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Abstract: 3D shape recognition has drawn much attention in recent years. The view-based approach performs best of all. However,
the current multi-view methods are almost all fully supervised, and the pretraining models are almost all based on ImageNet. Although
the pretraining results of ImageNet are quite impressive, there is still a significant discrepancy between multi-view datasets and ImageN-
et. Multi-view datasets naturally retain rich 3D information. In addition, large-scale datasets such as ImageNet require considerable
cleaning and annotation work, so it is difficult to regenerate a second dataset. In contrast, unsupervised learning methods can learn gen-
eral feature representations without any extra annotation. To this end, we propose a three-stage unsupervised joint pretraining model.
Specifically, we decouple the final representations into three fine-grained representations. Data augmentation is utilized to obtain pixel-
level representations within each view. And we boost the spatial invariant features from the view level. Finally, we exploit global inform-
ation at the shape level through a novel extract-and-swap module. Experimental results demonstrate that the proposed method gains

significantly in 3D object classification and retrieval tasks, and shows generalization to cross-dataset tasks.
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1 Introduction

With the development of AR/VR/MR and autonom-
ous driving, 3D object recognition has received more at-
tention. At present, 3D object representations in industri-
al projects and scientific research mainly focus on point
clouds, voxels, and multi-view images. Point clouds are a
set of unordered points that can be obtained by radar
scanning, but their sparse structure will bring informa-
tion loss. In addition, point cloud labelling is still a ma-
jor challenge. Voxels are a kind of data structure that
uses a fixed size cube as the smallest unit to represent a
3D object. The acquirement of voxels is not easy at the
present stage, not to mention the relatively strict require-
ments for resources. By contrast, multi-view data can be
easily captured just with a camera placed at different
angles. As 2D images, multi-view data can retain richer
texture detail without complicated data cleaning or pre-
processing work. It can be directly handled end-to-end
with any current mature 2D model such as VGG and
ResNet2l. Moreover, the acquisition of multi-view data
also accords with the imaging process of human percep-
tion of the external environment, so it is most likely to be
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utilized to mimic the human visual system. The above
makes multi-view-based methods take the lead in 3D ob-
ject recognition in several available datasets. Pretraining
in 2D visual learning is widely used because it can accel-
erate the convergence process, perfect the training
model'’s generalization, and bring evident performance im-
provement. Consequently well-reasoned pretraining can
also be deduced to the exceptional “2D visual learning” of
multi-view learning.

The pretrained model of ImageNet is standard in vari-
ous visual tasks, and sufficient experimental analyses
have proven the impressive improvement in performance.
The pretraining models for multi-view learning at present
are all ImageNet based. However, there are several prob-
lems when it is applied in a multi-view learning task:

1) The ImageNet dataset is enormous, which requires
considerable staffing and material resources to annotate,
so it is not easy to copy the same operation on a second
dataset.

2) The distribution shift between ImageNet and the
target dataset may degrade the performance. According
to [3], the exact solution to the nonlinear dynamics of
learning in deep linear neural networks, only if the stat-
istical structure of the input is consistent with the map-
ping structure of the information and output to be
learned, the pretraining will bring ideal results.

3) The ImageNet pretraining scheme lacks the impli-
cit constraint of multi-view consistency. Because multi-
view images naturally have spatial complementarity, the
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adoption of the ImageNet pretraining model treats and
aligns each view independently. As a result, losses of rel-
evance within and across classes of the multi-view data-
set are inevitable.

Current supervised learning (pretraining) pipelines
heavily rely on high-quality annotations, which requires
label-intensive work and enormous computational re-
sources. Let alone a relatively more expensive 3D annota-
tion task. This leads the community to explore alternat-
ives in an unsupervised manner. Pretraining is affected to
some extent by the size of the dataset. Exactly unsuper-
vised pretraining can take advantage of a nearly infinite
set of unlabelled training data.

