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Abstract:     This paper  introduces  the  system of game-theoretic  interactions, which connects both  the explanation of knowledge en-
coded in a deep neural networks (DNN) and the explanation of the representation power of a DNN. In this system, we define two game-
theoretic interaction indexes, namely the multi-order interaction and the multivariate interaction. More crucially, we use these interac-
tion indexes to explain feature representations encoded in a DNN from the following four aspects: 1) Quantifying knowledge concepts en-
coded by a DNN; 2) Exploring how a DNN encodes visual concepts, and extracting prototypical concepts encoded in the DNN; 3) Learn-
ing optimal baseline values for the Shapley value, and providing a unified perspective to compare fourteen different attribution methods;
4) Theoretically explaining the representation bottleneck of DNNs. Furthermore, we prove the relationship between the interaction en-
coded in a DNN and the representation power of a DNN (e.g., generalization power, adversarial transferability, and adversarial robust-
ness). In this way, game-theoretic interactions successfully bridge the gap between “the explanation of knowledge concepts encoded in a
DNN” and “the explanation of the representation capacity of a DNN” as a unified explanation.
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 1   Introduction

In  recent  years,  deep  neural  networks  (DNNs)  have

shown  significant  success  in  various  fields.  However,  the

black-box nature of DNNs makes it difficult for people to

understand  their  internal  behavior.  Essentially,  the  field

of interpretability usually has two directions. The first is

to  explain  semantic  concepts  corresponding  to  feature

representations learned by DNNs. The second is to math-

ematically  analyze  the  representation  capacity  of  DNNs.

Although there has been a lot of previous studies in both

directions, they have been developed on different theoret-

ical  foundations,  and  there  is  no  unified  theory  to  con-

nect the two directions.

Specifically,  in  the  scope  of  explaining  concepts  en-

coded  by  DNNs,  previous  studies  usually  focus  on  three

perspectives.  1)  The  visualization  of  network  features  is

the most direct way of explaining the DNN. Dosovitskiy

et  al.[1–3] reconstructed  the  input  image  from  intermedi-

ate-layer features to explain the information expressed by

β

features.  2)  Other  studies  usually  quantify  the  attribu-

tion/importance/saliency  of  input  variables  to  the  out-

put of a DNN, e.g., [4–6]. 3) In addition, the learning of a

DNN with interpretable features is another typical way of

boosting the network interpretability. Capsule networks[7]

used capsules to encode interpretable representations that

modeled  the  position,  posture  and  other  information  of

objects.  InfoGAN[8] and -VAE[9] trained generative net-

works  with  somewhat  interpretable  intermediate-layer

features  directly.  However,  these  studies  of  explaining

DNNs  at  the  semantic  level  only  visualized  features

modeled by DNNs, or quantified the importance of input

variables  to the output of  a  DNN, but these studies  did

not directly explain the representation capacity of DNNs,

which was a more crucial problem in deep learning.

On  the  other  hand,  in  the  scope  of  mathematically

analyzing the representation capacity of DNNs, most pre-

vious studies defined various metrics to evaluate the per-

formance  (e.g.,  adversarial  robustness  and  generalization

power)  of  DNNs.  Previous  studies  usually  used  a  single

metric  to  analyze  the  entire  complex  system  of  a  DNN.

For example, Weng et al.[10] defined the CLEVER metric

to  evaluate  the  adversarial  robustness  of  DNNs.  Fort  et

al.[11] defined  the  stiffness  metric,  and  Novak  et  al.[12]

defined the  sensitivity  metric  to  evaluate  the  generaliza-

tion  power  of  DNNs.  However,  the  DNN  can  be  con-
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sidered to contain lots of potential causal factors that de-

termine  its  generalization  power  (or  adversarial  robust-

ness) due to the complex architecture and massive para-

meters of DNNs. In comparison, a single metric in previ-

ous  studies  was  supposed  not  to  be  powerful  enough  to

explain all potential factors responsible for generalization

power (or adversarial robustness) of the DNN.

Therefore, in this paper, we revisit our several recent

studies, which build up a new theoretical system to con-

nect  the  direction  of  explaining  concepts  encoded  in  a

DNN and  the  direction  of  mathematically  analyzing  the

representation capacity of a DNN. Specifically, we define

interactions in game theory as the theoretical foundation

first.  We  investigate  the  multivariate  interaction[13],

define  the  multi-order  interaction[14],  and  prove  different

properties of such interactions in game theory. Each spe-

cific interaction among multiple input units (e.g., the in-

teraction between several words in a sentence, or the in-

teraction  between  different  regions  in  an  image)  can  be

considered as a specific concept encoded by the DNN. In

this way, we can quantify concepts memorized by a DNN

by  using  the  interaction.  We  prove  that  we  can  explain

the DNN as a mixture model of numerous concepts. For

example, given a cat image as an input, a DNN may ac-

tivate  various  concepts,  such as  eyes,  nose,  ears,  mouth,

etc. All these concepts make certain contributions to the

inference of  the cat  (see Fig. 1).  In this  way,  we can ex-

plain the representation capacity of DNNs from the per-

spective  of  concept  representation.  For  example,  we  can

explain  the  adversarial  robustness  of  a  DNN  by  disen-

tangling robust concepts and non-robust concepts from a

DNN.  More  specifically,  we  use  game-theoretic  interac-

tions  to  explain  the  concept  representation  and  the  per-

formance of DNNs (see Fig. 2) from three perspectives.

 
 

Beard, eye, ear concepts for a cat image

Ear concept

Eye concept

Beard concept
 
Fig. 1     DNN  can  be  explained  as  a mixture model  of massive
concepts.  For  example,  for  a  cat  image,  a  DNN  may  encode
beard concept, eye concept and ear concept at the same time, all
these concepts make certain contributions to the inference of the
cat.

 
Firstly, based on the multivariate interaction and the

multi-order interaction, we further prove and fix theoret-

ical flaws in attribution methods. For the computation of

the Shapley value,  we use game-theoretic  interactions to

define  and learn  optimal  baseline  values  for  the  Shapley

value[15].  Furthermore,  we  reformulate  previous  fourteen

attribution  methods  from  the  perspective  of  the  Taylor

interaction. Based on the Taylor interaction, the attribu-

tion  estimated  by  each  method  can  be  explained  as  ef-

fects  caused  by  various  interactions.  The  unified  system

enables  people  to  fairly  compare  different  attribution

methods and discover  theoretical  flaws of  different  attri-

bution methods[16].

Secondly, we prove that we can use game-theoretic inter-

actions  to  explain  feature  representations  of  a  DNN.

1) We find that we can use game-theoretic interactions to

quantify  knowledge  points  (concepts)  encoded  by  the

DNN in a hierarchical manner. For example,  We repres-

ent  causal  factors  in  a  DNN into  a  hierarchical  interac-

tion  tree[17].  We  use  game-theoretic  interactions  to  ex-

plain interactions among different input words encoded in

natural language processing (NLP) models[18]. 2) We dis-

cover  that we can use game-theoretic  interactions to ex-

plain the representation power of a DNN for concept rep-

resentations.  For  example,  we  prove  that  there  exists  a

limitation  (or  bottleneck)  when  a  DNN  encodes  feature

representations[19],  i.e.,  a  DNN  usually  tends  to  encode

both  very  simple  interactions  and  very  complex  interac-

tions, but it is difficult for a DNN to learn intermediate-

complexity interactions. 3) We can also use game-theoret-

ic  interactions  to  explain  signal-processing  behaviors  of

deep neural networks for certain visual concepts. For ex-

ample, we identify distinctive signal-processing behaviors

of  a  DNN encoding  different  visual  concepts[20].  Specific-

ally,  we  clarify  the  difference  between  encoding  textural

concepts and encoding shape concepts. We use the multi-

order  interaction  to  explore  prototypical  concepts  en-

coded by DNNs[21].

Thirdly, besides the explanation for concept represent-

ations encoded in a DNN, we can use game-theoretic in-

teractions  to  explain  the  representation  capacity  of  a

DNN from the perspective of concept representation. Spe-

cifically,  we  find  that  the  number  and  the  reliability  of

concepts modeled by DNNs directly determines the DNN′s
performance  (e.g.,  adversarial  robustness  and  generaliza-

tion  power).  In  contrast  to  traditional  metrics,  the  di-

versity  of  concepts  comprehensively  and  precisely  ex-

plains  diverse  reasons for  the performance of  a  DNN. In

terms of adversarial robustness, we prove that high-order

interactions  are  much  more  sensitive  to  adversarial  per-

turbations than low-order  interactions.  We discover  that

adversarial  training  improves  the  robustness  of  high-or-

der  interactions,  thereby  boosting  the  robustness  of  the

DNN. We propose a unified theoretic system to summar-

ize the essential mechanism shared by four adversarial de-

fense methods from the perspective of game-theoretic in-

teractions[22].  Meanwhile,  we  prove  the  correlation

between  the  adversarial  transferability  and  interactions

encoded  by  a  DNN,  and  we  explain  five  transferability-

boosting  attack  methods  as  the  decrease  of  interac-
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tions[23].  In terms of generalization power, we explore in-

fluences of the dropout operation on interactions encoded

by a DNN, verify the relationship between a DNN′s gen-

eralization power and its interactions, and propose a new

training method to replace the dropout operation to pre-

cisely alleviate the over-fitting problem of DNNs[14].

In  particular,  we  believe  that  game-theoretic  interac-

tions  help  us  define  and  quantify  knowledge  points  (or

concepts) encoded by DNNs. Here we consider that ana-

lyzing the representation capacity from the perspective of

concepts  is  a  promising  direction  in  explainable  AI.  In

fact,  game-theoretic  interactions  help  us  solve  three  key

challenges in deep learning, i.e., verifying the trustworthi-

ness of the explanation, clarifying specific reasons for net-

work inference, extracting the common mechanism of dif-

ferent methods. 1) The unified theoretic system based on

game-theoretic interactions verifies the trustworthiness of

the explanation. Because there is usually no ground truth

for the explanation of DNNs, it is difficult to prove that

whether  an  explanation  is  trustworthy  or  not  if  without

clarifying  concepts  encoded  in  a  DNN.  2)  Massive  con-

cepts  extracted  from  a  DNN  can  explain  diverse  and

mixed  reasons  for  the  performance  of  a  DNN.  For  ex-

ample,  a DNN is  robust to adversarial  perturbations be-

cause  the  DNN  encodes  a  large  number  of  robust  con-

cepts.  With  various  internal  interaction  concepts  in  a

DNN,  we  can  precisely  analyze  the  adversarial  robust-

ness and the generalization power of the DNN. 3) Based

on  game-theoretic  interactions,  we  summarize  the  com-

mon mechanism shared by various methods into a single

unified  theoretic  system.  For  example,  in  recent  years,

many methods of boosting adversarial transferability have

been proposed based on different heuristics, but their es-

sence may be actually the same. Based on such a unified

theoretic system, we further detect potential flaws of ex-

isting  methods,  and  revise  these  methods  to  further  im-

prove the performance of the DNN.

