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Abstract: In the daily application of an iris-recognition-at-a-distance (IAAD) system, many ocular images of low quality are acquired.
As the iris part of these images is often not qualified for the recognition requirements, the more accessible periocular regions are a good
complement for recognition. To further boost the performance of IAAD systems, a novel end-to-end framework for multi-modal ocular
recognition is proposed. The proposed framework mainly consists of iris/periocular feature extraction and matching, unsupervised iris
quality assessment, and a score-level adaptive weighted fusion strategy. First, ocular feature reconstruction (OFR) is proposed to
sparsely reconstruct each probe image by high-quality gallery images based on proper feature maps. Next, a brand new unsupervised iris
quality assessment method based on random multiscale embedding robustness is proposed. Different from the existing iris quality assess-
ment methods, the quality of an iris image is measured by its robustness in the embedding space. At last, the fusion strategy exploits the
iris quality score as the fusion weight to coalesce the complementary information from the iris and periocular regions. Extensive experi-
mental results on ocular datasets prove that the proposed method is obviously better than unimodal biometrics, and the fusion strategy
can significantly improve the recognition performance.
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has gradually become a better choice for identity authen-
tication. Although there have been a few meaningful at-
tempts(I=3l in IAAD, the hardware quality and photo-
graphing conditions are the main research directions of

1 Introduction

1.1 Motivation

these methods. The omnipresent low quality of the iris

In the disposition of border defence and the release of images acquired from the IAAD system, even the iris

iris mobile phones, millions of people have registered their
iris information as an individual identifying label. Iris re-
cognition has been widely accepted by the public as a safe
personal authentication approach. It has become a de-
pendable and user-friendly biometric trait, especially in
COVID-19 explosion. Nevertheless, iris recognition re-
quires high wuser cooperation. This characteristic ex-
tremely limits its serviceable range. Therefore, iris recog-
nition-at-a-distance (IAAD) with less user cooperation
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quality of some images does not meet the recognition re-
quirements at all. These low-quality images are generally
filtered out by strict image quality assessment mechan-
ism in the existing iris recognition systems. Such a mech-
anism ensures the recognition accuracy while signific-
antly reducing the recognition efficiency and throughput
of the recognition system. As shown in Fig.1, there are
different low quality factors in TAAD, (a) occlusions by
eyelids, (b) occlusions by eyeglasses, (c¢) occlusions by
flare, (d) off-angle iris, and (e) deformations caused by
pupil contraction and dilation. The normalized iris im-
ages corresponding to Fig.1 are shown in Fig.2. As we
can see, these normalized images reveal more visible in-
tra-class differences.

Lately, some impressive deep learning-based iris recog-
nition methods“9 have been reported. The purpose of
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Fig. 1
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(b)

Example pairs that have significant intra-class differences. Each pair is from the same eye. The left image is of relatively high

quality, and the right is of relatively low quality. (a) Occlusions by eyelids; (b) Occlusions by eye-glasses; (c) Occlusions by flare; (d) Off-
angle iris; (e) Deformations caused by pupil contraction and dilation.
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Fig. 2

these deep neural networks (DNNs) based methods is to
obtain the suitable deep features for intuitionistic pixel-
to-pixel or region-to-region iris matching. Nevertheless,
there are a lot of challenges, such as occlusions, deforma-
tions and misalignment in IAAD systems. The applica-
tion scope of iris recognition is extremely limited by these
existing deficiencies. On this basis, some research de-
pends on the masking template of iris, and is based on
pixel-to-pixel or region-to-region matching, starts to re-
recognition with occlusion. For
MaskNet[? can calculate the mask of valid iris regions
and mitigate the effect to iris recognition of occlusions.
The inaccurate mask under occlusions can cause promin-
ent performance degradation. Furthermore,
some nonlinear deformations of iris texture caused by pu-

solve iris instance,

there are

pil dilation and contraction in iris images acquired by
TAAD system. The reliability of pixel-to-pixel matching
strategy is insufficient to these local deformations. How
to boost IAAD feature matching performance by making
use of strengths in deep learning is still a challenge.

On the other hand, a multi-modal fusion strategy is
also a feasible choice to alleviate the performance degrad-
ation of TAAD. Periocular regions can be obtained simul-
taneously with the iris. When the iris part of some im-
ages is too low-quality to meet the recognition require-
ments, the more accessible periocular regions are a good
complement for recognition.