To tackle the problems existing in the pretraining
model of current multi-view learning and make full use of
multi-view’s rich texture and unique spatial character, we
propose a three-stage self-supervised pretraining method
in this paper, including AugViews, CrossViews, and Ro-
bustViews. The alignment of the final feature descriptor
in the feature domain is completed through the weighted
joint training of the above three tasks. According to Sim-
CLRM, multiple data augmentation operations are cru-
cial in designing contrastive proxy tasks that produce ef-
fective representations. During the AugViews stage, just
with some simple data augmentation operations, the net-
work can perceive the invariant characteristicsl®! and then
obtain a more substantial representation power. In the
CrossViews stage, a classic method of contrastive learn-
ing method is adopted to try to conduct all the view fea-
tures under each shape and aggregate the view features
under the same shape to increase the differentiation
between them under different shapes with an InfoNCE
loss. However, a problem arises that various subjects
might be of the same class. The chances are that the fo-
cus on local features results in a loss of generalization as
too much attention is given to several specific samples.
Then in the RobustViews stage, we propose a novel struc-
ture to compensate for too much focus on the specific fea-
ture. MVCNNIS proved through experiments that the
view feature with the highest response is the largest one
or even the only one that contributes to the final shape
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feature. To improve the representation capacity of the
shape feature, we construct positive sample pairs by a
frame extract-and-swap process so that the shape feature
can perceive the knowledge brought by different views.
Decoupling the association between a shape feature and a
single view feature can improve the generalization of the
pretraining model. An illustration of our three stage end
to end unsupervised pretraining mechanism is provided in
Fig. 1

The main contributions of this paper can be summar-
ized as follows:

1) We propose a three-stage pretraining model that
balances local and global features based on full use of the
data, different from the previous self-supervised models
that focus only on one aspect.

2) We show that there is much more to explore with
raw data, and our proposed method can learn a good rep-
resentation without introducing any additional data and
annotations.

3) We evaluate the quality of our approach as a pre-
training step on ModelNet40 and a more challenging
dataset Shrecl7. The experimental results show signific-

ant improvement over a model trained from scratch.

2 Related works

2.1 Unsupervised pretraining

Unsupervised pretraining models typically require
training through proxy tasks on large datasets to intro-
duce extra information, and then finetuning on down-
stream tasks to achieve final parameter alignment. At
present, most classical visual tasks use ImageNet as a
pretraining default setting, or other much larger datasets.
However, considering the feature refinement require-
ments of high-level visual tasks, the performance im-
provement of finetune is limited even if an extremely
large classification dataset is adopted[3.

In unsupervised pretraining, the proxy task is just a

RobustViews
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Conceptual descriptions of the feature alignment approaches. The three domains describe the proposed AugViews, CrossViews,
and RobustViews schemes, which are explained in Section 3 in detail.
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trampline, and we care more about the representation of
the learned feature descriptor than the final performance
of the proxy task. Reconstruction-based tasks and con-
trast-based tasks are two classical directions of unsuper-
vised proxy tasks. Reconstruction-based tasks mainly ex-
plore learning a good representation by computing pixel-
level reconstruction or generation tasks, including In-
paintingl?, Colorization® 9, Puzzleldl, GAN[IY, and super
resolutionlll. However, these efforts are more illuminat-
ing but have limited performance gains. Contrast-based
learning is the current mainstream direction. It intro-
duces a large number of negative samples, divides posit-
ive and negative samples through different strategies, and
completes the alignment of positive and negative samples
in the feature space. Positive sample pairs are closer,
while negative sample pairs are farther away.

Contrast-based learning is more beneficial to the back-
bone to establish spatial correlation and characterize the
complex structure of objectsl'Z 13l The breakthrough of
the contrastive-based method is SimCLR, which intro-
duces noise and rotation transformation to each image in
batch to obtain positive sample pairs of the original im-
ages. The network then employs InfoLoss to achieve a
gradient decrease. Due to the large batch size and a large
number of positive and negative sample pairs, the linear
classifier trained by SimCLR can be comparable to Res-
Net50. In later work, MOCO[4 13 reduces memory con-
sumption through memory banks and introduced mo-
mentum updates. BYOL[® adds prediction head, and
only positive sample pairs are used for training.

2.2 Multi-view learning

Multi-view learning of all kinds has been a hot
issuel!”. For 3D models, multi-views are one of the clas-
sic representations. Compared with points, meshes and
voxels, multi-views contain more texture information of
3D models. The capture of multiple views more simu-
lates the process of human eyes’ perception of the real
world. In addition, compared with the point-based and
mesh based methods, the view-based method takes a lead
in the performance of each dataset.