 2   Definitions and properties

In fact, a DNN does not make the inference based on

each  individual  input  variable.  Instead,  a  set  of  input

variables interact with each other to form some inference

patterns to make the inference together. For example, for

a  face  image,  a  DNN  may  encode  the  eye  pattern,  the

nose  pattern and the  mouth pattern,  and these  patterns

collaborate  with  each  other  to  form a  larger  pattern  for

inference. The game-theoretic interaction is a typical per-

spective to quantify interaction utilities between a set of

input variables.

In 1952, the Shapley value[24] was proposed, and could

be considered as a fair allocation of total rewards gained

by  all  players  to  each  individual  player  in  the  game.

Later, many interaction metrics were proposed to quanti-

fy  interaction  utilities  between  players  in  a  cooperative

game.  For  example,  Harsanyi[25] proposed  the  Harsanyi

dividend  in  game  theory,  and  Grabisch  and  Roubens[26]

 

Physical meanings of indices

The interaction effect between a subset of

variables S     N

The overall utility of interactions between

players in the subset S     N

The average interaction utility between

variables i and j over all contexts with m
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The interaction effect between variables in

S     N given a specific degree vector πS

The additional utility when players in S

interact with each other w.r.t. the case

when players in S work individually
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negative interaction of S ?

Game-theoretic interactions

Harsanyi dividend I(S)

Shapley interaction index IShap (S)

Multi-order interaction I(m) (i, j)
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Taylor interaction index I(S, πS)

Multivariate interaction B([S])

Multivariate interaction strength T([S])

Performance of DNNS
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Adversarial transferability
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generalization

Representation bottleneck

Attribution methods

Fig. 2     Overview of the connection between the interaction and feature representations of the DNN
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proposed the Shapley interaction index.

We further propose several interaction metrics by ex-

tending previous classical interaction metrics. In order to

quantify interaction utilities between two input variables

under  contexts  of  different  complexities,  we  propose  the

multi-order  interaction  in  [14].  Most  previous  studies

mainly  investigated  interaction  utilities  between  two  in-

put variables. In comparison, we quantify interaction util-

ities  between  multiple  input  variables.  To  this  end,  we

propose the multivariate interaction in [13]. Because pos-

itive  interactions  and  negative  interactions  contained  in

the  multivariate  interaction  may  neutralize  each  other,

the  multivariate  interaction  cannot  precisely  reflect  the

interaction  strength.  Therefore,  we  propose  the  multi-

variate interaction strength to measure the overall  signi-

ficance of both positive and negative interactions in [13].

More  crucially,  a  strong interaction  between multiple

input variables can be considered as a concept consisting

of  these  input  variables,  which  is  encoded  in  the  DNN.

Thus, such interactions provide a new perspective to ana-

lyze flaws of conceptual representation of a DNN, and the

elimination of such representation flaws may improve the

DNN′s  performance.  For  ease  of  reading,  we  have  listed

the symbols used in the paper and the corresponding de-

scriptions for each symbol in Table 1.

 2.1   Preliminary: Shapley value

n

N = {1, · · · , n}

ϕ(i) i

As  the  foundation  of  game-theoretic  interactions,  we

first  revisit  the Shapley value.  The Shapley value[24] was

proposed to quantify the reward of each individual play-

er in a cooperative game. Recently, the Shapley value has

been  applied  to  explain  the  attribution/contribution/im-

portance of each input variable in a DNN. Specifically, we

regard a deep neural network as a game with  players,

. Then, each input variable (e.g., an input

pixel or a word) corresponds to a player. The scalar out-

put of  a DNN is  referred to as the total  reward won by

all players in the game. In this way, the attribution prob-

lem “how to fairly attribute the output of a DNN to each

input  variable” can  be  considered  as “how  to  fairly  dis-

tribute the total  reward of  a  game to each player.” The

Shapley  value  of  the  input  variable  is  defined,  as

follows:

ϕ(i) =
∑

S⊆N\{i}

c(S)[v(S ∪ {i})− v(S)] (1)

c(S) = |S|!(n− |S|+1)!/n! v(S ∪ {i})− v(S)

i

S ϕ(i)

i

S

v(S)

S

N \ S

where .  Here, 

is  referred  to  as  the  additional  award  of  the  input

variable  when it cooperates with input variables in the

subset . Correspondingly, the Shapley value  defines

the average additional award of the input variable  over

different  sets  of  contextual  variables .  In  the

computation of  the  Shapley  value,  is  the  output  of

the  DNN  when  input  variables  in  are  present,  and

input  variables  in  are  replaced  by  the  baseline

value.  A widely-used  setting  of  the  baseline  value  is  the

average value of the variable over different samples[27].

Reference [28] has proven that the Shapley value sat-

isfies  the  following  four  axioms.  Therefore,  the  Shapley

value  can  be  considered  as  a  fair  approach  to  assigning

the total reward gained by all players to each individual

player.

u v

w ∀S ⊆ N, w(S) = u(S)+

v(S) i N

u v

w ∀i ∈ N,ϕw(i) = ϕu(i)+ϕv(i)

Linearity axiom. If the game  and the game  are

combined into a new game , i.e., 

, then for each player  in , the Shapely value com-

puted  in  the  game  and  that  computed  in  the  game 

can be also combined into the Shapley value computed in

the new game , i.e., .

i ∈ N

S ⊆ N \ {i}
∀S ⊆

N \ {i}, v(S ∪ {i}) = v(S) + v({i}) i

ϕ(i)

ϕ(i) = v({i})− v(∅)

Dummy axiom. If  a  player  forms a  coalition

with any subset of players in , but the coali-

tion  cannot  bring  any  additional  reward,  i.e., 

, then the player  can

be regarded as a dummy player.  The Shapley value 

of a dummy player satisfies .

i, j

S ⊆ N \ {i, j} i

S

j S

∀S ⊆ N \ {i, j}, v(S ∪ {i}) = v(S ∪ {j}) i

j

∀S ⊆ N \ {i, j}, ϕ(i) = ϕ(j)

Symmetry axiom. Let us consider two players ,

if  for  any  subset  of  players ,  the  player 

collaborates  with  players  in  in  the  same  way  as  how

the  player  collaborates  with  players  in ,  i.e.,

, then the player 

and  the  player  have  the  same  Shapley  value,  i.e.,

.

v(N)−
v(∅) =

∑
i∈N ϕ(i)

Efficiency axiom. The reward assigned to each play-

er  adds  up  to  exactly  the  total  reward,  i.e., 

.

 2.2   Game-theoretic interactions

Interactions between input variables have been widely

investigated.  Several  classical  interaction  metrics  were

proposed in game theory,  such as the Harsanyi  dividend

interaction[25] and  the  Shapley  interaction  index[26].  We

propose two extended interaction metrics, e.g., the multi-

order  interaction metric[14],  and the multivariate  interac-

tion  metric[13].  Then,  we  propose  a  method  to  fast  ap-

proximate  the  overall  significance  of  all  types  of  mul-

tivariate interactions among a set of input variables[13].

Besides, in this section, we will also discuss game-the-

oretic  axioms  of  different  interaction  metrics,  which  en-

sures the trustworthiness of these interaction metrics.
 2.2.1   Harsanyi dividend

n

N = {1, · · · , n}

I(S)

S ⊆ N v(L)

Let  us  consider  a  cooperative  game  with  players,

.  We can consider  the  output  of  a  neural

network as the total  reward in a game, and consider in-

put variables as players. Harsanyi dividend[25]  is pro-

posed  to  quantify  the  interaction  between  a  set  of  play-

ers ,  which influences  the network output  as

compositional causal factors.

I(S) =
∑
L⊆S

(−1)|S|−|L|v(L) (2)

v(L)

N \ L
where  is referred to as the output of the DNN when

we  mask  input  variables  in  by  replacing  their
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N v(N)

values with their baseline values. The Harsanyi dividend

naturally  guarantees  that  interaction  utilities  of  all  sub-

sets of  can fit the exact model output , as follows:

v(N) =
∑
S⊆N

I(S). (3)

As  shown  above,  Harsanyi[25] has  ensured  that  the

Harsanyi dividend satisfies the efficiency property. To en-

sure  that  the  Harsanyi  dividend  is  a  trustworthy  ap-

proach to quantifying interaction utilities between a sub-

set  of  input  variables,  we  prove  the  following  properties

in [17].

N

v(N) v(N) =
∑

S⊆N I(S)

Efficiency property (proven by [25]). Interaction

utilities  of  all  subsets  of  can fit  the exact  model  out-

put , i.e., .

u v

w ∀S ⊆ N, w(S) =

u(S) + v(S) u

v

w Iw(S) = Iu(S) + Iv(S)

Linearity  property. If  game  and  game  can  be

combined  into  a  new  game ,  i.e.,  for 

,  then  the  Harsanyi  dividend  of  game  and

game  can also be combined into the Harsanyi dividend

of the new game , i.e., .

i ∈ N S ⊆ N \ {i}
∀S ⊆ N \ {i}, v(S ∪ {i}) =

v(S) + v({i}) i

∀S ⊆ N \ {i}, I(S ∪ {i}) = 0

Dummy property. If the co-appearance of the play-

er  and any subset of players  does not

have any interaction utilities, i.e., 

, then the player  is considered as a dummy

player.  A  dummy  input  variable  participates  the  game

without  interacting  with  other  input  variables,  i.e.,

.

i, j

S ⊆ N \ {i, j}
i S

j S

∀S ⊆ N \ {i, j}, v(S ∪ {i}) = v(S ∪ {j}) ∀S ⊆
N \ {i, j}, I(S ∪ {i}) = I(S ∪ {j})

Symmetry  property. Consider  two  players ,  if

for any subset of players , the way how the

player  collaborates with players in  is the same as the

way how the player  collaborates with players in , i.e.,

if ,  then, 

.

π

N ∀S ⊆ N, Iv(S) = Iπv(πS)

πS

πS = {π(i), i ∈ S} πv

(πv)(πS) = v(S)

Anonymity property. If a random permutation  is

added  to ,  then  is  always

guaranteed, where the new set of players  is defined as

,  the  new  game  is  defined  as

. This suggests that permutation does not

change the Harsanyi dividend.

