed for specific layers. In this work, we explore a unified quantization method with extremely low-bit quantized
weights for all layers. We use thermometer coding to convert the 8-bit RGB input images to the same bit-width as that of the activa-
tions of middle layers. For the quantization of the results of the last layer, we propose a branch convolution quantization (BCQ) method.
Together with the extremely low-bit quantization of the weights, the deployment of the network on circuits will be simpler than that of
other works and consistent throughout all the layers including the first layer and the last layer. Taking tiny yolo v3 and yolo v3 on
VOC and COCO datasets as examples, the feasibility of thermometer coding on input images and branch convolution quantization on
output results is verified. Finally, tiny yolo v3 is deployed on FPGA, which further demonstrates the high performance of the proposed
algorithm on hardware.

Keywords: Branch convolution quantization, thermometer coding, extremely low-bit quantization, hardware deployment, object
detection.

Citation: M. Li, F. Zhang, C. Zhang. Branch convolution quantization for object detection. Machine Intelligence Research, vol.21,
no.6, pp.1192-1200, 2024. http://doi.org/10.1007/s11633-023-1434-8

1 Introduction

Convolutional neural networks (CNNs) perform well
in a variety of tasks, extending their applications to more
complex situations. However, the improvement of net-
work performance is often accompanied by the explosive
growth of parameters and computing resources. For edge
device deployment, networks are usually compressed,
8-bit quantization of weights and activations for example.
However, for ultra-low energy applications, the required
computing resources, storage resources and power con-
sumption still cannot meet the demands, and thus re-
searches on extremely low-bit quantization of networks
have received lots of attention. In the earliest extremely
low-bit quantization algorithms, 32-bit float weights are
replaced directly by their signs, such as BinaryConnect[],
Bitwise Neural Networks? and Binarized Neural Net-
workBl. Afterwards, algorithms such as BWNM, XNOR-
Netld and DoReFa-Netl] utilize scaling factors to reduce
the accuracy loss in weight quantization.

For network accuracy, there are two consensuses on
extremely low-bit quantization on object detection net-
works. One is that the weights of the middle layers can

Manuscript received on December 23, 2022; accepted on March 2,
202

ORegcommended by Associate Editor Deng-Ping Fan

Colored figures are available in the online version at https://link.
springer.com/journal/11633

© Institute of Automation, Chinese Academy of Sciences and
Springer-Verlag GmbH Germany, part of Springer Nature 2024

@ Springer

be quantized to as extremely low as 1 bit, but the quant-
ization of the weights cannot be applied to the last layer
as it says “It is a common sense that the first layer and
the last layer should be kept in higher precision, which
means that these layers play a more important role in the
prediction of neural networks.” in [6]; the other is to
quantize the activations of the middle layers to 4 bits,
but quantization of the input images and the output res-
ults is forbidden. This is due to unreasonable results res-
ulting from unpredictable noises introduced by the quant-
ization of input images, as well as deteriorated accuracy
of the network on account of the quantization which
strictly restricts the range of output results.

The problem brought about by the two consensuses is
that the first layer and the last layer must be deployed
on circuits separately from the middle layers and differ-
ent computing and storage structures are required when
the network is compressed with extremely low bits. Thus,
the size of the circuits and the complexity of data
scheduling will increase dramatically.

To solve the above problem, we propose a branch con-
volution quantization (BCQ) method aiming at object de-
tection. This method can unify the whole network with
extremely low-bit quantization, and all layers can be de-
ployed on one hardware module, avoiding extra circuits
for the first layer and the last layer. Our contributions in-
clude:

1) The weights are binarized and the activations are
quantized to 4-bit in every layer of the object detection
network. The hardware module on which every layer is

https://doi.org/10.1007/s11633-023-1434-8
https://link.springer.com/journal/11633
https://link.springer.com/journal/11633

M. Li et al. / Branch Convolution Quantization for Object Detection

implemented is designed based on these bit-widths.

2) Thermometer coding is utilized to convert 3-chan-
nel 8-bit RGB images to 51-channel 4-bit inputs to meet
the bit-width of the above designed module. The convolu-
tion kernels in the first layer are also copied and conver-
ted to 51 channels as needed.

3) BCQ is utilized to quantize the output results of
the last layer to satisfy the unified bit-width of the whole
network.

2 Related works

2.1 Extremely low-bit quantized weights
of all layers

Yang et al.ll propose a differentiable method to
quantize weights and activations, but the input and out-
put layers are not quantized in both classification and ob-
ject detection tasks. The weights and activations are
quantized to 4-bit in [8]. The experiments in [9] show
that the bit-widths of weights and activations cannot be
extremely compressed to maintain the accuracy of the ob-
ject detection network. The feature extracting part in [10]
has mixed precision, where the bit-width of the weights
and activations are 8-bit, but the batch normalization
parameters are still in 32-bit. Guo et al.lll quantize the
network with mixed fixed points and binaries, reducing
the bandwidth and computational complexity. Nguyen et
al.l'2l use the binary method, but the last layer is still
quantized to 8-bit weights and 16-bit activations inevit-
ably. There are some other quantization methods, such as
[13], that are based on incremental quantization or di-
vide weights into several blocks represented by one num-
ber each. For example, Sakuma et al.['4] approximate all
the weights to the power of 2 so that the multiplication
can be substituted by shifting in hardware. Cardinaux et
al.%l use LUT quantization to achieve a weight diction-
ary with k-means, and the 32-bit weights correspond to a
certain value in the dictionary. Fang et al.['6l show that
the weights have bell-shaped distribution with a long tail
by statistical analysis, and the range of quantization is di-
vided into two non-overlapping halves with the same
quantization levels, minimizing quantization error. Park
et al.ll7l propose a quantization method based on
weighted entropy, which is network-dependent and not
universally appliable.