A pioneering of view-based method is MVCNN.
MVCNN encodes each view through CNNs with shared
weight. It creatively proposes to aggregate the final glob-
al feature descriptor by using max pooling. However,
MVCNN treats each view individually and does not make
effective use of the relationship between different views.
The subsequent works gradually mine the correlation
between views and intra views. GVCNN employs FCN to
calculate a weight of views respectively. The views are
grouped according to their weights, and then global fea-
tures are aggregated through a three-stage feature ex-
tractor. MHBN[8 divides each view into blocks to realize
the feature abstraction process from a patchwise perspect-
ive. In addition, general max-pooling is replaced with bi-
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linear-pooling to take the second-order statistics into con-
sideration. View-NGram[!9 refers to the N-Gram idea in
natural language processing to group views, and further
adopts blocks similar to self-attention to complete the ag-
gregation of local features. In recent years, there have
also been some works focusing on graph topological asso-
ciation of the multi-view[20: 21, 3DViewGraph/22 takes in-
to account that the pooling operation will lose the inform-
ation between views. It builds a graph structure of all the
views and abstracts the disordered view nodes with a del-
icate attention module. View-GCNI23 also regards the un-
ordered view as a graph structure and uses GCN to ex-
tract the global characteristics of the graph layer by lay-
er.

3 Method

3.1 Overview

We develop a scalable three-stage pretraining method,
MV Contrast, for 3D representations that utilize the raw
data without any extra annotations. Our method, illus-
trated in Fig.2, comprises three submodules. AugViews
distill the information within a view (Section 3.2). Cross-
Views explores the correlation between different views of
the same shape (Section 3.3). RobustViews proposes a
novel module from the global perspective to discover the
uniqueness of category features (Section 3.4).

3.2 AugViews

The AugViews module aims to obtain pixel-level rep-
resentations within each view which is illustrated in Fig.2
“AugViews”. Given a dataset D = {s}{_;, containing S
shape samples, we wish to learn a function G(s) that for
the design of a proxy task to capture the individual fea-
ture of each view with relatively fine-grained data. We re-
gard each view under each shape as an independent view

J

v}, and get augment view vf/ through some data aug-

. v
ment strategies. Input v} and v into the encoder and ob-
tain view featurse 2/ and 2! respectively. With InfoNCE

. y .
loss, z] and 2/ are drawn closer and z} and zF, which are

from different shapes, are pushed farther.

ri) — — log ;jp (Sim (zf7zf ) /r) o

> exp(sim (27, 2F) /7)

k=1, ki

In (1), 7 can guarantee the smoothness of the soft-
max process, and sim measures the cosine distance of the
pair. That is, we wish that features from the same raw
view are more similar, while the features from different
views are more diverse. The model is able to learn invari-
ant view features by aligning view features in the latent
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Fig. 2 Tllustration of the proposed framework. After encoding different views, the alignment in latent space is completed through three

stages of head.

space. It is worth noting that compared with [4], we only
employ ResizedCrop, RandomHorizontalFlip and other
data augmentation strategies trying to focus on captur-
ing high-level geometric information. Considering that re-
construction tasks such as color gamut transformation
and denoising are too fine-grained, they are not condu-
cive to knowledge transfer for shape recognition tasks.

In addition, considering the importance of batch size
and negative sample amount for contrastive learning, we
adopted the same configuration as SIMCLRI4].

3.3 CrossViews

The CrossView module is designed to capture spa-
tially invariant features from the view level as illustrated
in Fig.2 “CrossViews”. Given a shape S = {V}/L, con-
taining N views of a shape. The purpose of CrossViews is
to learn the relationship between views under the same
shape and those under different shapes as well as mine
the spatial invariance feature.

The input shapes are S1 and S2, and the views
{Vi}X, and {V2}L, are generated by the projection from
different views. The views are encoded by backbone to
obtain the view features, and we can get an InfoNCE (2)
of CrossViews by the extension of (1).