∀i ∈ N,S ⊆ N\{i}
S ∪ {i}

S

i

S

i

∀i ∈ N, S ⊆ N\{i} I(S ∪ {i}) = I(S|i
is consistently present)− I(S) I(S|i is consistently
present) =

∑
L⊆S(−1)|S|−|L|v(L ∪ {i})

Recursive property. The Harsanyi dividend can be

calculated in a recursive manner. For ,

the Harsanyi dividend of  can be calculated as the

difference between the Harsanyi dividend of  when set-

ting  the  presence  of  the  player  as  a  constant  back-

ground  and  the  vanilla  Harsanyi  dividend  of  that

considers  the  absence  of  the  player  as  the  constant

background,  i.e., , 

,  where 

.

vT
T ∀S ⊆ N

T S T ⊆ S vT (S) = c

Interaction  distribution  property. This  property

describes how an interaction function[29] distributes inter-

actions. An interaction function  parameterized by a co-

ntext  is defined as follows, i.e., for , if context

 is  a  subset  of ,  i.e., ,  then ;  if  not,

vT (S) = 0

vT I(T ) = c ∀S ̸= T,

I(S) = 0

.  Then, the interaction for an interaction func-

tion  can  be  computed  as ,  and 

.

i

i

i

S ⊆ N \ {i}

I(S ∪ {i})

i

1/(|S|+1)

I(S ∪ {i})

Connections with the Shapley value. Harsanyi[25]

has proven that the Harsanyi dividend connects strongly

with the Shapley value. Specifically, the Shapley value of

the  input  variable  can  be  computed  by  adding  up

Harsanyi dividend interactions when the input variable 

cooperates  with  different  subsets  of  input  variables.  In

particular,  when  the  input  variable  collaborates  with

each subset of input variables , such a collab-

oration  makes  an  interaction  utility,  which  is  quantified

by  the  Harsanyi  dividend  interaction .  The

Shapley value considers that each input variable particip-

ating in the collaboration contributes to the Harsanyi di-

vidend interaction equally. Therefore, the input variable 

will  be  allocated  proportion  of  the  specific

Harsanyi  dividend  interaction  as  a  numerical

component of its Shapley value, i.e.,

ϕ(i) =
∑

S⊆N\{i}

1

|S|+1
× I(S ∪ {i}). (4)

 

 2.2.2   Shapley interaction index

IShap(S)

v n

N = {1, · · · , n}

S ⊆ N

Grabisch  and  Roubens[26] have  proposed  the  Shapely

interaction index . Let us consider a cooperative

game  where  players  participate  in  the  game,

.  In  order  to  use  the  Shapley  interaction

index to explain the DNN, we can consider the DNN as

the game, consider the model output as the reward in the

game,  and  regard  input  variables  as  players.  The  Shap-

ley  interaction  index  is  defined  to  measure  the  overall

utility  of  interactions  between  players  in  the  subset

, as follows:

IShap(S) =
∑

T⊆N\S

t!(n− t− s)!

(n− s+ 1)!
∆Sv(T ) (5)

∆Sv(T ) =
∑

L⊆S(−1)s−lv(L ∪ T )

S

T ⊆ N \ S
IShap(S)

S

where  quantifies intera-

ction utilities between variables in the subset  given the

contextual  variable  subset .  The  Shapley

interaction index  measures  the average interac-

tion  utility  between  input  variables  in  under  different

contextual variable subsets.

Based  on  the  definition,  Grabisch  and  Roubens[26]

have  proven  that  the  Shapely  interaction  index  satisfies

the following properties.

u

v w ∀S ⊆ N, w(S) =

u(S) + v(S) S ⊆ N

S u

v

S w

IShap
w (S) = IShap

u (S) + IShap
v (S)

Linearity  property. If  we  merge  the  game  and

the game  into a new game , i.e., for 

,  then,  for  any  subset  of  players ,  the

interaction utilities  between players  in  in  game  and

those in game  can also be merged into interaction util-

ities  between  players  in  in  the  new  game ,  i.e.,

.

i ∈ N S ⊆ N \ {i}
Dummy  property. Let  us  assume  that  a  player

 cooperates  with  a  subset  of  players ,
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i

S

and the co-appearance of  the player  and any subset of

players  does  not  have  any  interaction  effects,  i.e.,

∀S ⊆ N \ {i}, v(S ∪ {i}) = v(S) + v({i})
i

. Then, the play-

er  can be regarded as a dummy player. A dummy play-

 

Table 1    Notations used in this paper

              Symbols Descriptions

x　　　　 x = [x1, x2, · · · , xn]
TThe input sample ( )

δ　　　　 δ = [δ1, δ2, · · · , δn]TThe adversarial perturbation ( )

x̃　　　　 The adversarial sample

y　　　　 The ground truth label of the input sample

Ω　　　　 (x ∈ Ω)The set of all input samples 

N　　　　 (N = {1, 2, 3, · · · , n})The input variable set 

S, T　　　　 (S ⊆ N, T ⊆ N)The input variable subset 

i　　　　 iAn single input variable 

xi　　　　 iThe value of the input variable 

bi　　　　 iThe baseline value of the input variable 

ai　　　　 iThe attribution score of the input variable 

δi　　　　 iThe adversarial perturbation on the input variable 

u, v, w, h　　　　 A pre-trained deep neural network model

W　　　　 The network parameter of a DNNa
W　　　　 WThe change of the network parameter 

πS　　　　 πS = [κ1, κ2, · · ·κn]
TThe degree vector of the Taylor expansion ( )

ϕ(i)　　　　 iThe Shapley value of the input variable 

I(S)　　　　 SThe Harsanyi dividend of a subset of input variables 

IShap(S)　　　　 SThe Shapley interaction index of a subset of input variables 

I(m)(i, j)　　　　 i jThe multi-order interaction between the input variables   and 

B([S])　　　　 SThe multivariate interaction between input variables in 

T ([S])　　　　 SThe overall multivariate interaction strength between input variables in 

I(S, πS)　　　　 S πSThe Taylor interaction between input variables in   based on 

Bmax([S])　　　　 Overall strength of positive interactions

Bmin([S])　　　　 Overall strength of negative interactions

B+　　　　 The sum of absolute value of all positive elementary interaction components

B−　　　　 The sum of absolute value of all negative elementary interaction components

ℓinteraction　　　　 The loss to penalize the strength of game-theoretic interactions

ℓIR　　　　 The interaction-reduced loss

D(m)　　　　 mThe disentanglement metric to describe the discriminative power of  -order interactions

J(m)　　　　 mThe relative strength of  -order interactions

∆uc(r1, r2)　　　　 [0, r2n] cInteractions of  -th orders for the inference of category 

∆W (m)(i, j)　　　　 ∆W I(m)(i, j) WThe component of   w.r.t the gradient of the interaction   to the network parameter 

L+(r1, r2)　　　　 [0, r2n]The loss function to encourage the DNN to use interactions of the orders within the range 

L−(r1, r2)　　　　 [0, r2n]The loss function to penalize the DNN to use interactions of the orders within the range 
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∀S ⊆ N \ {i}, IShap(S ∪ {i}) = 0

er  joins  the game without interacting with other  players

in the game, i.e., .

i

j S ⊆ N i

S

j S i, j ∈ N,

∀S ⊆ N \ {i, j}, v(S ∪ {i}) = v(S ∪ {j}) ∀S ⊆
N \ {i, j}, IShap(S ∪ {i}) = IShap(S ∪ {j})

Symmetry property. Let us consider two players 

and , if for any subset of players , the player  col-

laborates with players in  in the same way as how the

player  collaborates  with  players  in ,  i.e., 

,  then 

.

IShap(S)

S

L S ∀S ⊆ N, |S|> 1

Recursive property 1. The  Shapley  interaction  in-

dex  is  equal  to  the  difference  between  rewards

gained by  and the sum of rewards gained by each sub-

set  of . Specifically, for , we have

IShap(S|N) = IShap([S]|N[S])−
∑

L⊊S,L̸=∅

IShap(L|NL).

(6)

IShap(S|N)

S N

IShap([S]|N[S]) S

[S]

IShap([S]|N[S])

[S] NS
def
=

N\S ∪ {[S]} IShap(L|NL)

L

NL
def
= N\S ∪ L S\L

Here,  denotes  the  Shapley  interaction  in-

dex of  over the set .  Besides,  in the computation of

,  we  consider  the  subset  as  a  singleton

player ,  rather  than  a  set  of  multiple  players.  In  this

way,  represents  the  Shapley  interaction

index  of  the  singleton  player  over  the  set 

. Similarly,  denotes the Shapley

interaction  index  of  multiple  players  in  over  the  set

, where players in  do not participate

in the game.

S ∪ {i} IShap(S ∪ {i})
S

i

S i

∀i ∈ S IShap(S ∪ {i}) = IShap

(S|with the presence of i)− IShap(S|with the absence of i)

Recursive  property  2. The  interaction  utility

between  players  in ,  i.e., ,  can  be

computed as “the interaction utility between players in 

when player  always participates the game” minus “the

interaction  utility  between  palyers  in  when  player 

is  always  absent,” i.e., , 

.

Connections with the Harsanyi dividend

IShap(S) S [S]

[S]

T ⊆ N\S

I(T ∪ [S])

[S]

1/(|T |+1)

IShap(S)

IShap(S)

T ⊆ N\S

We  have  proven  that  the  Shapley  interaction  index

connects  with  the  Harsanyi  dividend[17].  Specifically,  in

the  computation  of  the  Shapley  interaction  index

, we regarded the set  as a singleton player .

When the singleton player  cooperates with each differ-

ent subset of players , such a collaboration cre-

ates an interaction utility, which is given as the Harsanyi

dividend interaction . It is considered that each

player  participating  in  the  collaboration  contributes

equally  to  the  specific  Harsanyi  dividend  interaction.

Therefore, the singleton player , as one of the players,

gets  proportion  of  the  specific  Harsanyi  di-

vidend interaction as a component of the interaction util-

ity .  In  this  way,  the  Shapley  interaction  index

 can  be  considered  as  a  weighted  sum  of  the

Harsanyi  dividend  interaction  over  different  subsets  of

players , i.e.,

IShap(S) =
∑

T⊆N\S

1

|T |+1
I([S] ∪ T ). (7)

Connections to multivariate interactions

S

B([S]) B([S])

S S

Previous  studies  have  proposed  several  interaction

metrics to quantify interactions between multiple players,

but  these  interaction  metrics  usually  have  significant

computational  cost.  Therefore,  we  proposed  a  simplified

multivariate  interaction  between  a  set  of  players  in ,

which  is  denoted  by [13].  Specifically,  is

defined as the additional award when players in the sub-

set  interact  with  each  other  w.r.t.  when  players  in 

work  individually.  Here,  we  use  the  Shapley  value  to

quantify the reward gained by a set of players, i.e.,

B([S]) = ϕ([S]|N[S])−
∑
i∈S

ϕ(i|Ni). (8)

ϕ([S]|N[S])

S S [S]

N[S]
def
=

N\S ∪ {[S]} N

ϕ(i|Ni) i

Ni
def
= N\S ∪ {i}

S \ {i}

In the computation of the Shapley value  of

the subset , we regard  as a singleton player . Then,

we consider that the game is played by players in 

, instead of . Similarly, in the computation

of the Shapley value  of the player ,  we consider

the game is played by players in . In oth-

er  words,  players  in  do  not  participate  in  the

game.

B([S])

B([S])

The multivariate interaction  can be used to ex-

plain  interactions  between input  words  encoded by NLP

models,  such  as  bidirectional  encoder  representations

from  Transformers  (BERT),  long  short-term  memory

(LSTM),  and  Transformer.  Specifically,  we  adopt 

to  quantify  interaction  utilities  between  two  adjoining

words  (or  phrases),  and  then  we  represent  adjoining

words  (or  phrases)  with  significant  interaction  strength

using a tree structure.

B[S]

B([S])

L ⊆ S

L

Castro  et  al.[30] have  proposed  a  method  to  fast  ap-

proximate  the  Shapley  value  based  on  sampling,  so  the

multivariate interaction  can be calculated efficiently.