1.2 Contribution

This paper aims to exploit a united and flexible frame-
work to recognize both iris and periocular images ac-
quired in TAAD system. In our method, we elaborately
combine deep learning and spatial feature reconstruction
which is illuminated by [10]. As shown in Fig.3, the
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Normalized images which are corresponding to the sequence number in Fig. 1

whole framework is drawn. Such a matching mechanism
and feature representation can achieve robustness and
flexibility. Meanwhile, the recognition framework is also
appropriate for periocular regions. To produce spatial fea-
ture maps in different sizes, the iris feature extractor con-
sists of a fully convolutional network (FCN)[. Moreover,
a triplet objective function is implemented after feature
extractor. To obtain the most distinctive spatial features
through reconstruction, we develop an end-to-end learn-
ing process. Each region in one probe image is anticip-
ated to be sparsely reconstructed from the high-quality
gallery images by ocular feature reconstruction (OFR).
Thus, the interferences in the IAAD system can be re-
strained.

Meanwhile, as shown in Fig.1, the information of the
periocular regions is well preserved in these images cap-
tured from the iris recognition system. The periocular re-
gion has been proved viable for identification!l]. It has a
satisfactory complementarity of recognition for iris. In
previous research on biometrics fusion, simple score level
fusion based on the weighted sum rule is employed in
most methods['2 13, Mostly, the fusion weights are artifi-
cially determined with no optimization. In addition, the
fusion methods on feature level are not maturely de-
veloped(4l. Adopting the weights of different modalities in
different situations is mentioned in few works[!5l. In order
to obtain better fusion performance according to the dif-
ferent iris quality in various images, a new way to obtain
fusion weights is proposed, and the weights are adapt-
ively changing according to different ocular images. The
weight is determined by the iris image quality, which is
measured by a brand-new unsupervised iris quality as-
sessment method based on random multiscale embedding
robustness inspired by [16]. We exploit the iris quality
score as the adaptive fusion weight to coalesce the com-
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Fig. 3 Illustration of the whole framework: (a) Flowchart of the whole framework, which contains 3 main modules; (b) Flowchart of

the ocular feature matching module.

plementary information captured from the iris and peri-
ocular regions. The current iris quality assessment meth-
ods require training data with quality labels judged by
human's perception, or come from reference scores. Such
quality measurement methods are subjectively defined.
Actually, the best characteristics for the employed iris re-
cognition system may not be fully perceived. The per-
formance of biometric recognition is partially determined
by the quality of its samples(l?]. The quality of biometric
sample is defined as the utility of a sample for the pur-
pose of recognition!720, On the other side, automatic la-
belling based on comparison scores represents the relat-
ive performance of two samples. Therefore, the negative
effect may be imposed to quality labels by the relative
low-quality sample. Rethinking the shortcomings of these
existing methods, the unsupervised iris quality assess-
ment method is proposed to obtain a more accurate qual-
ity assessment score for the recognition system. The ro-
bustness of an image in the embedding space measures its
quality. The representation robustness of the sample and
thus, its quality is calculated by utilizing the variations of
multiscale embeddings extracted from random subnet-
works of the proposed model. This new iris quality assess-
ment method can obtain more objective and reasonable
quality scores for our OFR. Therefore, these quality
scores can be used as more accurate adaptive score level
fusion weight for multi-modal recognition in ocular re-
gions, including iris and periocular.

The main contributions of this work include the fol-
lowing:

1) We propose a united framework, which called OFR,
to recognize both iris and periocular images acquired in
the IAAD system. It can accommodate the potential ap-
plications of TAAD. Extensive experiments show that the
proposed OFR achieves satisfactory performance for both
iris and periocular recognition. In addition, our method is
alignment-free to arbitrarily sized periocular images and
flexible to recognize the challenging iris images that con-
tain occlusions and deformations.

2) We propose a novel unsupervised iris quality assess-
ment concept by investigating the robustness of stochast-
ic multiscale embeddings to acquire a more accurate qual-
ity assessment score for the recognition system. Our solu-
tion measures the quality of an image based on its ro-
bustness in the embedding space rather than human per-
ception. It does not depend on the quality label of the
training samples and provides a more direct quality as-
sessment mechanism for OFR.

3) We develop a new way to obtain fusion weights.
The novel quality assessment methods can acquire more
appropriate fusion weights than the existing manual
score-level fusion methods. Meanwhile, the weights are
adaptively changing according to different ocular images.
The score-level fusion strategy can make full use of the
recognition advantages of iris and periocular and further
improve the IAAD performance. It can not only keep the
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high reliability of iris features, but also make use of the
accessibility of periocular features. The proposed fusion
method can achieve much better performance than tradi-
tional fusion methods. Meanwhile, it has outstanding im-
provements over unimodal recognition methods as a res-
ult of the automatic assigning of higher weights to more
reasonable modalities.