N o
> exp (sim (zf, zi) /T)
.. v=1,[v#]]
EC(’L,]) = _IOg S N . (2)

exp (sim (zf7 zlj) /T)
k=1,[k#i] v=1

When the shape to which view v belongs is different
from the shape to which view vs belongs, the features of
v1 and v2 should be more disparate, and vice versa.
Through the simple design, we can see that the experi-

mental results are significantly improved in the sub-
sequent experiments, which also indicates that the design
of CrossViews makes the pretraining model better repres-
ent the most important spatial features of multi-view
data.

3.4 RobustViews

The RoubstView module is proposed to support glob-
al information at the shape level as illustrated in Fig.2
“RobustViews”. MVCNN shows that the feature
descriptor obtained by conducting a global pooling of
view features can best represent the shape feature, that
is, the final shape feature shares only one view feature
content. Although different views contribute to the final
shape feature to different degrees, human eyes can still
easily distinguish shape from a “bad” view in real life.
This means that even the information from a less than
“good” view may be enough to represent the shape. The
design of RobustViews decouples the dependence of the
final shape feature on a fixed view and obtains a more ro-
bust shape representation through perceptual learning of
the global views. By replacing different views under a
shape with random frames, a new view set can be built to
represent the same shape. The detailed process is shown
in Fig.2. By extending (1), we can obtain an InfoNCE
loss (3) of shape feature.

22}(1) (Slm (fza flz) /T) . (3)
Z exp(sim(fiyfj)/T)

J=1,[3#1]

Lr(i) = —log

In (3), fi represents the origin feature descriptor, and
f! represents the descriptor of the new set. By shorten-
ing the distance between the new shape and the raw
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shape in the feature space, and making the shape feature
of different shapes farther away makes the model have a
better understanding of a “good” shape feature, making
the model more discriminative.

3.5 Training process

Let us denote the AugViews, CrossViews, and Ro-
bustViews objectives by La, Lc, and Lg, respectively.
We define the multi-task objective as a linear combina-
tion of these objectives:

L=MNLa+XoLc + X3Lrg. (4)

In (4), to limit the three losses to the same scale A1,
A2 and A3 are initialized as 1, 0.25 and 0.01, respectively.
Moreover, we use early stopping to prevent overfitting or
a dominating task.

4 Experiment

4.1 Implementation details

Datasets. ModelNet40 is an open-source 3D CAD
model dataset from Princeton and a commonly used 3D
model dataset in recent years. It consists of 12 311 shapes
from 40 categories, including 9 843 training samples and
2 468 test samples. SHREC17, a large-scale 3D retrieval
competition dataset based on ShapeNet, is a very challen-
ging classic benchmark. It consists of 51 162 shapes in 55
categories and 203 subclasses, including 35 764 training
samples, 5133 validation samples, and 10265 test
samples. The number of shapes varies significantly among
different classes. Our experiments are conducted on a
typical dataset, all shapes of which have been prealigned
and normalized.

For each 3D shape, we render a series of 256 x 256 2D
grayscale images according to the same strategy as
MVCNN. We place a virtual camera around the object at
30-degree intervals and end up with 12 view images. Be-
fore inputting them into the network, we scale the
256 x 256 images to 224 x 224.

During self-supervised pretraining, the backbone is a
ResNet18 in default. We adopt an SGD optimizer with an
initial learning rate of 0.01, momentum of 0.9 and weight
decay of 0.000 1. To normalize task weights to the same
scale, we reweight AugViews, CrossViews, and Ro-
bustViews to 1.0, 0.25, and 0.01 respectively. And to re-
duce overfitting, we train the model for 100 epochs with a
batch size of 24.

The pretrained feature extractor (e.g., ResNetl8) is
finetuned on the same dataset as that in pretraining to
make the feature extractor, as well as a new classifier,
perform better. In the inference time, we extract a 1 024-
dimensional embedding as the 3D shape descriptor.
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We implement our method using PyTorch with the
CUDA backend. All our experiments are conducted on a
GeForce GTX 1080 Ti graphics card.