2.2 Quantization of input images and out-
put results

For the quantization of input images, every 8-bit RGB

Backbone & Head Post processing

1193

pixel in [18] is decomposed into 1-bit, such that there is
only bit operation in all network layers and all convolu-
tions are deployed within one computing logic without
any dedicated logics. Guo et al.l!% propose a fully binar-
ized neural network accelerator. The quantization consist-
ency of the input and middle layers is achieved by bin-
ary quantization and pruning, and odd-even padding is
designed to solve the padding problem of the input fea-
ture maps. So far, the effectiveness of these quantization
methods on input images has only been verified on classi-
fication, and further examination is required on object de-
tection.

For the quantization of the output results of the net-
work, Zhu et al.20] use the Boost to take the BNN with
binarized weights and activations as a weak classifier, and
multiple BNNs are trained via AdaBoost to get the final
classification results. This algorithm is insensitive to the
quantization of the input layer and output layer,
however, Boost is only suitable for classification tasks, in-
stead of regression tasks as in object detection. Therefore,
they only talk about the classification accuracy and do
not mention the application in object detection. The
quantization of weights and activations of middle layers
in [12] is 1 bit and 3-6 bit respectively, but the input im-
ages are still in 8-bit RGB. The weights of the output
layers are 8-bit and the outputs are 16-bit.

3 Algorithm background

Network quantization includes the quantization of
weights and activations. As depicted in Fig. 1, typically in
object detection, quantization involves only the weights
and activations in the backbone and head, excluding the
input images and output results. The proposed algorithm
of this paper unifies the quantization bit-width of the
whole network, in order to deploy the first layer, the last
layer and the middle layers on the same hardware mod-
ule. There are two reasons why we want to deploy the
whole network on the same hardware module. First, if the
first layer and the last layer are deployed separated from
the middle layers, the data scheduling will be more com-
plex among different hardware modules. In contrast, the
data scheduling will be simpler within one hardware mod-
ule. Second, without a specialized hardware module for
the first layer and the last layer, most resources on FP-
GA can be utilized to deploy more unified hardware mod-
ules that can be used throughout the whole network.
These unified hardware modules can work concurrently
and improve the throughput of the system which we will
discuss in Section 7.

The quantization of weights in the backbone and head
is binarized as in [4], and only the signs of the weights are

Fig.1 A simplified neural network structure

@ Springer

1194

retained in this paper. The advantage of binarization is
omitting multiplications in convolution which greatly
saves hardware resources. Meanwhile, a scaling factor « is
shared through each layer to compensate for the loss of
accuracy due to the binarization of the weights. The scal-
ing factor a is the average of absolute weight values by
solving an optimization problem, as stated in [4]. The
binarized weights are then described as

W ~ aB (1)

where W and B are weights before and after binarization
respectively. The scaling factor « is combined with the
scaling factor in batch normalization and the combined
factor is quantized to the power of 2, which can be
realized in the hardware logic by shifters instead of
multipliers. As a result, there is no multiplication in our
hardware design.

The quantization of activations in the backbone and
head as in [5] is

round((2’ — 1)r;) (2)

T
where j is the quantization bit-width; »; and r, are
activations before and after quantization respectively, and
they are both truncated to the range of [0,1]. The
activation bit-width we use is 4-bit.

4 Thermometer coding on input images

To be consistent with the bit-width of the activations
in the middle layers, the 8-bit input images are conver-
ted to n-bit with thermometer coding. The input image is
formatted in 3-channel RGB data, which are 8-bit in the
range of [0,255]. The maximum value that an n-bit num-
ber can represent is 2" — 1. A random number X in the
range of [0,255] can be converted to several n-bit num-
bers as follows. The required number C of n-bit numbers
is

C = ceil(255/(2" — 1)). (3)

In the C numbers, there are C; numbers that all of the
n-bit are 1s. C; is expressed as

C1 = floor(X /(2™ —1)). (4)
The Ci1+1 number is

Co=X —Cr(2" - 1). (5)

Machine Intelligence Research 21(6), December 2024

The remaining C'— Ci1 — 1 numbers are all zeros, as
shown in Fig.2. In Fig.2, n is 4 for example. In thermo-
meter coding, the lower part is the first to be filled with
1s. If 4 bits are filled with 1s, it will be 15 then the lower
part of the 4-bit thermometer coding will naturally be 15.

c
|

Fig.2 A random X is depicted as C' numbers with n-bit.

The conventional input layer in CNN is shown in
Fig.3 where the input images are 3-channel RGB data.
We implement the 4-bit thermometer coding on input im-
age. According to (3) every color channel of RGB is con-
verted to 17 4-bit numbers. Therefore, the total number
of input channels is 51. Because the input image is a 51-
channel image and the rule for convolution is that the
kernels have the same channel number as the activations,
the corresponding convolutional kernels must also be ex-
panded to 51 channels in the first layer. This is also keep-
ing with how the middle layers are implemented. To be
more specific, the kernel channel corresponding to a cer-
tain channel of RGB needs to be copied and expanded to
17 channels still in the order of RGB and each 17-chan-
nel is a group. The input layer after thermometer coding
is shown in Fig.4. Fig.5 depicts one of the RGB chan-
nels after thermometer coding, and Fig.6 is the channel-
expanded convolutional kernel.