We prove that  can be considered as the sum of the

Shapley  interaction  index  of  all  possible  subsets ,

where each subset  contains at least two variables, i.e.,

B([S]) =
∑

L⊆S,|L|>1

IShap(L|NL). (9)

 2.2.3   Multivariate interaction strength

B[S]

B[S]

Bmax([S]) Bmin([S])

S′ ⊆ S

S′ ⊆ S

S K Ω = [C1, · · · , CK ]

∪K
i=1Ci =S, ∀1 ≤ i < j ≤ K, Ci ∩ Cj = ∅

Ω

The  positive  and  negative  interactions  contained  in

the  multivariate  interaction  may  neutralize  each

other,  so  the  multivariate  interaction  can  not  pre-

cisely reflect the interaction strength. Therefore, we pro-

pose a new metric to measure the overall strength of pos-

itive and negative interactions[13]. To this end, we design

 and  to  approximate  the  strength  of

all positive interactions within players in  and the

strength  of  all  negative  interactions  within  players  in

, respectively. Specifically, we divide all input vari-

ables in  into  coalitions, , which sat-

isfy . Given a spe-

cific partition of players , we can compute overall inter-
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B([S])=ϕ([S]|N[S])−∑
i∈S ϕ(i|Ni)

Bmax([S])

action effects under such a partition as 

.  To  approximate  the  strength  of  all  posit-

ive interactions,  is referred to as the maximum

interaction utility over all potential partitions, as follows:

Bmax([S]) = max
Ω

∑
C∈Ω

ϕ([C]|N[C])−
∑
i∈S

ϕ(i|Ni)

ϕ([C]|N[C])

C [C]

N\S ∪ {[C]} ϕ(i|Ni)

i

N\S ∪ {i}
Bmin([S])

where  measures  the  reward  gained  by  [C]

when  we  consider  players  in  as  a  singleton  player 

over the set of players , and  measures

the  reward  gained  by  the  player  among  all  players  in

the set . Similarly, to approximate the strength

of  all  negative  interactions,  we  define ,  as

follows:

Bmin([S]) = min
Ω

∑
C∈Ω

ϕ([C]|N[C])−
∑
i∈S

ϕ(i|Ni).

T ([S]) = Bmax([S])−Bmin([S])

In this  way,  we further  define the multivariate  inter-

action  strength  to  meas-

ure the overall strength of both positive and negative in-

teraction utilities,

T ([S]) = max
Ω

∑
C∈Ω

ϕ([C]|N[C])−min
Ω

∑
C∈Ω

ϕ([C]|N[C]). (10)

T ([S]) B([S])Connections between  and 

T ([S])

B([S]) B�([S]) =∑
L⊆S,|L|>1|I(L)| |I(L)| I(L) =

IShap(L|NL) B�([S])
B+ −B− B+ =

∑
L⊆S,|L|>1,I(L)≥0 I(L)

B− =
∑

L⊆S,|L|>1,I(L)<0 I(L)

Bmax([S]) B+

Bmin([S]) B−

T ([S]) = Bmax([S])−
Bmin([S])

B�([S]) = B+ −B−

We  demonstrate  that  the  multivariate  interaction

strength  connects  with  the  multivariate  interac-

tion . Based on (9), we accordingly define 

 as  the  sum  of ,  where 

.  In  this  way,  can  be  considered  as

equivalent to , where 

represents  the  utility  of  all  positive  interactions,  and

 represents  the  utility  of  all

negative  interactions.  Both  and  represent

positive  interaction utilities,  and both  and 

represent  negative  interaction  utilities.  Thus,  the  mul-

tivariate  interaction  strength 

 has strong connections with the multivariate in-

teraction .

T ([S]) Ω

T ([S])

In  the  computation  of  the  multivariate  interaction

strength , we need to take all possible partitions 

into consideration, which results in an unaffordable com-

putational  cost.  To  this  end,  we  have  proposed  an  ap-

proximation  method  to  efficiently  compute  based

on sampling in [13].
 2.2.4   Multi-order interactions

v n

n

n N = {1, · · · , n}
I(m)(i, j) i

j

In order to quantify the interaction utilities  of  differ-

ent  complexities,  we  propose  the  multi-order  interaction

in  [14].  Specifically,  let  us  consider  a  game  where 

players  participate  in  the  game.  We can  consider  a

trained DNN as a game, and regard  variables of the in-

put  sample  as  players, . The  multi-or-

der interaction  between the input variable  and

the input variable  is defined, as follows:

I(m)(i, j) = ES⊆N\{i,j},|S|=m∆v(i, j, S) (11)

∆v(i, j, S)=v(S ∪ {i, j})−v(S ∪ {i})−v(S ∪ {j})+
v(S) m I(m)(i, j)

i

j i j

m

where 

.  The -order  interaction  quantifies  the

average utility of the interaction between two variables 

and  when variables  and  cooperate with different sets

of  contextual variables.

I(m)(i, j)

In order to verify the trustworthiness of the multi-or-

der  interaction,  we have  proven that  the  multi-order  in-

teraction  satisfies the following properties in [22].

u v

w ∀S ⊆ N,

w(S) = u(S) + v(S)

u v

w I
(m)
w (i, j) =

I
(m)
u (i, j) + I

(m)
v (i, j)

Linearity property. If a game  and a game  can

be  combined  into  a  new  game ,  i.e.,  for 

, then, multi-order interactions of the

game  and game  can be also combined into the multi-

order  interaction  of  the  new  game ,  i.e., 

.

i

∀S ⊆ N \ {i}, v(S ∪ {i}) =
v(S) + v({i}) i

i

∀j ∈ N \ {i}, ∀m, I(m)(i, j) = 0

Nullity  property. If  the  collaboration  between  an

input variable  and any subset of variables cannot bring

any  additional  reward,  i.e., 

,  then,  the  variable  is  termed  a  dummy

variable. The multi-order interaction between the dummy

variable  and  any  other  variables  equals  to  zero,  i.e.,

.

i j

j i

∀i, j ∈ N, I(m)(i, j) = I(m)(j, i)

Commutativity  property. The  interaction  utilities

between the variable  and the variable  are equal to the

interaction  utilities  of  the  variable  and  the  variable ,

i.e., .

i j

i and j

v(S ∪ {i}) = v(S∪
{j}) k ∈ N ∀m, I(m)(i, k) =

I(m)(j, k)

Symmetry property. Assume two variables  and 

are equivalent in the sense that  have the same in-

teractions  with  other  variables,  i.e., 

. Then, for any variable , we have 

.

Efficiency  property  (The  details  about  the

proof can be found in [22]). The multi-order interac-

tion  of  different  orders  between  different  pairs  of  input

variables can fit the exact model output score of a DNN.

v(N)− v(∅) =
∑
i∈N

µi +
∑

i,j∈N,i ̸=j

n−2∑
m=0

w(m)I(m)(i, j) (12)

µi = v({i})− v(∅)
i w(m) = (n− 1−m)/

[n(n− 1)]

where  represents  the  independent

utility  of  the  variable ,  and 

.

Connection  with  the  pairwise  interaction

between two variables

I(m)(i, j)

IShap(i, j)

i j

Furthermore,  we  show  that  the  multi-order  interac-

tion  is  trustworthy  by  proving  that  the  multi-

order  interaction  strongly  connects  the  pairwise  interac-

tion between two variables  in  [14].  Specifically,  the  clas-

sical  the  pairwise  Shapley  interaction  index 

between two input  variables  and  can be  decomposed

into the multi-order interactions.

IShap(i, j) =
1

n− 1

n−2∑
m=0

I(m)(i, j).
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 3   Unifying attribution explanations

Attribution methods present a typical direction of ex-

plaining  DNNs,  which  infer  the  attribution,  importance,

or saliency of each input variable to the output score of a

DNN.  However,  attribution  methods  cannot  directly  ex-

plain  either  the  concept  representation of  a  DNN or  the

performance of a DNN.

In recent years,  many attribution methods have been

proposed based on different heuristics, but there is no sol-

id  theoretical  foundation  to  summarize  the  essential

mechanism  shared  by  different  attribution  methods.

Therefore,  to  improve  the  trustworthiness  of  attribution

methods, we reformulate different attribution methods in

a  unified  Taylor-interaction  framework,  and  such  a  uni-

fied framework allows us  to  fairly  compare common and

distinctive  mechanisms  of  different  attribution  methods.

Furthermore, based on the Taylor-interaction framework,

we  establish  three  principles  to  evaluate  the  fairness  of

different attribution methods.

 3.1   Taylor interactions

We propose  the  Taylor  interaction[31] to  measure  the

collaborative  relationship  between  different  input  vari-

ables  of  a  DNN, which enables  us  to explain the output

score of a DNN from a new perspective.

Specifically, based on the Taylor interaction, the out-

put score of a DNN can be fully explained as two typical

effects  caused by input variables.  The first  effect  is  that

an  individual  input  variable  directly  affects  the  output

score  without  collaborating  with  other  input  variables.

Such  an  effect  is  termed  as  the  independent  effect.  The

other  effect  is  that  different  input  variables  collaborate

with  each  other,  thereby  making  a  certain  numerical  ef-

fect on the output score. Such an effect is termed the in-

teraction effect.  For example, for the inference of a face,

the nose region can increase the confidence of recognition

without depending on other image regions, which corres-

ponds to an independent effect. In addition, the image re-

gions of eyes, nose, and mouth collaborate with each oth-

er  and increase the confidence of  recognition,  which cor-

responds  to  an  interaction  effect.  Accordingly,  the  out-

put score can be explained as the sum of independent ef-

fects and interaction effects.

v(N)

Let  us  further  mathematically  formulate  how  to  ex-

plain the output score of a DNN as the sum of independ-

ent effects and interaction effects, as follows. We quanti-

fy  these  two  effects  by  the  proposed  Taylor  interaction,

and prove that the output score  can be represented

as the sum of two effects.

v(N) = v(∅) +
∑
j∈N

ϕ(j) +
∑

S⊆N,|S|>1

∑
πS

I(S, πS) (13)

ϕ(j)

j I(S, πS)

S

where  denotes  the  independent  effect  of  the  input

variable .  In  addition,  denotes  the  interaction

effect of the input variable subset  with a degree vector

πS πS = [κ1, · · · , κn] ∀i ∈ N, κi ∈ N

S = {i|κi ̸= 0} f

, where  satisfying  and

. Specifically, given a DNN ,

I(S, πS) = C(S, πS)∇f(S, πS)
∏
i∈S

(xi − bi)
κi

xi bi
i

C(S, πS) =
1
n!

(
κ1+···+κn
κ1,··· ,κn

)
∇f(S, πS) =

∂κ1+···+κnf(b)
∂κ1x1······∂κnxn

f

b = [b1, · · · , bn] πS

I(S, πS)

πS

where  and  denote  the  variable  value  and  the

baseline value of  the -th input variable,  respectively.  In

addition,  the  coefficient  term 

and  denotes  the  partial

derivative  of  the  DNN  at  the  baseline  point

 given the degree vector . Deng et al.[31]

have  proven  that,  the  sum  of  over  all  possible

degree  vectors  equals  to  the  Harsanyi  dividend

interaction.

I(S) =
∑
πS

I(S, πS). (14)

I(S, πS) πS

Hence,  we  can  consider  that  the  interaction  effect

 with a degree vector  can explain the basic ele-

ment of  the Harsanyi dividend interaction.  Furthermore,

(7) have shown the connection between the Harsanyi di-

vidend and the Shapley interaction index. Thus, combin-

ing (14) and (7), we can also represent the Shapley inter-

action index as

IShap(S) =
∑

T⊆N\S

1

|T |+ 1

∑
π[S]∪T∈Ω[S]∪T

I([S] ∪ T, π[S]∪T ).