4.2 Experiments on 3D shape classification

Compared with the current methods that employ
overfitting training as well as data preprocessing to per-
form better (MVTNE24 introduces a new network to learn
some specific viewpoints), we use the classic and recur-
ring MVCNNI6 as our baseline. To verify the validity of
our method, we first use the common self-supervised
learning test method (finetuning the unsupervised learned
representation with a linear SVM on the training set and
test on the test set) to demonstrate the representation of
our model directly. In our experiments, we first compare
with a series of unsupervised state-of-the-art learning ap-
proaches on ModelNet40. The experimental results are
demonstrated in Table 1. These methods include the
voxel-based methods TL Network?s, VConv-DAE26],
3DGANE7, VSL28] point-based methods LGANE Fold-
ingNetB%, 3D-PointCapsNetl3ll, MAP-VAEB2 and the
view-based method VIPGANDB3l. Our self-supervised ap-
proach achieves a comparable 90.24% with the full-super-
vised baseline 91.94% and outperforms most unsuper-
vised learning methods. In addition, it should be noted
that VIPGAN adopts a delicately designed GAN struc-
ture and the starting point is completely different from
our method.

With fully supervised training, our method achieves a
classification accuracy of 92.54%. It has gained 2.44% and
0.60% compared with the vanilla MVCNN and the
MVCNN with a ResNet18[( as the backbone. To show
that our method can be generalized for various networks,
we also take a re-implement GVCNNDBY as another
baseline on the ModelNet40. Pretraining in our self-super-
vised manner, GVCNN can reach a result of 92.99%
which boosts the effect given in the paper (under 12
views) by 0.39%. The above experiments indicate that
our method can extract more representative features and
when compared with the conventional method that pre-
trains through a super large dataset (such as
ImageNet3%), our method can optimize the initial model
in a more favorable direction.

We then conduct a comparison experiment within the
model on a more challenging dataset SHREC17. The ex-
perimental results are shown in Table 2. It can be seen
that in the absence of any supervising signals, our model
can still achieve 72.69% in overall accuracy (Acc), but
only 38.34% in avg-Acc. This is largely due to the highly
unequal data distribution (the largest category has 150
times more samples than the smallest category). This
data distribution problem is also quite unfriendly to un-
supervised learning. Pretraining with our model, it can be
seen that the model’s performance has been significantly
improved, and it has gained 1.26% and 5.45% in Acc and
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Table 1 Comparison of 3D shape classification against methods
on the ModelNet40 dataset

Table 3 Comparison of 3D shape classification with different
self-supervised pretraining methods on ModelNet40

Input Supervised Acc (%) Pretrain Supervised Overall Acc (%)
TL Network/25] X 74.40 SimCLR+STL10 X 79.20
VConv-DAERS] X 75.50 SimCLR+ModelNet40 X 86.38
3DGANI27] Voxel X 83.30 SimCLR+ImageNet X 88.73
VSL[28] X 84.50 Byol+ImageNet X 89.21
LGANI29 X 85.70 Byol+ImageNet v 92.06
FoldingNet![30] X 84.36 Ours X 90.24
Points
3D-PointCapsNet ! x 88.90 Ours v 92.54
MAP-VAEB2] X 90.15
VIPGANB3] X 91.98 Table 4 Impacts of different stages of the classification
MVCNN+ImageNet N 90.10 accuracy on ModelNet40
MVCNN (ResNet18) Views v 90.23 AugViews CrossViews  RobustViews fosults
MVCNN (ResNet18)+ImageNet J 91.94 Acc (%) mAP (%)
GVCNNB4+ImageNet V 92.60 X X X 48.5 47.1
MVTNE4+ImageNet+ViewPoints N 93.80 X X v 79.4 48.6
Ours w/o MVCNN P 90.24 X v X 85.3 50.9
Ours w/ MVCNN Views 3 92.54 V X X 88.5 64.3
Ours w/ GVCNN 3 92.99 V V X 89.4 69.2
V V 3 90.2 70.8

Table 2 Comparison of 3D shape classification against methods

on the SHREC17 dataset
Results
Method
Acc (%) Avg-Acc (%)
MVCNN (ResNet18) 86.14 71.21
Ours w/o MVCNN 72.69 38.34
Ours w/ MVCNN 87.40 76.66

avg-Acc, respectively. This also shows that our approach
is applicable even in more challenging and large-scale
datasets.