2 Related work

2.1 Iris recognition

In the development of iris recognition over the last 20
years, there has been tremendous progress. Hand-crafted
features are mainly employed in traditional iris recogni-
tion methods for iris texture representation. Daugman(2!]
proposed utilizing Gabor filters for quantization and
phase demodulation. The Gabor filter produced 250 bytes
IrisCodes and the dissimilarity between two IrisCodes is
measured by Hamming distance. On this basis, an ad-
vanced methods based on IrisCode is proposed by
Masek[22. Tt utilized 1D log-Gabor filters. Then, ordinal
measures (OM)[23] based framework of binary feature en-
coding was proposed in 2009.

On the other hand, a range of iris recognition ap-
proaches based on deep learning (DL) have also achieved
excellent results. Deeplrisi4l employed a DL framework to
recognize heterogeneous iris images by a pairwise filter
group. A DL architecture for iris representation designed
for cross-sensor iris recognition was presented by Gang-
war and Joshilfl. Proeca and Nevesl®l employed convolu-
tional neural networks (CNNs) to differentiate the corres-
ponding and noncorresponding iris pair. Zhao and
Kumarl designed spatially corresponding iris feature
descriptor to improve the recognition accuracy and gener-
alization capability, especially for the iris images with oc-
clusions. On this basis, dilated residual feature net
(DRFNet)24 was proposed, which utilized residual learn-
ing and dilated kernels. In 2018, Maxout CNNs was pro-
posed to solve the difficulties of iris recognition on mo-
bile equipments by Zhang et al.lBl Ren et al.% first ex-
plored the application of graphical models in iris recogni-
tion to learn dynamic graph representations. Neural ar-
chitecture search (NAS) is first introduced into iris recog-
nition by Nguyen et al.25] The generalization capability
between different sensors, subjects’ cooperation, and im-
age collecting distances is improved by NAS. But the dif-
ficulties of recognizing low-quality images are not specific-
ally studied. In 2021, Wei et al.26] proposed Gabor tri-
dent network (GTN) to mitigate the distribution gap
challenge and learn more discriminative features for cross-
spectral recognition, and spectral adversarial network
(SAN) to enhance the adversarial network's ability to dis-
criminate identity labels. Then in 2022, Wei et al.l27] pro-
posed uncertainty embedding (UE) to generate a discrim-
inative and robust iris representation and further mitig-
ate the impact of uncertain acquisition factors in near-in-
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frared iris recognition, and uncertainty-guided cur-
riculum learning (UGCL) to optimize the model in an
easy-to-hard manner for higher recognition accuracy.
Nguyen et al.[28] proposed a novel fully complex-valued
network to better cater to the unique properties of iris
features, explicitly retaining the phase information in the
feature representation. The complex-valued network
shows a strong correspondence with the classic IrisCode
and its phase-based derivatives. More related work is
summarized in the recent survey?”. How to recognize
low-quality iris images is still an inevitable challenge.
Nevertheless, the low-quality images captured by TAAD
systems has not been well resolved. The related work of
iris recognition is summarized in Table 1.

Table 1 Overview of the evolution of iris recognition methods

Authors Feature category Occlusion handling
Daugmanl2!] Hand-crafted Yes
Masek(22] Hand-crafted No
Sun and Tan(23] Hand-crafted Yes
Liu et al.l4 DL-based No
Gangwar and Joshil5] DL-based No
Zhao and Kumar!7l DL-based Yes
Nguyen et al.[28] DL-based No

2.2 TAAD system

TAAD systems are always full of challenges. One of
the most common is the quality of captured iris images is
usually low, thus making for lessened recognition per-
formance. In recent years, there are some meaningful at-
tempts about IAAD. Matey et al.lll proposed the iris on
the move (IOM) system. The system had a camera at
fixed position and acquire the iris from a moving subject
with high cooperation. Yoon et al.2l estimated a stand-
ing subject within the capture volume by a light stripe
projector. Wheeler et al.l3l proposed another TAAD sys-
tem which utilized two wide-FoV pre-calibrated cameras.
It imposed a traditional stop-and-stare requirement.
Zhang et al.l30 presented a focus adjustable iris camera
by integrating a transmutable lens with a long-focus
zoom lens. In 2021, Yan et al.3Y proposed a new method
which called iris spatial feature reconstruction (ISFR).
The combination of multiscale feature extraction and spa-
tial feature reconstruction was first employed to improve
the performance of TAAD. In this work, the iris images
with occlusions and deformations are specially studied.