From the above analysis, although one channel is split
into 17 channels, the weights in all these 17 channels are
the same as one channel. According to (3)—(5), the ran-
dom input X can be expressed as

C=0Ci(2" — 1) + Ca. (6)

Then, the product of input and weight in one channel
can be expressed as

XXxW=(Cix(2"=1)4+Co) x W =
(2" —1) X W x C1 + Ca x W. (7

The above expression further applies to the accumula-
tion in 3-channel RGB data. As a result, the thermomet-
er coding on the input image is an equivalent transforma-
tion and has no effect on the accuracy of the network.

Input image 8 ya Conv:3x3x3 _4/_>
(416%x416x3, 8bit) (1bit)

Backbone & Head _4 / Output results
(W-1bit, A-4bit) (32bit)

Fig. 3 The original network structure and bit-width

@ Springer

M. Li et al. / Branch Convolution Quantization for Object Detection

1195

Conv:3x3x51
(1bit)

Input image 4/_>
(416x416%51, 4bit)

]

Backbone & Head
(W-1bit, A-4bit)

| 4 / Output results
(32bit)

Fig. 4 The network structure and bit-width after thermometer coding

9 34
4-bit thermometer coding | ...
—_—
0 | ... [255
17 channels
Fig. 5 The 4-bit thermometer coding on one input image
channel
1101
Expand
1|1]0 1|10 [
0110 O 10
17 channels
Fig. 6 Expand the kernel channel according to the

corresponding input channel

5 Branch convolution quantization

Unlike the activations in middle layers, the output
results of the last layer have implications that are to be
modified on the object detection anchors. Fig.7 shows the
distribution of activations in a middle layer, and Fig.8
shows the output results of the last layer in a full-preci-
sion network. From Figs.7 and 8, we can see that the ac-
tivations in the middle layers are all positives after 4-bit
quantization, which is acceptable since the missed negat-
ives will be restored afterwards in the next layer with
negative weights. However, the positives and negatives
are nearly evenly distributed in the output results of the
last layer. In addition, the output results have implica-
tions which will be used in the postprocessing module,
and thus, the results have to be accurate. Now that the
4-bit activation cannot cover all of these values exactly,
simply using the same quantization method described in
(2) as the middle layers are not suitable for the output
results. On the other hand, we want all the layers can be
quantized with (2) such that all layers can be deployed
on the same circuits. As a result, the only thing we can
do is changing the structure of the last layer to meet our
demands. Therefore, there is barely any algorithm where
the output results of the network are quantized.

As described above, to maintain the consistency of
quantization of every layer, the output results must be

C 4
80 000
60 000 1
40 000 -
20 000
0 - . } !
0 0.5 1.0 1.5 2.0 2.5

Fig. 7 The distribution of activations in the middle layers. The
horizontal axis represents the values of the activations in a
certain step and the vertical axis is the numbers of activations in
the corresponding step range. The title “C_4” is a middle layer in
the network and it can represent all the other middle layers in
the network.

pred
40 000 A I
30000 A III
20000 A B
1

10 000 1
0 - ,___IIIII“III.-_,_
10 15

Fig. 8 The distribution of activations in the last layers. The
title “pred” represents the last predict layer of the network.

quantized in the same way as the activations in the
middle layers. Without sacrificing the accuracy, we con-
sider adding extra branches along with the quantization
of output results. The outputs of the extra branches are
summed up with unbalanced weights. We name this the
Branch Convolution Quantization (BCQ) as shown in
Fig.9. The initial thoughts of these unbalanced weights
come from Fig.8. In Fig.8, we can see that there are both
positives and negatives ranging from approximately —10
to +10. In addition, there must be decimals in these num-
bers which are used in the post-processing part after-
wards. It is necessary that the summed up numbers in
BCQ are as close to their true values as possible. There-
fore, the four branches in BCQ represent positive in-
tegers, positive decimals, negative integers, and negative

@ Springer

1196

decimals respectively. Because (2) is utilized to quantize
the outputs of the four branches and the results of (2)
range from 0 to 1, we need to multiply the convolutional
results by 10 to the integer branches. However, multiplic-
ation of 10 is more expensive in the hardware implement-
ation than 16, as 16 is 2% and can be realized by shifting 4
bits left with the shifters while multiplication of 10
should be realized by DSPs in FPGA. As a result, quant-
ized results described as “Cur_Output Results” in Fig.9
are multiplied by weighted numbers such as +16, +1, —16,
-1 and then summed up to mimic the original 32-bit
floating point results. The integer branches multiply 16
shifting to the higher 4 bits and the lower 4 bits on the
right can be filled with the branches multiplied by 1. This
is exactly a concatenation of the x16 branch and the x1
branch, which is the reason why there are two “Concat”s
in Fig.9. The concatenation is a large hardware resource
reduction compared with the implementation of multiplic-
ation by 10. Because there are positive branches and neg-
ative branches in BCQ and the convolution results are
positive when applying (2), subtraction naturally plays
the role of negative branches in Fig.9. To be clear and
strict, the part to the right of the dotted line in Fig.9 is
complished in the post-processing procedure, as shown in
Fig. 1.