 3.2   Unifying and evaluating attribution
explanations

ai i

Crucially,  we  discover  and  prove  that  the  Taylor  in-

teraction can explain fourteen attribution methods[5, 32−39].

Hence, we consider that the Taylor interaction reveals the

essential mechanism shared by different attribution meth-

ods.  Specifically,  the goal  of  an attribution method is  to

infer the contribution  of an input variable  to the out-

put. Then, according to the above explanation of the out-

put, we discover that the contribution of each input vari-

able to the output can also be explained by independent

effects  and  interaction  effects  in  (15).  Beyond  this,  we

further  prove that  the  attribution estimated by each at-

tribution method can also be reformulated as a weighted

sum of these two effects.

ai =
∑
j∈N

wi,jϕ(j) +
∑

S⊆N,|S|>1

∑
πS

wi,{S,πS}I(S, πS) (15)

wi,j

ϕ(j) j

i wi,{S,πS}
I(S, πS) S

i

where  denotes  the  ratio  of  the  independent  effect

 of  the  variable  that  is  assigned  with  the

contribution of the variable .  denotes the ratio

of the interaction effect  of the variable subset 

that is assigned with the contribution of the variable .

Based on the Taylor interaction, we discover that the
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I(S, πS)

I(S, πS) S ∀i ∈ S

wi,{S,πS} = 1/|S|
i ∈ S

∀i ∈ S wi,{S,πS} = 1

essential difference of the mechanisms of fourteen attribu-

tion methods mainly lies in the strategy of an attribution

method  assigning  interaction  effects .  For  ex-

ample,  the  Shapley  value[24] evenly  distributes  interac-

tion effects  to each variable in , i.e., for ,

.  In  comparison,  Occlusion-1[40] distrib-

utes  the  whole  interaction  effect  to  each  variable ,

which means that for , .

Each  attribution  method′s  distinctive  way  of  assign-

ing interaction effects and independent effects determines

its  distinctive  attribution  scores.  This  motivates  us  to

compare these attribution methods.  Therefore,  we estab-

lish  three  principles  for  the  fairness  of  attribution meth-

ods.

j ∈ N

ϕ(j)∑
i∈N wi,j = 1

S ⊆ N πS

I(S, πS)∑
i∈N wi,{S,πS} = 1

1) For each input variable ,  its  independent ef-

fect  should all be attributed (to input variables), i.e.,

.  Similarly,  for  each  input  variable  subset

 and  each  degree  vector ,  its  interaction  effect

 should all be attributed (to input variables), i.e.,

for .

i

i wi,i = 1

∀j ̸= i wi,j = 0

2)  The  independent  effect  of  the  input  variable 

should  be  attributed  only  to  the  variable ,  i.e., 

and for , .

I(S, πS)

S

S

S
∑

i∈S wi,{S,πS} = 1 ∀i /∈ S,wi,{S,πS} =

0

3) Each interaction effect  between input vari-

ables in subset  should be and only be attributed to in-

put  variables  in  the  subset ,  instead  of  input  variables

out of , i.e., , and for 

.

αβ

We  use  the  above  three  principles  to  evaluate  four-

teen attribution methods[5, 24, 32, 33, 40, 34–39].  For example,

we find that Gradient × Input[32], Grad-CAM[34] and Oc-

clusion-1[40] violate  the  first  principle.  LRP- [33] and

deep Taylor[38] violate the second and third principles. In

comparison, the Shapley value[24], DeepLIFT[37] and integ-

rated Gradients[36] satisfy all three principles, so they can

be considered to  generate  fair  attributions  from the  per-

spective of three principles.

 4   Explaining concept representations

As  mentioned  above,  explaining  concept  representa-

tions  in  DNNs  can  help  us  comprehensively  understand

the  performance  of  DNNs.  To  this  end,  we  use  above

game-theoretic interactions to explain the concept repres-

entation  of  DNNs  from three  perspectives.  First,  we  de-

compose  the  DNN  representation  into  a  hierarchical  in-

teraction  tree  to  explain  the  internal  behaviors  of  the

DNN[17].  Second,  we  define  visual  concepts  and  explain

the  essence  of  signal  processing  of  visual  concepts  en-

coded  in  DNNs[20].  Third,  we  explore  prototypical  con-

cepts that are encoded in the DNN[21].

 4.1   Decomposing DNN representations
into axiomatic and hierarchical And-
Or graphs

Many  explanations  have  been  proposed  to  explain

DNNs,  but  there  is  no  guarantee  for  their  objectiveness,

which  hurts  the  trustworthiness  of  these  explanations.

We have shown that  explainer  models  learned by know-

ledge  distillation  cannot  objectively  reflect  the  underly-

ing attention of the target DNN[17].

To this end, there are essentially two challenges for an

objective explanation from the perspective of concept rep-

resentations.  First,  there  is  not  a  standard definition for

the objectiveness of explanations. Second, we need to pre-

cisely disentangle and explain all concepts encoded in the

DNN,  in  order  to  examine  the  objectiveness  of  the  ex-

planation. We propose a possible solution to the above is-

sues in [17].

v

g

g

v

I(S)

Definition of the objectiveness of explanations.

We  first  define  the  objectiveness  of  explanations  as  fol-

lows. For a target model , an objective explainer model

 is supposed to ensure that causal factors for inference in

the  explainer  model  are  exactly  the  same  as  causal

factors in the target model . Causal factors can be rep-

resented as Harsanyi dividend interactions between input

variables  (in  Section  2.2)  encoded  by  the  model.

Therefore,  we  define  the  objectiveness  of  an  explainer

model as follows.

x ∈ Rn

g

v

Definition  1  (Objectiveness  of  explanations).

Given  a  specific  input  sample ,  an  objective  ex-

plainer  model  is  supposed  to  encode  exactly  the  same

Harsanyi  dividend  interactions  as  the  target  model 

w.r.t. all cases.

∀S ⊆ N, Ig(S) = Iv(S) (16)

Ig(S) Iv(S)

S

g

v

where  and  denote  the  Harsanyi  dividend

interaction  of  variables  in  encoded  in  the  explainer

model  and the Harsanyi dividend interaction encoded in

the target model , respectively.

This  definition  ensures  that  the  explainer  model  en-

codes exactly the same causal factors for inference as the

target model.

v(N)

I(S)

S

I(S)

S

I(S) v(N)

Existence  of  the  explanation  satisfying  the

above objectiveness. We have proven that the Harsa-

nyi  dividend  interaction  is  exactly  an  objective  explana-

tion  that  satisfied  the  above  definition.  Furthermore,

based on (3), the model output  can be decomposed

into the sum of Harsanyi dividend interactions  of all

subsets . Therefore, we consider (3) as an And-Sum rep-

resentation  of  the  model  output,  where  each  interaction

 represents  the  AND  relationship  between  variables

in . The SUM relationship refers to that all interactions

 sum up to  the  model  output .  In  this  way,  as

Fig. 3 shows, we build up an And-Or graph (AOG) based

on  the  And-Sum  representation.  Moreover,  we  propose

three  techniques  to  further  simplify  the  AOG  explana-

tion.

 4.2   Explaining visual concepts

Using visual concepts to explain DNNs is also a clas-
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sical direction of explainable AI. For example, the visual-

ization  of  network  features[1–3] aimed  to  illustrate  visual

concepts  encoded by  DNNs,  and attribution  methods[4−6]

were  related  to  discovering  important  visual  concepts

contained  in  the  image.  Although  these  methods  could

explain DNNs effectively, they still ignored the core issue

that  previous  methods  usually  did  not  define  and model

visual  concepts  theoretically.  Instead,  these  studies

mainly analyzed how visual  concepts were distributed in

different layers in an experimental manner.

Hence,  without  theoretical  definitions  of  visual  con-

cepts,  it  is  difficult  to  build  up  a  clear  connection

between the traditional taxonomy of visual concepts and

the concept representation of a DNN. In other words, the

traditional  taxonomy of  visual  concepts  mainly  relies  on

human cognition,  which cannot correctly reflect distinct-

ive signal-processing behaviors of a DNN encoding differ-

ent  visual  concepts.  Specifically,  people  usually  classify

visual  concepts  into shapes with rich structural  informa-

tion and textures without clear structural information[41].

Such a cognitive classification of visual concepts into tex-

tures  and shapes  can be  further  subdivided into  objects,

parts, scenes, textures, materials and colors[42].

To this end, we provide a new way to categorize visu-

al concepts w.r.t. their complexities, which can better re-

flect how a DNN processes visual features to encode visu-

al  concepts[20].  Specifically,  we  represent  visual  concepts

of  different  complexities  using  multi-order  interactions

(defined  in  Section  2.2).  To  this  end,  simple/local  con-

cepts  usually  correspond  to  low-order  interactions,  and

complex/global concepts are often referred to as high-or-

der interactions. Thus, the concept complexity enables us

to analyze the concept representation of the DNN.

Using multi-order interactions to explain visu-

al  concepts. We  discover  that  low-order  interactions

usually  reflect  common  visual  concepts  without  rich

structural  information.  In comparison,  middle/high-order

interactions tend to encode concepts with relatively more

complex structural (textural/shape) information.

Using  multi-order  interactions  to  explain  tex-

tures and shapes. Furthermore,  we  analyze  the  differ-

ence between the behavior when the DNN models textur-

al  concepts  and  the  behavior  when  the  DNN  models

shape concepts. We discover that signal-processing beha-

viors  of  modeling  textural  concepts  are  much  more  flex-

ible than those of modeling shape concepts from the per-

spective of multi-order interactions. This is because a tex-

tural  concept  can  be  encoded  flexibly  as  either  a  large

number of repeated simple and local textures, or a small

number  of  middle-complexity  textures  whose  appear-

ances  are  memorized  as  specific  contextual  patterns  by

the DNN. In comparison, the modeling of shape concepts

is not as flexible as the modeling of textural concepts, i.e.,

the  shape  concept  is  usually  represented  as  a  relatively

stable  distribution  of  interactions  over  different  orders.

Especially, if the shape concept is mainly represented by

high-order interactions, then this shape concept may rep-

resent  specific  large-scale  shapes  or  out-of-the-distribu-

tion samples.

 4.3   Explaining prototypical concepts

Based on the analysis of visual concepts, a more inter-

esting problem is to explore the prototypical concepts en-

coded in a DNN, which is  also a typical  direction in ex-

plainable AI.