2.3 Periocular recognition

As summarized in [32], most of the existing methods
utilized hand-crafted features, such as histogram of ori-
ented gradients (HOG), local binary pattern (LBP) and
scale invariant feature transform (SIFT) as feature. Fur-
thermore, it is worth mentioning that there are some ad-
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vanced DL based approaches to periocular recognition.
Multi-source deep transfer learning which utilized a 5-lay-
er CNN model for cross-sensor periocular recognition was
employed in [33]. Zhao and KumarP! designed semantic
assist based CNNs for less constrained periocular match-
ing. Raja et al.3% used binarized statistical image fea-
tures (BSIF), speed up robust feature (SURF) and SIFT
to generate periocular features and achieved an independ-
ent modular biometric framework on Android device. In
their subsequent work[36l, the cross-sensor periocular veri-
fication was studied. In 2016, there are a few methods
based on deeply coupled auto-encoders3” and deep sparse
filterB8l in the International Conference on Image Pro-
cessing (ICIP) 2016 mobile ocular biometric recognition
competition3?. Recently, Yin et al.[4 tried to eliminate
the gap between interpretability and biometric recogni-
tion by learning feature specific filters that respond to a
range of preferred spatial locations. Huang and Li4! pro-
posed an integrated solution that leverages parts’ discov-
ery as an attention form. Tiong et al.42l proposed using
multi-feature fusion layers for multimodal facial biomet-
rics, thereby leading to significant and informative data
learning in dual-stream convolutional neural networks.
This network consists of two progressive parts with dis-
tinct fusion strategies to aggregate RGB data and tex-
ture descriptors for multimodal facial biometrics.

As mentioned above, most of the existing methods
utilized hand-crafted features. Moreover, the architec-
tures of existing periocular recognition methods are differ-
ent from iris recognition methods. So, it is necessary to
incorporate two different recognition frameworks in a sys-
tem that recognizes both iris and periocular, which can
significantly reduce the overhead of TAAD systems.

2.4 Fusion of iris and periocular biometrics

It is a viable way that fuse iris and periocular biomet-
rics to achieve better recognition performance. Several fu-
sion approaches have been developed.

In the existing fusion methods, score-level fusion is the
most common. Woodard et al.[43 utilized score-level fu-
sion strategy based on the weighted sum rule to improve
the recognition performance in non-ideal images, and
the weights are determined by searching in the range
[0.1, 0.9]. The weighted sum rule score-level fusion
strategy was also utilized to improve the recognition per-
formance under relaxed imaging constraints by Tan and
Kumarl'2l. Raja et al.[4 designed a multimodal authentic-
ation system including three layers to fuse iris and peri-
ocular information at the score level for mobile cross-
sensor applications.

Besides, there were other fusion methods at feature-
level and decision-level in recent years. Santos and
Hoylel5] proposed a fusion strategy of iris and periocular
at decision-level to enhance the reliability of the uncon-
strained iris recognition system. Joshi et al.ll% fused iris
and periocular at feature-level by concatenating iris and

periocular features. Luo et al.[48l proposed an end-to-end
deep feature fusion network, where integrated multiple
attention mechanisms including self-attention and co-at-
tention mechanisms, for joint iris-periocular recognition.
A periocular-assisted dynamic framework for more accur-
ate less-constrained iris recognition was presented by
Wang and Kumarl4”. This work consists of two kinds of
network architectures to recognize iris and periocular re-
spectively. The related work of fusion by iris and periocu-
lar biometrics is summarized in Table 2.

Table 2 Overview of the evolution of fusing iris and
periocular biometrics

Authors Iris Periocular feature Fusion
feature strategy
Woodard et al.43]  Gabor LBP Score level
Tan and Gab SIFT, GIST, LBP, g level
Kumarl2l abor HOG, LMF coreleve
Raja et al.[44] Gabor SIFT, SURF, BSIF Score level
Santos and L.
5 Wavelets LBP, SIFT Decision level
Hoglel43]

Joshi et al.1%]  Wavelets LBP Feature level
Zhang et al.[8] DL DL Feature level
Wang and DL DL Score level

Kumarl47]

In the previous research about iris and periocular fu-
sion, score-level fusion has not been studied intensively in
existing work. Because the fusing performance of multi-
modal mostly depends on the accuracy of the fusion para-
metersl48l, obtaining the most appropriate fusion weight is
demanding in a fusion strategy.