In tiny yolo v3 as depicted in Figs.10 and 9, the ori-
ginal network includes the backbone and head. The back-
bone extracts the features of the images, and the head re-
turns the results of classification and regression of the fea-
tures. Almost no existing algorithms quantize the output
results as shown in Fig. 10. In this paper, we use the BCQ
to replace the last layer with four convolution branches,
the weights and outputs of which are quantized to 1-bit
and 4-bit respectively. The BCQ layer needs to be re-
trained after all the weights and activations are quant-
ized in the backbone and head. Afterwards, as shown in
Fig.9, the two concatenated branches will be 8-bit. If we
directly quantize the 32-bit to 8-bit, we will lose too
much information, as there are only 2% numbers in the
convolutional results of the last layer no matter how
many parameters there are in the weights of the last lay-
er. 28 is far from the amount that the post-processing
needs. In BCQ, there are two 8-bit numbers. In addition,

Machine Intelligence Research 21(6), December 2024

there is an extra sign bit represented by positive branches
and negative branches. All of these consist of the BCQ
results which is a 10-bit value space. Without BCQ, there
is only one branch and the coordinates of each bounding
box can only be fine-tuned by the weights of one branch.
However, with BCQ, the coordinates can be fine-tuned
with 4 branches, while the 4 branches are independent of
each other and have a wider value space as stated before.
Therefore, the BCQ results are much higher than the
quantization version but they are still worse than the full
precision version in Tables 1-3 in Section 6. Although
there are three more branches in BCQ, the data size is
still small compared to the parameters of the entire net-
work. The most important thing is that the output res-
ults are 4-bit, which means that all the branches can be
deployed on the hardware where the middle layers are
implemented on. There is a clear development of the
bitwidth of the whole network in Figs.3, 4, 9 and 10. All
of the weights are 1-bit and all the activations are 4-bit
till now. As a result, every layer of the network can be
implemented on the same hardware logic as we expect.

6 Experimental results and analysis

After extremely low-bit quantization, thermometer
coding and BCQ, the network structure, bitwidth of in-
put and output, and the size of weights in every layer are
listed in Table 4.

There is no need to list the experimental results of
thermometer coding as it is an identity transform and has
no effect on the accuracy of the network.

Applying BCQ on tiny yolo v3 and yolo v3, the res-
ults on VOC and COCO datasets are listed in Tables 1-3
respectively. As we can see, compared with normal quant-
ization, the accuracy of this work has been greatly im-
proved. There is almost the same level of reduction in ac-
curacy compared with the full precision model of each
category in this work. The accuracy loss trends of nor-
mal quantization and this work are almost the same. Al-
though the accuracy of BCQ applied on tiny yolo v3
drops on both datasets compared to the full precision net-
work, the advantages of BC(Q are apparent on yolo v3.
Since the structure of tiny yolo v3 is very simple and has

4/’| Conv:1x1x75 (1bit) |l/$| Quant li/*C(‘ur Output results 1 (4bitD—>|

Concat
o
8

4/’| Conv:1x1x75 (1bit) |£/+| Quant l—“/{@rﬁutput resuth(4bitD—P|

x

l

BCQ_Output results

Backbone & Head

(W-1bit, A-4bit)

Input image 4 -
(416x416x51, 4bit)

4/’| Conv:1x1x75 (1bit) lﬁ/+| Quant H/»G?u:-70u1plxt resuhs3(4bilD—>|

(8bit)

Concat

x16 |—4/—
8

—/

4/»| Conv:1x1%75 (1bit) |ﬂ/+| Quant H/{Curﬁ()ulput rcsu]ts4(4bilD—P| «1

o

Fig. 9 The network structure with BCQ

Input image 4 Backbone & Head

4
/

Conv:1x1x75 32 Output results
—/—>1

‘ /> ! ;
(416x416x51, 4bit) (W-1bit, A-4bit)

(1bit) / (32bit)

Fig. 10 The network structure without BCQ

@ Springer

M. Li et al. / Branch Convolution Quantization for Object Detection

Table 1 Accuracy on VOC

Model type Full precision®* Quantization® This work***
tiny_yolo_v3 65.2 41.12 50.11
yolo_v3 81.4 67.46 73.32

*Full precision means that there is no quantization in the entire
network.

**Quantization means that the weights are binarized and the
activations are 4-bit in backbone and head, but the output results are
32-bit floating point.

***This work means implementing BCQ on the output results of
quantization.

a limited number of parameters as shown in Table 5, the
loss of accuracy is significant after violent compression.
While yolo v3 has a more robust backbone with more
layers, the accuracy of yolo v3 with BCQ is very impress-
ive. It is expected to reach a better result on deeper net-
work quantization(!2],

7 Hardware implementation

To wverify the advantages of implementing low-bit
quantization network on hardware, we deploy tiny
yolo v3 on the Virtex UltraScalet series FPGA VU9P
from Xilinx, and the designed block diagram is shown in
Fig.11. One neural computing array (NCA) consists of
128 neural computing units (NCU), which work in paral-
lel to improve the throughput and speed of computing.
Every NCU works in the same mode and is responsible
for one convolution kernel. The input feature maps are
read from the on-chip memory and the weights and batch
normalization parameters are also handed out to the 128
NCUs from the on-chip memory. The weights are reused
for the entire input feature maps, and the results of every
NCU, which will be the input feature maps of the next
layer, are written back to the on-chip memory with the
control of the read-write state machine. In summary, all
data in the network are accessed on-chip in our hard-
ware design, which greatly reduces the cost of data trans-
ferring.