In Table 3, we evaluate our model alongside main-
stream self-supervised pretraining models. Our method
performs better than self-supervised methods designed
under 2D modalities in both unsupervised pretraining and
fine-tuning tasks. We compare the effect of pretraining
SimCLR in ImageNet, STL10 and BYOL in ImageNet,
respectively. SIimCLR's self-supervised learning in STL10
achieves less than 80% accuracy on the classification task,
which is much worse than our approach. This is even
worse than our first stage AugViews in Table 4. Since the
STL10 dataset contains only 10 categories, the amount of
information contained is much less than that of Model-
Net40. It can be seen that the pretraining results of Sim-
CLR on ModelNet40 are significantly improved. However,
it is still not as good as our AugViews. This is mainly due
to our retuning of the proxy tasks for such a relatively
simple textured dataset. We can see that SimCLR and
BYOL perform better than AugViews due to the use of

massive data from ImageNet, but our final model outper-
forms them by 1.5% and 1% due to fully exploiting the
spatial geometry information of the 3D multi-view.
Moreover, after fully supervised fine-tuning, our model
still outperforms the self-supervised approach for 2D im-
ages.

In Table 5, we show the experimental results on differ-
ent backbones. We choose VGGM and larger backbones
such as ResNet18 and ResNet50 under different pretrain-
ing methods. It can be seen that our model is signific-
antly boosted under different backbones. Our model
achieves a 1.62% improvement in classification accuracy
with VGGM. And when it comes to ResNet, our model
also outperforms by more than 0.6%. More importantly,
as the backbone goes deeper in ImageNet pretraining
mode, the final performance improvement is limited.
When switching from ResNetl8 to ResNet50, the im-
provement is only 0.22, while our model almost doubles
the improvement. This is mainly because our pretraining
approach is able to capture more effective information. As
the network deepens, the representational power of the
backbone becomes stronger.

4.3 Experiments on 3D shape retrieval

To validate the effectiveness of our method, we con-
duct experiments on a common dataset Modelnet40 and a
more challenging dataset SHREC17, respectively. The

measurement metrics on ModelNet40 adopt the open-
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Table 5 Comparison of 3D shape classification with different
backbones on ModelNet40

Backbone Pretrain Overall Acc (%)
VGG M ImageNet 90.10
ResNet18 ImageNet 91.94
ResNet50 ImageNet 92.16
VGG M Ours 91.72
ResNet18 Ours 92.54
ResNet50 Ours 92.97

source test method in PVRNet36l, The comparison exper-
iments are listed in Table 6. In the experiments, we com-
pare three voxel-based methods SPHB7, 3DShapeNet!38],
and DLANBY, and several view-based methods
DeepPanol40), GIFTE], RAMAM2, GVCNNBY, TCLH),
and VNN, (Superscript ¢ represents low-rank Mahalan-
obis metric learning). Our method reaches 70.8% in mAP
without any supervision, which is even better than the
vanilla MVCNN in the case of full supervision. Pretrain-
ing with our method, it can be seen that the final result
can reach 87% in mAP, which boosts 17% in mAP more
than vanilla MVCNN and even 7% more in mAP than
MVCNN+Metric. In comparison, GVCNN achieves a res-
ult of 90% in mAP, which has gained of 4% in mAP com-
pared with the original model and even 1% in mAP com-
pared with the state-of-the-art VINN.

Table 6 Comparison of 3D shape retrieval against methods on

the ModelNet40 dataset

Method Input mAP (%)
SPHI37 33.3
3DShapeNet[38] Voxel 49.2
DLANI9 85.0
DeepPanol40] 76.8
MVCNN 70.1
MVCNN¢ 80.2
GIFTH1 81.9

Views

RAMAM2] 83.5
GVCNNBY 85.7
TCLI43] 88.0
VNN 89.3
Ours w/o MVCNN 70.8
Ours w/ MVCNN Views 87.1
Ours w/ GVCNN 90.3