To this end, we provide a method to model and disen-

tangle prototypical concepts contained by an image, and

further revise this image to make prototypical concepts in

the  image  more  salient[21].  Specifically,  we  find  that  the

DNN  usually  represents  an  image  as  a  mixture  of  con-

cepts.  Thus,  we  propose  a  hypothesis  that  prototypical

concepts  usually  more  strongly  activate  the  DNN  than

non-prototypical  concepts.  Therefore,  removing plenty of

non-prototypical  concepts  from  the  image  usually  forces

the DNN to pay more attention to prototypical concepts.

n

N = {1, 2, · · · , n}
S ⊆ N

feature =∑
S⊆N I(S)

A major challenge of verifying the above hypothesis is

how  to  mathematically  define  prototypical  concepts  and

non-prototypical  concepts  encoded  in  a  DNN.  Fortu-

nately, we have proven that the visual concepts encoded

in a DNN can be represented by the Harsanyi  dividend,

which has been introduced in Section 2.2[17].  Specifically,

considering  an  image  consisting  of  patches

, we define the visual concept as a sub-

set of patches  that have strong interaction utilit-

ies (or the Harsanyi dividend interaction) with each oth-

er.  In this  way,  we have proven that feature representa-

tion can be represented as the sum of Harsanyi dividend

interactions  of  different  visual  concepts,  i.e., 

. We extend the vanilla Harsanyi dividend in-
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Fig. 3     We represent casual factors encoded in a DNN into an And-Or graph (AOG), and we further simplify the AOG explanation by
extracting common coalitions among different casual factors[17].
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I(S)to  a  vector ,  which  measures  the  Harsanyi  dividend

with respect to the computation of a vectorized interme-

diate-layer feature of the DNN.

S

∥I(S)∥2

S

∥I(S)∥2

We  consider  visual  concepts  that  have  salient  influ-

ence on feature representations as prototypical concept′s,
i.e.,  the  prototypical  concept  usually  has  a  relatively

large interaction effect . Among a huge number of

visual  concepts,  most  visual  concepts  have  little  impact

on feature representations,  and these visual  concepts are

considered  as  non-prototypical  concept′s,  i.e.,  the  non-

prototypical  concept  usually  has  negligible  interaction

effects .

In this way, to verify the hypothesis, we revise the ori-

ginal  image  by  enhancing  prototypical  concepts  and  re-

moving non-prototypical concepts. If such an image revi-

sion makes the image look more prototypical, then we be-

lieve that the hypothesis was somewhat trustworthy.

Fig. 4 shows that the revised image tends to be more

prototypical than the original image, e.g., the tree in the

image  turns  greener.  Thus,  we  consider  that  the  above

hypothesis is successfully verified.

m2

m2 x̂

Moreover,  in  order  to  verify  that  prototypical  con-

cepts make an image easier to perceive, we increase or de-

crease  the  number  of  prototypical  concepts  to  revise

an  image. Fig. 5 shows  that,  when  the  number  of  proto-

typical concepts  is large, the revised image  tends to

exhibit  a  more  prototypical  appearance.  Such  a  phe-

nomenon verifies  the effectiveness  of  the proposed meth-

od to model and disentangle prototypical concepts.

 5   Explaining the representation power
of a DNN

The  new  perspective  of  concept  representation  en-

ables us to explain the representation power of a DNN in

a fine-grained manner. In other words, we can explain the

representation  power  of  a  DNN  by  directly  exploring

properties of various concepts encoded by the DNN. More

crucially,  such an explanation enables  us  to  unify  differ-

ent  methods  of  boosting  adversarial  transferability,  and

helps  us  extract  the  common  mechanism of  these  meth-

ods.  To  this  end,  we  use  game-theoretic  interactions  to

explain DNNs from four perspectives, including adversari-

al  transferability,  adversarial  robustness,  generalization

power, and representation bottleneck of DNNs.

 5.1   Unifying studies of boosting adversari-
al transferability

In recent years,  adversarial  transferability has attrac-

ted  much  attention  in  the  field  of  deep  learning.  Many

approaches  have  been  proposed  to  improve  adversarial
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transferability. However, the intrinsic mechanism of these

methods  to  improve  the  adversarial  transferability  re-

mains  unclear.  It  is  of  vital  importance  to  theoretically

explain  common  effects  of  previous  transferability-boost-

ing approaches, thereby guiding researchers to develop ef-

fective defense methods. Furthermore, the theoretical ex-

planation may also help people discover theoretical flaws

in  previous  methods  and  boost  their  performance.  It  is

because some heuristic methods may not purely boost the

adversarial  transferability,  but  sometimes  also  make  op-

posite effects.

Therefore,  an  essential  explanation  for  adversarial

transferability is supposed to reflect the common mechan-

ism shared  by  different  transferability-boosting  methods.

More crucially, such a theoretical explanation is also sup-

posed  to  further  guide  us  to  refine  existing  heuristic

methods and boost the transferability of adversarial  per-

turbations.

h x x̃ = x+ δ

δ

δ

To this end, we propose a unified explanation for the

adversarial  transferability  from  the  perspective  of  game-

theoretic  interactions[23].  Specifically,  adversarial  ex-

amples  are  usually  formulated  as  follows.  Given  a  pre-

trained DNN  and an input sample , let  de-

note  the  adversarial  example,  where  denotes  the  ad-

versarial  perturbation.  The  adversarial  perturbation  is

obtained as follows:

δ = arg max
δ�

ℓ(h(x+ δ�), y), s.t. ∥δ∥p ≤ ϵ (17)

h(·) ∈ RC

ℓ y

x ϵ

δi

where  denotes  the  DNN  output  before  the

softmax layer.  denotes the loss for classification, and 

denotes the ground-truth label of the input sample .  is

a  constant  to  constrain  the  norm  of  the  adversarial

perturbation.  Each  dimension  of  the  perturbation  is

regarded as a perturbation unit.

N = {1, 2, · · · , n}
n δ

S ⊆ N

v(S) = maxy�̸=y hy�(x+ δ(S))− hy(x+ δ(S))

In  this  case,  we  can  use  to  denote

the set  of  all  the  perturbation units  in .  The attack-

ing  utility  of  perturbation  units  in  the  subset  is

defined  as ,

hy(·) y

h(·) δ(S)

S ∀i ∈ S, δ
(S)
i =

δi; ∀i /∈ S, δ
(S)
i = 0

i, j

where  denotes  the  value  of  the -th  dimension  of

.  denotes  the  perturbation  when  only  perturba-

tion  units  in  are  perturbed,  i.e., 

.  Therefore,  the  pairwise  interaction

between two perturbation units  can be represented as

follows:

IShap(i, j) =
∑

S⊆N\{i,j}

s!(n− s− 2)!

(n− 1)!
∆{i,j}v(S) (18)

s = |S| ∆{i,j}v(S) = v(S ∪ {i, j})− v(S ∪ {i})−
v(S ∪ {j}) + v(S)

where  and 

.

IShap(i, j) i, j

Based  on  the  above  game-theoretic  interaction

 between  two  perturbation  units ,  we  have

found that the adversarial transferability and game-theor-

etic interactions are negatively correlated. First, we veri-

fy  that  perturbations  generated  from  single-step  ad-

versarial attacking methods usually encode weaker game-

theoretic  interactions  than  those  generated  from  multi-

step  adversarial  attacking  methods.  Previous  study[43]

have found that perturbations generated from single-step

adversarial attacking methods are more transferable than

those  generated  from  multi-step  adversarial  attacking

methods. Therefore, we deduce that the adversarial trans-

ferability  and  game-theoretic  interactions  are  negatively

correlated.  Experimental  results  in Fig. 6 have  verified

this conclusion.

Based on the above finding, we have proven a unified

explanation  for  the  adversarial  transferability,  i.e.,  redu-

cing  game-theoretic  interaction  is  the  common  effect

shared  by  various  transferability-boosting  methods.  Spe-

cifically, we prove and verify that the following five previ-

ous transferability-boosting methods all reduce the game-

theoretic interaction between perturbation units.

Momentum  iterative  attack  (MI  Attack).[44]

Gradient  momentum  is  added  to  the  optimization  pro-

cess of adversarial perturbations.

Variance-reduced attack (VR attack).[45] During

the attack, Gaussian noise is added to the input image to
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Fig. 5     Comparisons of images revised to contain different numbers of   non-prototypical concepts and   prototypical concepts[21].
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smooth the gradient against the input image.

Skip  gradient  method  attack  (SGM attack).[46]

For the residual  block structure  of  the DNN, this  meth-

od  increases  the  gradient  weight  of  the  skip-connection

branch in the back-propagation process.

Diversity input attack (DI attack).[43] During the

attack, this method introduces random padding and resiz-

ing of the input image to increase the diversity.

Translation invariant attack (TI attack).[47] This

method  generates  adversarial  perturbations  by  con-

volving the gradient w.r.t. a set of translated versions of

the original images during the attack.

IShap(i, j)

Because  we  have  found  that  many  transferability-

boosting methods all share the same mechanism of redu-

cing the interaction, such a common mechanism guides us

to  propose  a  new  loss  function  to  boost  the  adversarial

transferability.  We  propose  the  interaction-reduced  loss

(IR loss)  to  directly  penalize  the  game-theoretic  interac-

tion between perturbation units  during the at-

tack as follows:

ℓIR = Ei,j∈N,i ̸=jI
Shap(i, j). (19)

ℓ ℓIR

L∞

L2

During the attack,  we generate and obtain adversari-

al  perturbations  by  jointly  minimizing  the  classification

loss  and the IR loss . We term this method as the in-

teraction-reduced attack (IR Attack). The IR Attack can

also  be  combined  with  previous  transferability-boosting

methods  to  further  boost  their  performance,  which  is

termed the HybridIR Attack. As Table 2 shows, with the

additional  interaction-reduction  (IR)  loss,  adversarial

transferability is boosted on both the  attack and the

 attack.

In fact, our latest study has found that the decrease of

the  interaction  is  actually  the  common  mechanism  of  a

total of twelve transferability-boosting methods[44−46, 48−56].

Moreover,  we  can  use  this  mechanism  to  further  refine

the algorithmic design of three previous methods[52, 53, 57].

 5.2   Explaining adversarial robustness

Besides adversarial  transferability,  adversarial  robust-

ness is another important problem, whose mechanism has

not been fully explained. There have been many methods

to boost adversarial robustness of DNNs, but we still can-

not  understand  the  essence  of  adversarial  examples  and

robustness. To this end, some studies[10, 58] proved math-

ematical  bounds  for  robustness.  Some  studies[59, 60] ex-

plored the connection between adversarial robustness and

network interpretability. However, these studies could not

reveal  the  essential  reason  for  robustness  of  DNNs,  i.e.,

which  types  of  features  made  the  DNN robust  and  why

the DNN learned such non-robust features.

x I(m)(i, j)

m

i, j x

x

x̃

To  this  end,  we  propose  to  explain  and  understand

adversarial  robustness  from the  perspective  of  game-the-

oretic  interactions[22].  We  can  first  explain  effects  of  ad-

versarial  examples.  We  theoretically  prove  and  experi-

mentally verify that adversarial  perturbations mainly af-

fect high-order interactions between input variables. More

specifically,  given  the  input  sample ,  let  de-

note the -order interaction between two input variables

 in the input sample . We compare multi-order inter-

actions  between  variables  in  the  original  sample  and

multi-order  interactions  between  variables  in  the  ad-

versarial example . Fig. 7 shows that high-order interac-

tions are more sensitive to perturbations and are easier to

be affected by adversarial attacks than low-order interac-

tions.

D(m)

m

D(m) m

D(m)

Furthermore,  we  find  that  adversarial  training  en-

hances the discrimination power of low-order interactions

encoded  in  a  DNN,  thereby  boosting  the  robustness  of

high-order  interactions  and  the  robustness  of  the  model.