The FPGA resource consumption of NCA is shown in
Fig.12. The LUTs and FFs are mainly used for interme-
diate values and weights cache in convolution computing.
The BRAMSs are applied for the on-chip storage of
weights, batch normalization parameters, input and out-
put feature maps. It is worth noting that there is not any

1197

Table 2 Accuracy of each category on VOC in different
tiny yolo_v3 network

Category Full precision® Quantization®™ This work***
Aeroplane 74.65 55.76 62.45
Bicycle 75.58 47.89 66.13
Bird 59.92 23.52 38.51
Boat 52.48 24.69 38.00
Bottle 38.36 12.85 20.98
Bus 73.07 56.81 60.34
Car 78.97 58.88 68.88
Cat 73.20 55.82 58.26
Chair 43.37 20.47 27.46
Cow 69.24 38.10 53.83
Diningtable 60.96 47.44 46.96
Dog 68.38 51.97 54.87
Horse 77.48 63.09 70.57
Motorbike 74.75 57.86 66.77
Person 72.58 52.48 62.08
Pottedplant 37.92 16.50 21.12
Sheep 66.65 28.00 49.90
Sofa 64.03 48.95 41.24
Train 78.93 50.74 67.95
Tvmonitor 64.70 35.97 49.80

*Full precision means that there is no quantization in the entire
network.

**Quantization means that the weights are binarized and the
activations are 4-bit in backbone and head, but the output results are
32-bit floating point.

***This work means implementing BCQ on the output results of
quantization.

DSP in our implementation. This is because the weights
in convolution are binarized where the multiplications are
replaced by additions. In addition, we also simplify the
batch normalization operations and retrain the network.
To implement BN on hardware logic, the biases are roun-
ded to integers and the scale factors approximate the
nearest power of two which can be easily realized in hard-
ware logic with shifters.

Compared to the deployment of Tiny YOLO-v2 and
Sim-YOLO-v2 on hardware in [12], the resource consump-
tion, throughput, efficiency, power efficiency and so on

Table 3 Accuracy on COCO

Full precision™

Quantization™

This work™**

Model type Ap50-95 Ap50 Ap50-95 Ap50 Ap50-95 Ap50
Tiny yolo v3 16.0 33.8 2.89 9.46 6.66 17.48
Yolo v3 36.0 57.6 8.56 27.87 25.49 47.92

*Full precision means that there is no quantization in the entire network.

**Quantization means that the weights are binarized and the activations are 4-bit in backbone and head, but the output results are 32-bit floating

point.

***This work means implementing BCQ on the output results of quantization.

@ Springer

1198

Table 4 Extremely low-bit

Machine Intelligence Research 21(6), December 2024

network structure of tiny_yolo v3

Layer Data width of input

Data width of output

Data width of weights Size of kernel

Backbone.layerl (First layer) 4

Backbone.layer2 4

I

Backbone.layer3
Backbone.layer4
Backbone.layer5
Backbone.layer6
Backbone.layer7
Head.layerl
Head.layer2
Head.layer3
Head.pred2 (Last layer)

Head.pred4

LT T

Head.pred1l (Last layer)

4 1 3,3,51, 16
4 1 3,3, 16, 32

4 1 3,3,32,64

4 1 3,3,64,128

4 1 3, 3,128, 256

4 1 3, 3,256, 512

4 1 3,3,512, 1024
4 1 3,3,1024, 256
4 1 1,1, 256,128

4 1 3,3, 256, 512

4 1 (1,1,512,75) x4
4 1 3,3, 384, 256

4 1 (1,1, 256, 75) x 4

Table 5 Model size

Model type Data width of input Data width of output Data width of weights Backbone.layerl (First layer)
Model size 44MB 235MB 1.4MB 7.7MB
i clk
i_rstn
Datl {Datl Datl Datl
Weil Weil Weil Weil
en/ W/R M
addr/ Ctrl dertn Dat0 Dat0-— Dat0 Dat0
data FSM a —~Betal —Betal —~{Betal —~{Betal
—=Gammal —=Gammal —=Gammal —=Gammal
NCU-0 NCU-1 NCU-2 NCU-127
REG_dat S —
i_weight REG_weight P — |
ibg REG_beta_gamma oo oo cm——
NCA
Fig. 11 The block diagram of NCA

are listed in Table 6. The results in Table 6 are not com-
posed of the post-processing procedure, so as to the Tiny
YOLO-v2 and Sim-YOLO-v2 in [12], so we put the res-
ults together to make a comparison. The DSPs in [12] are
used for batch normalization and the last layer. In our
work, there is not any DSP since the last layer with BCQ
can share the same hardware logic with middle layers. In
addition, with BCQ, there is no need to design a separ-
ate module to implement the first and last layers and
more unified parallel computing modules designed for all
layers can be implemented on FPGA. This is why the
LUTs and FFs consumption which is the most com-
monly used resource in hardware implementation in our

@ Springer

work is much more than that in [12] according to Table 6
and Fig.12. The evidence that there are more parallel
computing modules in our work than that in [13] is the
throughput in Table 6. There is not any multiplication in
our design, and only additions and shifters are used.
Moreover, there is no high bit-width in the last layer. All
of these factors lead to the higher efficiency (GOPS/KLUT)
of our work than that of [12].

To conclude, by compressing the network weights to
the limit, and proposing the quantization method of the
input and output layers, the network quantization con-
sistency is maintained, and the network is more efficient,
simplified and universal in hardware deployment.