In the experiments on SHREC17, we follow the rules
of the track of SHREC17 for large-scale 3D shape retriev-
al on ShapeNet Core5544. For each query object, all ob-
jects with the same predictive label are taken as the re-
trieval shape.
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The retrieval order is determined according to the
ranking of the similarity score. A retrieval list is required
to provide at most 1000 results. In the experiment, we
compare our method with some of the approaches used in
the competition, including the voxel-based approaches
ZFDR45], DeepVoxNetl46l, and DLAN, as well as the
view-based approaches CM-VGG5-6DB, GIFT, ReVGG,
MVFusionNet, and RotationNetl47l. It can be seen from
the Table 7 that compared with vanilla MVCNN and
MVCNN (ResNet18), the model pretrained with our
method has a great improvement under micro-average
standard (an average without reweighting based on cat-
egory size) in PQN, R@N, F1@N, mAP, and NDCG. This
also proves the validity of our model. It is noteworthy
that under the Marco-average standard (an unweighted
average over the entire dataset), our model even exceeds
RotationNet in PQN, R@QN, F1@N, and NDCG. This also
indicates that our model is more robust for diverse ob-
jects than methods that overfit the distribution of specif-
ic datasets.

4.4 Ablation study

Different stages

To verify the actual effectiveness of our designs, we
present ablation experiments of the impacts of different
stages on the unsupervised learned features. All the con-
trast experiments still follow the MVCNN structure. De-
tailed results on ModelNet40 are summarized in Table 4.
The baseline model is a vanilla MVCNN using ResNet18
as a feature extractor. We adopt classification accuracy
(Acc) and mean average precision (mAP) as evaluation
criteria for the models. To obtain Acc, the feature ex-
tractor is fixed, and only the parameters of the classifica-
tion layer are updated during the training process. While
mAP is used to directly evaluate the performance of un-
supervised features without any extra supervised informa-
tion.

The baseline model can only achieve a result of 48.5%
and 47.1%. Moreover, during the training process, the
convergence rate of the baseline model is so slow that it
takes approximately 15 epochs to determine the ultimate
optimization direction. We see that the model with
AugViews can significantly improve the baseline by 50%
and 17%. AugViews adopts the approach of SimCLRM to
characterize the features of a single view. Concerning the
universality and stability of the application of data aug-
mentation methods in self-supervised learning, we decide
to take AugViews as a primary loss. We can see that the
model assembles only CrossViews or RobustViews can
also enable the experimental results to reach 85.3% and
50.9% respectively. Consider that CrossViews tries to
learn the differences between views, while RobustViews
attempts to distinguish the representations between ob-
jects (categories). As the proxy tasks become more bru-
tal, the information that a simple backbone can learn is
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Table 7 Comparison of 3D shape retrieval against methods on the ShapeNet Core55 dataset

MicroALL MacroALL
Method
PaN (%) R@N (%) F1@N (%) mAP (%) NDCG (%) P@N (%) R@N (%) F1@QN (%) mAP (%) NDCG (%)

ZFDR45] 53.5 25.6 28.2 19.9 33.0 21.9 40.9 19.7 25.5 37.7
DeepVoxNet46] 79.3 21.1 25.3 19.2 27.7 59.8 28.3 25.8 23.2 33.7
DLAN 81.8 68.9 71.2 66.3 76.2 61.8 53.3 50.5 47.7 56.3
CM-VGG5-6DB 41.8 71.7 47.9 54.0 65.4 12.2 66.7 16.6 33.9 40.4
GIFT 70.6 69.5 68.9 64.0 76.5 44.4 53.1 45.4 44.7 54.8
ReVGG 76.5 80.3 77.2 74.9 82.8 51.8 60.1 51.9 49.6 55.9
MVFusionNet 74.3 67.7 69.2 62.2 73.2 52.3 49.4 48.4 41.8 50.2
MVCNN 77.0 77.0 76.4 73.5 81.5 57.1 62.5 57.5 56.6 64.0
MVCNN (ResNet18) 78.7 79.1 78.3 74.2 83.7 58.1 59.8 56.7 52.6 61.8
RotationNet 81.0 80.1 79.8 77.2 86.5 60.2 63.9 59.0 58.3 65.6
Ours w/o MVCNN 54.7 59.4 55.5 46.9 60.2 25.6 39.0 25.8 23.2 34.1
Ours w/ MVCNN 79.8 79.9 79.4 75.6 84.9 62.1 65.4 62.1 58.2 66.3

limited, so the result is understandably lower than
AugViews. However, as all stages are incorporated, and
knowledge learned from diverse tasks is introduced, the
final model yields a performance of 90.2% and 70.8%.