Specifically,  we  find  that  low-order  interactions  in  ad-

versarially-trained  DNNs  have  more  attacking  utilities

than  those  in  normally-trained  DNNs.  Meanwhile,  high-

order interactions in adversarially-trained DNNs are more

robust than those in normally-trained DNNs. To explain

this phenomenon, we define a metric  to measure the

discriminative  power  of -order  interactions,  which  is

termed  as  the  disentanglement  metric.  A  large  value  of

 indicates that -order interactions purely describe a

specific  category. Fig. 8 shows  that  in  adversarially-

trained  DNNs,  low-order  interactions  exhibit  larger  val-

ues  of  than  low-order  interactions  in  normally-

trained DNNs.  This  demonstrates  that  adversarial  train-

ing boosts the discriminative power of low-order interac-

tions, which yields more robust high-order interactions.

The above explanation enables us to unify the mech-
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Fig. 6     We verify that the adversarial transferability and game-theoretic interactions are negatively correlated.[23]
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anism of the following four adversarial defense methods.

The  ML-LOO  detection  method. Yang  et  al.[61]

proposed to detect adversarial examples from normal samp-

les based on the attribution of inputs. We prove that this

method  actually  utilizes  the  most  sensitive  components

(high-order  interactions)  in  DNNs  to  distinguish  ad-

versarial examples and normal samples.

The  cutout  training  method. DeVries  and

Taylor[62] proposed  to  randomly  mask  a  region  of  input

images to enhance the robustness of the model. We prove

that  this  method  discards  sensitive  high-order  interac-

tions encoded by the DNN, thereby boosting the robust-

ness of the DNN.

k

k

The rank-based  method. Jere  et  al.[63] found  that

normal samples contain more low-rank features (w.r.t. the

singular  value  decomposition),  and  adversarial  examples

are usually composed of high-rank features (w.r.t. the sin-

gular value decomposition). Specifically, given the SVD of

the original image, low-rank features refer to images that

are constructed by using the largest  singular values and

their corresponding singular vectors. In comparison, high-

rank features refer to images that are constructed by us-

ing  the  smallest  singular  values  and  their  correspond-

ing singular vectors. We demonstrate that high-order in-

teractions can better  explain the difference between nor-

mal samples and adversarial examples.

The  high  recoverability  of  adversarial  ex-

amples  in  adversarially-trained  DNNs.[64] The  ad-

versarial recoverability refers to as the ability of minimiz-

ing  the  classification  loss  to  invert  an  adversarial  ex-

ample  to  the  original  sample  without  being  perturbed.

We  discover  that  adversarial  examples  generated  on  ad-

versarially-trained  DNNs  exhibit  higher  recoverability

than  those  generated  on  normally-trained  DNNs.  This

can  be  explained  by  the  phenomenon  that  adversarial

training  usually  learns  low-order  interactions  with  much

stronger  discriminative  power  than  high-order  interac-

tions.  Low-order  interactions  are  usually  less  affected by

adversarial attacks and are easier to be recovered.

 5.3   Explaining dropout and generalization

Besides the adversarial robustness, explaining and im-

proving the  generalization power  of  DNNs is  still  a  con-

siderable challenge for deep learning. The dropout opera-

tion  can  effectively  improve  the  generalization  power  of

 

ℓ∞ ℓ2Table 2    Transferability with and without the interaction loss[23]: The success rates of   and   black-box attacks crafted on six source
models, including AlexNet, VGG16, RN-34/152 and DN-121/201, against seven target models. Penalizing interactions between

perturbation units boosted the transferability of adversarial perturbations. All the values are in %.

Source Method VGG-16 RN152 DN-201 SE-154 IncV3 IncV4 IncResV2

AlexNet

ℓ∞PGD  ±67.0 1.6 ±27.8 1.1 ±32.3 0.4 ±28.2 0.7 ±29.1 1.5 ±23.0 0.4 ±18.6 1.5

ℓ∞PGD  +IR ±78.7 1.0 ±42.0 1.5 ±50.3 0.4 ±41.2 0.6 ±43.7 0.5 ±36.4 1.5 ±29.0 1.0

DN-121

ℓ∞PGD  ±68.6 1.1 ±63.6 3.2 ±86.9 1.5 ±46.1 1.5 ±37.3 1.6 ±37.1 2.1 ±28.9 2.8

ℓ∞PGD  +IR ±85.0 0.3 ±84.8 0.4 ±95.1 0.2 ±70.3 1.7 ±61.1 2.5 ±62.1 2.0 ±53.5 0.3

DN-201

ℓ∞PGD  ±64.4 1.4 ±67.8 0.2 – ±50.9 0.8 ±39.5 3.3 ±36.5 0.9 ±34.2 0.4

ℓ∞PGD  +IR ±78.6 2.5 ±85.0 1.1 – ±73.9 0.5 ±61.6 1.8 ±63.7 0.6 ±56.4 2.1

RN-34

ℓ∞PGD  ±65.4 2.9 ±59.2 2.7 ±63.5 3.3 ±33.1 2.9 ±27.4 3.6 ±23.9 1.7 ±21.1 1.1

ℓ∞PGD  +IR ±84.0 0.5 ±84.7 2.3 ±88.5 0.9 ±64.4 1.6 ±56.9 3.1 ±59.3 4.3 ±49.2 1.1

RN-152

ℓ∞PGD  ±51.6 3.2 – ±61.5 2.4 ±33.9 1.5 ±28.1 0.9 ±25.0 1.2 ±22.4 1.0

ℓ∞PGD  +IR ±72.3 1.2 – ±82.1 1.3 ±61.1 0.9 ±53.6 0.8 ±50.6 3.5 ±46.0 2.3

VGG-16

ℓ∞PGD  – ±43.0 1.8 ±48.3 2.0 ±52.9 2.7 ±39.3 0.7 ±49.3 1.1 ±29.7 2.0

ℓ∞PGD  +IR – ±63.1 1.6 ±70.0 1.1 ±71.2 1.5 ±57.6 1.0 ±68.6 3.2 ±49.2 1.2

AlexNet
ℓ2PGD  ±85.1 1.5 ±58.9 1.0 ±60.2 2.1 ±55.1 1.5 ±56.0 3.7 ±49.6 3.4 ±44.6 3.3

ℓ2PGD  +IR ±91.6 1.1 ±72.0 1.6 ±76.8 1.0 ±69.0 1.0 ±73.0 0.8 ±63.1 2.1 ±59.4 1.9

DN-121
ℓ2PGD  ±89.4 1.1 ±86.8 1.0 ±97.6 1.0 ±75.6 1.7 ±70.1 2.9 ±70.4 4.4 ±66.5 4.7

ℓ2PGD  +IR ±94.2 0.1 ±93.3 0.8 ±97.7 0.3 ±87.8 0.7 ±84.5 0.7 ±84.2 0.1 ±82.4 0.1

RN-34
ℓ2PGD  ±88.2 1.4 ±86.2 0.4 ±89.6 1.3 ±66.9 1.1 ±64.2 2.9 ±60.0 1.9 ±55.2 1.8

ℓ2PGD  +IR ±95.2 0.2 ±95.4 0.1 ±96.7 0.6 ±86.7 1.2 ±84.3 0.6 ±81.8 1.9 ±80.4 1.9

VGG-16
ℓ2PGD  – ±76.7 0.9 ±82.3 2.9 ±83.5 1.9 ±77.5 3.6 ±82.1 2.2 ±69.4 2.1

ℓ2PGD  +IR – ±86.5 0.9 ±88.9 1.5 ±89.6 1.2 ±85.2 1.1 ±88.3 1.4 ±80.4 0.4
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DNNs. To explain the effectiveness of the dropout opera-

tion,  some  studies  regarded  the  dropout  operation  as  a

method of data augmentation[65], some studies considered

that the dropout reduced the dependence between differ-

ent feature units[66]. However, these studies only qualitat-

ively  analyzed  how  the  dropout  operation  improved  the

generalization power of a DNN, but did not quantify the

effect of the dropout operation.

In contrast to previous studies, we use multi-order in-

teractions,  which are defined in Section 2.2,  to represent

interaction  utilities  between  different  input  variables.

Next,  we  explore  influences  of  the  dropout  operation  on
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Fig. 7     Multi-order  interactions  encoded  in  normally-trained  DNNs  and  adversarially-trained  DNNs[22].  We  find  that  high-order
interactions are more sensitive to adversarial perturbations than low-order interactions.
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interactions encoded in a DNN. We explain how the dro-

pout  operation  improves  the  generalization  power  of  a

DNN by verifying the relationship between the generaliz-

ation  power  of  a  DNN  and  interactions  encoded  in  the

DNN. We find a negative relationship between the inter-

action  strength  and  the  generalization  power.  Therefore,

we propose a loss function to boost the effect of the dro-

pout operation, thereby further improving the generaliza-

tion power of a DNN[14].

n N = {1, 2, · · · ,
n}

m I(m)(i, j)

i, j S ⊆ N m

N m

I
(m)

dropout(i, j)

S m

Specifically,  we verify  that  the  dropout operation de-

creases the strength of interactions encoded in a DNN. Giv-

en an input sample with  input variables, 

, some input variables collaborate to make impacts on

the  inference.  The -order  interaction  meas-

ures  the  average  interaction  utility  between  input  vari-

ables  under all possible context  with  contex-

tual  variables.  When  the  dropout  operation  randomly

drops some input variables in , the -order interaction

 is  only  computed  based  on  different  subsets

of  contexts ,  which  are  composed  of  input  variables

that are not dropped. In this way, the dropout operation

makes the feature be computed based on much fewer con-

texts,  thereby  suppressing  strength  of  interactions  en-

coded in the feature.

Besides  the above finding that the dropout operation

decreases  the  interaction  strength,  we  also  find  that  the

decrease of the interaction strength improves the general-

ization power of  a DNN. In this  way, we propose a new

loss function to boost the effect of the dropout operation.

We  propose  an  interaction  loss  to  directly  penalize  the

strength  of  game-theoretic  interactions  to  further  im-

prove  the  generalization  power  of  a  DNN.  During  the

training  process,  we  jointly  minimize  the  classification

loss and the interaction loss.

ℓinteraction = Ei,j∈N,i ̸=j

[
| 1

n− 1

n−2∑
m=0

I(m)(i, j)|

]
. (20)

Loss = ℓclassification+

λ× ℓinteraction

We added the above interaction loss to the classifica-

tion  loss  to  directly  control  the  significance  of  interac-

tions  modeled  by  the  DNN. 

.  We  trained  AlexNet,  VGG-11,  VGG-13

and  VGG-16  on  the  CIFAR-10  dataset;  RN-18,  RN-34,

VGG-16  and  VGG-19  on  the  Tiny  ImangeNet  dataset;

and VGG-13, VGG-16 and RN-18 on the Gender estima-

tion dataset. As Table 3 shows, the interaction loss could

effectively control the DNN from over-fitting to under-fit-

ting. When the weight for the interaction loss was prop-

erly selected, the DNN trained using the interaction loss

outperformed the DNN trained using the dropout.