M. Li et al. / Branch Convolution Quantization for Object Detection

1199

Hiome ~ CLBLUTs CLBRegisters CARRYS F7 Mwes F8Muwes Block RAM DSPs
(1182240) (2364480) (147780) (591120) (295560) Tile (2160) (6840)

~ [I] u_nca0 {nca_ xdcDup__1) 468690 282714 3882 728 56 512 0
>[I negx8(0].u_ncg 101109 36371 480 125 0 o] o
> [regxB1].u_ncg 113971 36080 480 48 0 1] o
> [ncgxBl2).u_ncg 3 38215 34044 480 31 0 0 o
> [T negx8l3].u_ncg (ncg 13 47361 34480 480 23 0 0 o
> [X] ncgxB{4].u_ncg (ncg 14 38209 34043 480 23 0 1] "]
>[I negxB{5).u_ncg (ncg 14 38156 34032 480 32 0 0 0
> [T negxB(6].u_ncg (ncg 142 38130 34032 480 16 0 0 "]
> [X] neged{7].u_ncg (ncg 143 38154 34032 480 25 0 o 0
[X] u_arb (arb_nca_144) 4595 62 0 98 24 0 0
> [I] u_mema (mem_nca_ xdcDup_ 1 1331 32 0 63 0 256 o]
> [@] umemb (mem_nca_ xdcDup_ 2 2600 32 0 128 32 256 0
> [u_retl {rctl_14 879 4893 8 1 0 o
[T u_wetl (wetl_14 5980 581 34 115 0 0 0

Fig. 12 The resource consumption of NCA. The left side of the list is the modules in NCA. In the implementation of NCA, there are 8
NCGs and every NCG consists of 16 NCUs. Arb is the arbiter. Mema and memb are the ping-pong memory. Rctl and wctl are the read
and write controller respectively. The top of the list is the logical resources consumed by each module.

Table 6 Overall comparison of our work to others

Tiny YOLO- Sim-YOLO-v2l13] Daté width of
v2(13] input
Platform Virtex-7 VC707 Virtex-7 VC707 XCVU9P
Frequency 300 MHz 200 MHz 80MHz
BRAMs 1026 1144 512
DSPs 168 272 0
LUTs-FFs 86 K-60 K 155 K-115 K 468 K-282 K
CNN size (GOP) 6.97 17.17 8.69
Precision (W,A) (1,6) (1, 6) (1,4)
Fi(rxs)f,}z-‘ger (1,8) ,8) @1,4)
Last layer (W,A) (8,16) (8,16) (1,4)
Image size 416X416 416X416 416X416
Frame rate 66.56 109.3 60
Accuracy (mAP) 51.38 64.16 50.11
T}(lg’(‘)‘%,hsgut 464.7 1877 5 898*
Data width of 5.40 12.11 12.68
output
Power (W) 8.7 18.29 10.8
Data width of 53.29 102.62 546.11
weights

*5 898GOPS: Our unified computing module requires 4 clock beats
from input to output. In 80MHz clock, the frequency of output results
is 20MHz. In NCU, one output needs 3X3X128 additions and
multiplications. As a result, the throughput of one NCU in 20MHz
will be 3X3X128X2X20MHz=46.08 GOPS, and the throughput of
128 NCUs (1 NCA) will be 46.08 X 128=5 898.24 GOPS.

8 Conclusion and future work

In this paper, we perform extremely low-bit quantiza-
tion to the weights of all layers, thermometer coding to
input images, and BCQ to output results and accomplish

the consistent quantization of all layers of the object de-

tection network. When deployed on specific hardware, all
layers in the network can share the same logic, which
simplifies the hardware design and improves the energy
efficiency as more computing modules can be implemen-
ted. Moreover, the BCQ improves the accuracy of quant-
ization of object detection networks. Future work can fo-
cus on the flexible selection of the number and weights of
branches in BCQ, as well as the structure of hardware
design. This work provides a direction for the research of
the fully quantized network algorithm and powerful sup-
port for the edge-deployment of network.

Declarations of conflict of interest

The authors declared that they have no conflicts of in-
terest to this work.

References

[1] M. Courbariaux, Y. Bengio, J. P. David. BinaryConnect:
Training deep neural networks with binary weights during
propagations. In Proceedings of the 28th International
Conference on Neural Information Processing Systems,
Montreal, Canada, pp.3123-3131, 2015. DOIL: 10.5555/
2969442.2969588.

[2] M. Kim, P. Smaragdis. Bitwise neural networks, [Online],
Available: https://arxiv.org/abs/1601.06071, 2016.

(3] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y.
Bengio. Binarized neural networks. In Proceedings of the
30th International Conference on Neural Information Pro-
cessing Systems, Barcelona, Spain, pp.4114-4122, 2016.
DOI: 10.5555/3157382.3157557.

[4] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi.
XNOR-Net: ImageNet classification using binary convolu-
tional neural networks. In Proceedings of the 14th
European Conference on Computer Vision, Springer, Ams-
terdam, The Netherlands, pp.525-542, 2016. DOI: 10.
1007/978-3-319-46493-0_32.

5] S.C.Zhou, Y. X. Wu, Z. K. Ni, X. Y. Zhou, H. Wen, Y. H.
Zou. DoReFa-Net: Training low bitwidth convolutional
neural networks with low bitwidth gradients, [Online],
Available: https://arxiv.org/abs/1606.06160, 2016.

@ Springer

https://doi.org/10.5555/2969442.2969588
https://doi.org/10.5555/2969442.2969588
https://arxiv.org/abs/1601.06071
https://doi.org/10.5555/3157382.3157557
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://doi.org/10.1007/978-3-319-46493-0_32
https://arxiv.org/abs/1606.06160

1200

(6]

(10]

(11]

(12]

(13]

14]

(15]

(16]

(17]

(18]

H. T. Qin, R. H. Gong, X. L. Liu, X. Bai, J. K. Song, N
Sebe. Binary neural networks: A survey. Pattern Recogni-
tion, vol.105, Article number 107281, 2020. DOI: 10.1016/
j-patcog.2020.107281.