Number of views

To investigate the influence of different views on the
model, we adjust the number of views introduced during
the self-supervised training process. The results are
presented in Table 8. When the number of views is 4, the
model achieves a result of 91.61% and 89.96% in Acc and
avg-Acc, respectively. With the increase in the number of
views, the classification performance improves gradually,
and the Acc performance is the best when it comes to 12
views. It is reasonable that too few views may lead to a
loss of useful information approximately 3D shapes. Nev-
ertheless, it can be seen that as the number of views
grows, the improvement on avg-Acc is relatively limited
(e.g., 90.24% for 12 views and 90.25% for eight views).
This may be because an increase in the number of views
can not provide enough information to make the model
more discriminative on some hard categories.

Table 8 Comparison of different numbers of views
during the test process

Results

Number of views

Acc (%) Avg-Acc (%)
4 91.61 89.96
8 92.02 90.25
12 92.54 90.24

Robustness towards missing views

In the real world, it is difficult to avoid missing views,
and we expect that our model can effectively cope with
similar situations. In this section, we conduct experi-
ments on the robustness of MVCNN and MVCNN with
our pretraining method to the missing views during test

time. The results are drawn in Fig.3. From the curve, we
can see that 4-views is an inflection point, and the per-
formance of both models declines sharply when the num-
ber of views is less than 4. It is reasonable that too few
views lose much information about the 3D shape. It can
be seen that the MVCNN without any pretraining de-
clines earlier, and the degradation is more serious. When
the number of views is only 1, it tends to make a ran-
dom prediction of the input. It is demonstrated that our
pretraining method is more robust to the problem of
missing views.

4.5 Visualization

Feature distribution. To intuitively understand the
impact of different losses on our model, we map the high-
dimensional abstract unsupervised features on the Model-
Net40 test set to two-dimensional space for a decoupling
visualization. The visualization results are presented in
Fig.4 by t-SNE. It can be seen in Fig.4 that the learned
features gradually show cluster-friendly behavior with the
introduction of losses at each level. In addition, it is
noted that in comparison with the point-based unsuper-
vised SOTA method8], our method has a distinct en-
hancement in feature identification, which also reflects
the strong discriminative power of our representation.

Feature heatmap. Gradcam is used to obtain a
heatmap from the backbone after three-staged unsuper-
vised pretraining. This heatmap can represent the contri-
bution of different pixel regions to the final classification
probability. That is to say, and it means the influence of
different regions on the final feature descriptor. It can be
seen in Fig.5, the monitor pays more attention to the
junction of bracket and screen, corners dominate in the
tent, the airplane is mainly interested in the nose and
wings, and the body part receives more attention in the

@ Springer
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Fig. 4 Effect of tasks of the unsupervised learned features on the test set of ModelNet40 (visualized using t-SNE) and a comparison
with the state-of-art unsupervised points method“8] (screenshot from the paper). With the introduction of objectives, the model extracts

features that are more class-discriminative as well as domain-invariant.

guitar. In addition, it can be seen that the backbone
trained without supervision is robust to the position. Al-
though the body position of the guitar varies in the be-
low line, it can still be accurately highlighted.

5 Conclusions

In this paper, we proposed a three-staged unsuper-
vised end-to-end pretraining method for 3D object recog-
nition. AugViews follows the same settings as SimCLR
and treats each view individually to mine the intra-view

@ Springer

knowledge. CrossViews approaches views of the same
shape as positive samples and tries to exploit the intra-
shape knowledge. RobustViews is designed to com-
pensate for the neglect of the global representation and
take advantage of the intra-categories information. Sub-
sequent experiments on multiple datasets also demon-
strate the effectiveness of our three-stage unsupervised
pretraining. It is worth mentioning that our experiment-
al improvement on complex data sets is more significant,
proving our model’s robustness.
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