 5.4   Explaining the representation bottle-
neck

Besides  the  explanation  of  adversarial  transferability,

adversarial robustness and generalization power of DNNs,

we also focus on another essential problem about the rep-

resentation capacity of DNNs, i.e., common limitations in

feature  representations  of  different  DNNs.  Or  more  spe-

cifically,  which  types  of  concepts  is  a  DNN  unlikely  to

learn[19]? The exploration of common limitations of DNNs

in  feature  representations  is  crucial  to  boost  the  repres-

entation capacity of DNNs. Various previous studies have

proposed  to  explore  common  limitations  of  DNNs,  e.g.,

theoretically maximum complexity,  generalization power,

adversarial robustness, and etc. In comparison, we firstly

investigate  the bottleneck of  feature  representations  of  a

DNN.

i, j ∈ N

I(m)(i, j)
def
= ES⊆N\{i,j},|S|=m∆v(i, j, S)

I(m)(i, j)

m

0 ≤
m ≤ n− 2

v(N)− v(∅) =∑
i∈N [v({i})− v(∅)] +

∑
i,j∈N,i ̸=j

∑n−2
m=0 w

(m)I(m) (i, j)

w(m) = n−1−m
n(n−1)

I(m)(i, j)

Specifically,  we  use  multi-order  interactions  to  meas-

ure  numerical  utilities  of  interaction  concepts  between

two input variables  at a certain complexity level,

i.e., ,  which  are

defined  in  Section  2.2.  Here,  each  interaction 

corresponds  to  an  interaction  concept,  and  represents

the  complexity  of  the  interaction  concept,  where 

. The efficiency property of multi-order interac-

tions indicates that each interaction concept makes a com-

positional contribution to the output, i.e., 

,

where . Therefore, we can take the numer-

ical utility of an interaction concept, i.e., , as the

underlying reason to explain the DNN.

J(m)

m

In this way, we define the relative strength  of the

concept representation of the -th order, as follows:

 

Table 3    Classification accuracy (%) when the DNNs are controlled from over-fitting to under-fitting[14]

Gender estimation Tiny ImageNet CIFAR-10 dataset

λ RN-18 λ VGG-13 VGG-16 λ VGG-16 VGG-19 λ RN-18† RN-34† λ AlexNet† VGG-11† VGG-13† VGG-16†

0.0 92.7 0.0 94.6 93.7 0.0 33.4 37.6 0.0 48.8 45.6 0.0 66.2 61.9 60.8 62.0

0.001 93.0 5.0 94.8 93.8 50.0 38.4 38.2 0.001 50.0 48.4 50.0 69.2 63.9 64.0 63.8

0.003 93.1 10.0 94.7 94.6 100.0 38.0 38.6 0.003 49.6 49.0 100.0 69.6 64.3 65.4 64.5

0.01 93.0 20.0 94.9 94.1 200.0 38.2 39.0 0.01 52.2 49.6 200.0 69.6 65.3 65.9 64.7

0.03 92.9 50.0 94.7 94.08 500.0 42.8 41.8 0.03 50.4 48.8 500.0 70.0 65.9 66.2 64.9

– – 100.0 94.7 94.3 1 000.0 40.8 45.2 – – – 1 000.0 64.3 66.3 66.0 64.5

Dropout 92.1 Dropout 94.6 92.4 Dropout 36.8 32.6 Dropout 47.4 46.0 Dropout 67.5 60.9 60.9 63.0
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J(m) =
Ex∈Ω[E{i,j}[|I(m)(i, j|x)|]]

Em�[Ex∈Ω[E{i,j}[|I(m)(i, j|x)|]]]
(21)

Ω

m J(m)

J(m)

where  denotes the set of all input samples. The relative

strength of the -th order  is averaged over all pairs

of  input  variables  in  all  input  samples.  The  distribution

of the relative strength  measures the distribution of

the complexity of interaction concepts encoded in DNNs.

J(m)

J(m)

m ≈ 0.5n

We  discover  that  there  exists  a  common  representa-

tion  bottleneck  for  different  DNNs  in  encoding  interac-

tion  concepts,  i.e.,  a  DNN usually  tends  to  encode  both

too complex interaction concepts and too simple interac-

tion concepts, but it is difficult for a DNN to encode in-

teraction  concepts  of  intermediate  complexity.  Specific-

ally,  the  relative  strength  of  low-order  interaction

concepts  and  the  relative  strength  of  high-order  interac-

tion concepts  are  usually  high.  In  comparison,  the  relat-

ive  strength  of  middle-order  interaction  concepts  is

usually low ( ).

W

∆W

L η

Beyond  above  empirical  discovery,  we  theoretically

prove the mechanism for the representation bottleneck in

Lemma  1  and  Theorem1.  Let  denote  network  para-

meters  of  a  DNN.  Then,  the  change  of  parameters

represents the strength of training the DNN. In addition,

we use  to denote the loss function and use  to denote

the learning rate.

∆W

∂I(m)(i,j)
∂W

Lemma  1  (proven  in  [19]). The  change  of

network  parameters  can  be  decomposed  into  the  sum of

gradients  of multi-order interactions.

∆W = ∆WU +

n−2∑
m=0

∑
i,j∈N,i ̸=j

∆W (m)(i, j)

∆WU = −η
∂L

∂v(N)

∂v(N)

∂U

∂U

∂W

∆W (m)(i, j) = R(m) ∂I
(m)(i, j)

∂W

R(m) = −η ∂L
∂v(N)

∂v(N)

∂I(m)(i,j)
∆W (m)(i, j)

∆W w.r.t.
I(m)(i, j) ∆WU

U

U = v (∅) +
∑

i∈N [v({i})− v(∅)]

where . Here,  repre-

sents  the  component  of   the  gradient  of  the

multi-order  interaction .  Besides,  repres-

ents  the  component  of  learning  independent  effects ,

where .

Ei,j,S [
∂∆v(i,j,S)

∂W
]

= 0 σ2 ∂∆v(i,j,S)
∂W

∆W (m)(i, j) = R(m) ∂I(m)(i,j)
∂W

Theorem 1 (proven in [19]). Assume 

.  Let  denote  the  variance  of .  Then,  for

,

Ei,j [∆W (m)(i, j)] = 0, and

var[∆W (m)(i, j)] =
(
η

∂L

∂v(N)
w(m)

)2

σ2/
(
n−2
m

)
w(m) = (n− 1−m)/[n(n− 1)]

|∆W (m)(i, j)|
I(m)(i, j) w(m)/

√(
n−2
m

)
where ,  i.e.,  the  learning

strength  of  the  multi-order  interaction

 is proportional to .

Theorem 1 shows that the DNN is more likely to en-

m

m

m 0.5n

code simple interactions (  is  small)  and complex inter-

actions (  is large), but it is less likely to encode interac-

tions of intermediate complexity (  approximates ).

S2 ⊆ N v(S2)

S2

v(S2) S2

N \ S2

S1

S2 S1 ⊊ S2 v(S1)

S1

S1 S1 S2

v(S1) v(S2)

v(S2)
|S2|
|S1|

v(S1)

∆u(r1, r2)

Based  on  the  representation  bottleneck,  we  further

propose  two  losses  to  guide  the  learning  of  conceptual

representation encoded in DNNs by learning interactions

of specific orders. Specifically, we randomly sample a set

of  variables ,  and  the  network  output  en-

codes  interactions  between  input  variables  in ,  where

 is  the  output  score  when  we  keep  variables  in 

unchanged but  mask  variables  in  by  the  baseline

value.  Then,  we randomly sample a subset  of  the set

,  i.e., .  Similarly,  the  network  output 

based on  encodes interactions between input variables

in .  Since  is  a  subset  of ,  some  interactions  en-

coded  in  and  overlap.  We  prove  that  using

 to minus  can cancel out these common in-

teractions,  thereby  mainly  maintaining  interactions  of

some  specific  orders.  Therefore,  we  accordingly  define

, as follows:

∆u(r1, r2) = ES1,S2:∅⊆S1⊊S2⊆N [v(S2)− r2/r1v(S1)]

(22)

|S1|= r1n, |S2|= r2n 0 ≤ r1 < r2 ≤ 1

∆u(r1, r2)

[0, r2n] L+(r1, r2)

L−(r1, r2)

[0, r2n]

where ,  and .  We

prove  that  mainly  encodes  interactions  of

-th orders.  In this way, we propose  and

 losses, which encourage and penalize the DNN

to use interactions of the orders within the range 

for inference, respectively.

L+(r1, r2) = − 1

|Ω|
∑
x∈Ω

C∑
c=1

P (y∗ = c|x)×

logP (ŷ = c|∆uc(r1, r2|x))

L−(r1, r2) =
1

|Ω|
∑
x∈Ω

C∑
c=1

P (ŷ = c|∆uc(r1, r2|x))×

logP (ŷ = c|∆uc(r1, r2|x)). (23)

x Ω y∗

ŷ

P (ŷ = c|∆uc(r1, r2|x))
∆uc(r1, r2|x) x c

∆uc(r1, r2) v(S)

c

∆uc(r1, r2) [0, r2n]

L+(r1, r2)

∆uc(r1, r2)

[0, r2n]

L−(r1, r2)

∆uc(r1, r2)

[0, r2n]

Here, given an input image  in the training set , 

and  denote  the  true  label  and  the  predicted  label,  re-

spectively.  denotes the probability

of  using  to  classify  to  the  category ,

where  follows the definition in (22) when 

is set as the logit of the category . As mentioned above,

 represents interactions of -th orders. In

this way,  is computed as the cross entropy loss

of  the  classification  based  on ,  which  encour-

ages the DNN to use interactions of -th orders for

inference.  In  contrast,  is  set  as  the  the  minus

entropy  loss  of  the  classification  based  on ,

which  prevents  the  DNN  from  using  interactions  of

-th orders for inference.

Based  on  the  above  two  losses,  we  train  DNNs  to

mainly  encode  high-order  interactions.  We  find  that
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DNNs,  which  mainly  encode  high-order  interactions,  are

usually sensitive to the adversarial perturbation than nor-

mally-trained  DNNs.  These  results  verify  that  the  ad-

versarial  attack  mainly  affects  high-order  interactions,

which has been demonstrated in [22].

 6   Conclusions

This  paper  mainly  introduces  our  recent  system  of

game-theoretic  interactions,  which  unifies  both  the  ex-

planation  for  knowledge  representations  of  a  DNN  and

the  explanation  for  the  representation  power  of  a  DNN.

We define the multi-order interaction and the multivari-

ate  interaction.  Such  interactions  help  us  explain  DNNs

from  novel  perspectives,  for  example,  quantifying  know-

ledge concepts encoded by a DNN, extracting prototypic-

al concepts, and explaining the representation bottleneck

of  DNNs.  We  can  also  use  these  interactions  to  explain

and  improve  current  explanation  methods.  For  example,

the  interaction  enables  us  to  learn  optimal  baseline  val-

ues  for  the  Shapley  value,  and  provides  a  unified  per-

spective  to  compare  fourteen  different  attribution  meth-

ods.  Finally,  we  prove  that  interactions  encoded  in  a

DNN  directly  determine  the  representation  power  of  a

DNN (e.g., generalization power, adversarial transferabil-

ity,  and  adversarial  robustness).  Therefore,  we  can  con-

sider the game-theoretic interaction as a unified explana-

tion, which successfully bridges the gap between “the ex-

planation of knowledge concepts encoded in a DNN” and

“the  explanation  of  the  representation  capacity  of  a

DNN.”
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