J. W. Yang, X. Shen, J. Xing, X. M. Tian, H. Q. Li, B
Deng, J. Q. Huang, X. S. Hua. Quantization networks. In
Proceedings of IEEE/CVF Conference on Computer Vis-
ion and Pattern Recognition, IEEE, Long Beach, USA,
pp. 7300-7308, 2019. DOI: 10.1109/CVPR.2019.00748.

R.D. Li, Y. Wang, F. Liang, H. W. Qin, J. J. Yan, R. Fan.
Fully quantized network for object detection. In Proceed-
ings of IEEE/CVF Conference on Computer Vision and
Pattern Recognition, IEEE, Long Beach, USA,
pp-2805-2814, 2019. DOI: 10.1109/CVPR.2019.00292.

S. Kim, H. Kim. Zero-centered fixed-point quantization
with iterative retraining for deep convolutional neural net-
work-based object detectors. IEEE Access, vol.9, pp. 20828—
20839, 2021. DOI: 10.1109/ACCESS.2021.3054879.

H. X. Fan, S. L. Liu, M. Ferianc, H. C. Ng, Z. Q. Que, S.
Liu, X. Y. Niu, W. Luk. A real-time object detection accel-
erator with compressed SSDLite on FPGA. In Proceed-
ings of International Conference on Field-Programmable
Technology, IEEE, Naha, Japan, pp.14-21, 2018. DOI: 10.
1109/FPT.2018.00014.

J. L. Guo, C. C. Tsai, J. L. Zeng, S. W. Peng, E. C. Chang.
Hybrid fixed-point/binary deep neural network design
methodology for low-power object detection. IEEE Journ-
al on Emerging and Selected Topics in Circuits and Sys-
tems, vol. 10, no. 3, pp.388-400, 2020. DOI: 10.1109/JET-
CAS.2020.3015753.

D. T. Nguyen, T. N. Nguyen, H. Kim, H. J. Lee. A high-
throughput and power-efficient FPGA implementation of
YOLO CNN for object detection. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol.27,
no. 8, pp.1861-1873, 2019. DOI: 10.1109/TVLSI.2019.2905
242.

A. J. Zhou, A. B. Yao, Y. W. Guo, L. Xu, Y. R. Chen. In-
cremental network quantization: Towards lossless CNNs
with low-precision weights. In Proceedings of the 5th In-
ternational Conference on Learning Representations,
Toulon, France, 2017.

Y. Sakuma, H. Sumihiro, J. Nishikawa, T. Nakamura, R.
Ikegaya. n-hot: Efficient bit-level sparsity for powers-of-
two neural network quantization, [Online], Available: ht-
tps://arxiv.org/abs/2103.11704, 2021.

F. Cardinaux, S. Uhlich, K. Yoshiyama, J. A. Garcia, L.
Mauch, S. Tiedemann, T. Kemp, A. Nakamura. Iterat-
ively training look-up tables for network quantization.
IEEE Journal of Selected Topics in Signal Processing,
vol. 14, no. 4, pp. 860-870, 2020. DOI: 10.1109/JSTSP.2020.
3005030.

J. Fang, A. Shafiee, H. Abdel-Aziz, D. Thorsley, G. Geor-
giadis, J. Hassoun. Post-training piecewise linear quantiza-
tion for deep neural networks, [Online], Available: https://
arxiv.org/abs/2002.00104, 2020.

E. Park, J. Ahn, S. Yoo. Weighted-entropy-based quantiz-
ation for deep neural networks. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition,
IEEE, Honolulu, USA, pp.7197-7205, 2017. DOI: 10.1109/
CVPR.2017.761.

M. Shimoda, S. Sato, H. Nakahara. All binarized convolu-

@ Springer

Machine Intelligence Research 21(6), December 2024

tional neural network and its implementation on an FP-
GA. In Proceedings of International Conference on Field
Programmable Technology, IEEE, Melbourne, Australia,
pp-291-294, 2017. DOI: 10.1109/FPT.2017.8280163.

(19] P. Guo, H. Ma, R. Z. Chen, P. Li, S. L. Xie, D. L. Wang.
FBNA: A fully binarized neural network accelerator. In
Proceedings of the 28th International Conference on Field
Programmable Logic and Applications, IEEE, Dublin, Ire-
land, pp.51-513, 2018. DOI: 10.1109/FPL.2018.00016.

[20] S. L. Zhu, X. Dong, H. Su. Binary ensemble neural net-
work: More bits per network or more networks per bit? In
Proceedings of IEEE/CVF Conference on Computer Vis-
ion and Pattern Recognition, IEEE, Long Beach, USA,
pp-4918-4927, 2019. DOI: 10.1109/CVPR.2019.00506.

Miao Li received the B.Eng. and M.Eng.
degrees in mechanical and electrical engin-
eering from Beijing Institute of Techno-
logy, China in 2014 and 2017, respectively.
She is an engineer in the National Engin-
eering & Technology Research Center for
Application Specific Integrated Circuit
Design (NECFAD), Institute of Automa-
tion, Chinese Academy of Sciences, China.
She has published two patents in Al

Her research interests include computer vision, IC design and
optimization.

E-mail: miao.li@ia.ac.cn

ORCID iD: 0009-0001-4741-3043

Feng Zhang received the B.Eng. and
M.Eng. degrees in mechanical and electric-
al engineering from Beijing Institute of
Technology, China in 1998 and 2003, re-
spectively, and the Ph.D. degree in elec-
tronic and information from University of
Science and Technology of China, China in
2020. Currently, he is a professor in the
National Engineering & Technology Re-
search Center for Application Specific Integrated Circuit
Design (NECFAD), Institute of Automation, Chinese Academy
of Sciences, China. He has published more than ten papers and
tens of patents in these areas. As a project leader, he has com-
pleted a number of scientific research projects.

His research interests include micro-electronics, computer vis-
ion, IC design and optimization.

E-mail: zhangfeng@ia.ac.cn (Corresponding author)

ORCID iD: 0000-0003-2586-5505

Cuiting Zhang received the B.Eng. and
M.Eng. degrees in engineering manage-
ment from Hebei University of Techno-
logy, and computer technology from Cap-
ital Normal University in Beijing, China in
2017 and 2020, respectively. She is an en-
gineer in the National Engineering & Te-
chnology Research Center for Application
Specific Integrated Circuit Design (NEC-
FAD), Institute of Automation, Chinese Academy of Sciences,
China.

Her research interests include computer vision, IC design and
optimazation.

E-mail: cuiting.zhang@ia.ac.cn

http://dx.doi.org/10.1016/j.patcog.2020.107281
http://dx.doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1109/CVPR.2019.00748
https://doi.org/10.1109/CVPR.2019.00292
http://dx.doi.org/10.1109/ACCESS.2021.3054879
https://doi.org/10.1109/FPT.2018.00014
https://doi.org/10.1109/FPT.2018.00014
http://dx.doi.org/10.1109/JETCAS.2020.3015753
http://dx.doi.org/10.1109/JETCAS.2020.3015753
http://dx.doi.org/10.1109/JETCAS.2020.3015753
http://dx.doi.org/10.1109/TVLSI.2019.2905242
http://dx.doi.org/10.1109/TVLSI.2019.2905242
https://arxiv.org/abs/2103.11704
https://arxiv.org/abs/2103.11704
http://dx.doi.org/10.1109/JSTSP.2020.3005030
http://dx.doi.org/10.1109/JSTSP.2020.3005030
https://arxiv.org/abs/2002.00104
https://arxiv.org/abs/2002.00104
https://doi.org/10.1109/CVPR.2017.761
https://doi.org/10.1109/CVPR.2017.761
https://doi.org/10.1109/FPT.2017.8280163
https://doi.org/10.1109/FPL.2018.00016
https://doi.org/10.1109/CVPR.2019.00506

Machine Intelligence
Research

VIR

Citation: M. Li, F. Zhang, C. Zhang. Branch convolution quantization for object detection. Machine Intelligence Research,
vol.21, no.6, pp.1192-1200, 2024. https://doi.org/10.1007/s11633-023-1434-8

Articles may interest you

Deep gradient learning for efficient camouflaged object detection. Machine Intelligence Research, vol.20, no.1, pp.92-108, 2023.
DOI: 10.1007/s11633-022-1365-9

A novel divide and conquer solution for long-term video salient object detection. Machine Intelligence Research, vol.21, no.4,
pp-684-703, 2024.

DOI: 10.1007/s11633-023-1388-x

Sharing weights in shallow layers via rotation group equivariant convolutions. Machine Intelligence Research, vol.19, no.2, pp.115-
126, 2022.

DOI: 10.1007/s11633-022-1324-5

Transmission line insulator defect detection based on swin transformer and context. Machine Intelligence Research, vol.20, no.5,
pp-729-740, 2023.

DOI: 10.1007/s11633-022-1355-y

Weakly supervised object localization with background suppression erasing for art authentication and copyright protection.
Machine Intelligence Research, vol.21, no.1, pp.89-103, 2024.

DOI: 10.1007/s11633-023-1455-3

Ahlnet: adaptive multihead structure and lightweight feature pyramid network for detection of live working in substations.
Machine Intelligence Research, vol.21, no.5, pp.983-992, 2024.

DOI: 10.1007/s11633-023-1427-7

Ripple knowledge graph convolutional networks for recommendation systems. Machine Intelligence Research, vol.21, no.3, pp.481-
494, 2024.

DOI: 10.1007/s11633-023-1440-x

G

WeChat: MIR Twitter: MIR_Journal

https://doi.org/10.1007/s11633-023-1434-8
http://www.mi-research.net/en/article/doi/10.1007/s11633-022-1365-9
https://doi.org/10.1007/s11633-022-1365-9
http://www.mi-research.net/en/article/doi/10.1007/s11633-023-1388-x
https://doi.org/10.1007/s11633-023-1388-x
http://www.mi-research.net/en/article/doi/10.1007/s11633-022-1324-5
https://doi.org/10.1007/s11633-022-1324-5
http://www.mi-research.net/en/article/doi/10.1007/s11633-022-1355-y
https://doi.org/10.1007/s11633-022-1355-y
http://www.mi-research.net/en/article/doi/10.1007/s11633-023-1455-3
https://doi.org/10.1007/s11633-023-1455-3
http://www.mi-research.net/en/article/doi/10.1007/s11633-023-1427-7
https://doi.org/10.1007/s11633-023-1427-7
http://www.mi-research.net/en/article/doi/10.1007/s11633-023-1440-x
https://doi.org/10.1007/s11633-023-1440-x

	1 Introduction
	2 Related works
	2.1 Extremely low-bit quantized weights of all layers
	2.2 Quantization of input images and output results

	3 Algorithm background
	4 Thermometer coding on input images
	5 Branch convolution quantization
	6 Experimental results and analysis
	7 Hardware implementation
	8 Conclusion and future work
	Declarations of conflict of interest
	References