3 Methodology

Obtaining the most valid representation for OFR of
partial iris/periocular regions, and then fusing iris and
periocular matching scores with the adaptive fusion
weight determined by iris quality are the main purposes
of our method. There are several key elements, the design
of FCN based spatially corresponding feature extraction,
multiscale feature aggregation, ocular feature reconstruc-
tion, the application of loss function in optimization, iris
quality assessment and fusion strategy. Next, we will in-
troduce the technical details.

3.1 Network architecture

The pre-trained models on ImageNet4 include fully
connected (FC) layers and convolution layers, such as
VGGPY and ResNetPl. Comparing with general CNNs,
the FCN contains convolutional layers, pooling layers,
and activation layers, which efficiently acquire local pixel
representation from their bottom map. However, it does
not contain FC layers. Therefore, the original spatial in-
formation can be maintained in the output map. Previ-
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ous iris recognition research mainly utilized block-based
operations or small-size filters to acquire iris features. It is
pointed out that the little structural information or
meaningful hierarchies in iris pattern is not sufficient in
[7], and the most discriminative feature is ought to be
contained in the local texture information. The local
pixel-to-pixel correspondence between input and output
can be retained by FCN. We remove the FC layers in
ResNet-50 to formulate FCN as a feature encoder. Then
in the training process the parameters are fine-tuned. The
spatial features are extracted by FCN and post-processed
to two kinds of features. We call them global features and
multiscale spatial features. In detail, the global average
pooling (GAP) layer can extract global features and these
features are used to replenish the overall information. A
sequence of multiscale pooling layers can extract
multiscale spatial features and these features are used to
represent the distribution of locally valid features in dif-
ferent sizes. The multiscale spatial features are passed in-
to OFR in the feature matching process. OFR is a size-
free reconstruction mechanism based on dictionary learn-
ing. Finally, the weighted sum of OFR similarity dis-
tances and global matching results are defined as the
matching score.

3.2 Feature representation

Spatial features and global features are combined for
the description of ocular feature. The spatial features col-
lect the local iris texture or periocular structure in differ-
ent scales, and they are a batch of features captured from
various receptive fields in different scales to perform
matching images of arbitrary size better. The global fea-
tures is a scalar vector which can obtain useful overall in-
formation about each image.

Furthermore, it is a challenging problem that recog-
nizing the effective region in various size of iris/periocu-
lar images with deformations and occlusions. It is also
non-trivial to align arbitrary-size iris/periocular images to
a predefined scale. Meanwhile, recognizing the unaligned
periocular images is also a problem to be solved. Hence,
the effective region in different scales between two im-
ages are going to cause degraded performance and mis-
match easily. The multiscale spatial features are align-
ment-free and more robust for deformations and occlu-
sions. Thus, it can mitigate the influence of different ef-
fect scales and disalignments.

The multiple average pooling layers in different ker-
nel sizes corresponding to various receptive fields are
drawn in Fig.4. They constitute the multiscale pooling
layer. Due to the different feature distribution between
iris and periocular, we select different scales of multi-scale
pooling layers. During the iris matching process, this
pooling layer takes the preceding output of FCN as in-
put and produces multiscale spatial features by average
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pooling operations at a stride 2. Dense spatial features are
generated by the output extracted by the pooling layer of
each kernel size. The local features of iris are represented
by each spatial feature. Similarly, the periocular region
matching process utilize average pooling operations at a
stride 3. We concatenate the output of multiscale pool-
ing layers in different kernel sizes as multiscale spatial
features, which is represented by Fas(z).

3.3 Ocular feature reconstruction

There is a crucial but challenging puzzler, how to cal-
culate the similarity measure between two images which
are with disalignment, varying occlusions and deforma-
tions. A spatial feature reconstruction step, which is a re-
construction mechanism based on dictionary learning, is
appended to moderate the influence of the cross-scale
mismatch. The iris images after normalization are shown
in Fig.5 and their corresponding periocular images are
given in Fig.6. The process of generating the multiscale
ocular features is summarized in Fig.7. A pair of ocular
images with considerable differences in quality is em-
ployed as input. / denotes an image in low quality and J
denotes an image in high quality. Then, the multi-scale
pooling layer obtain correspondingly sized spatial feature
maps ¢ = conv(/, #) and y = conv(J, 0), where 6 repres-
ents the parameters in FCN. z denotes a vectorized
tensor in the size of (d X w x h), where d, w and h rep-
resent the numbers of the channel, width and height of x
respectively. z1,--- ,xn denote the N blocks which are
divided from z, and N =w X h. x1,--- ,xn consist of a
block set and each of them is in size of 1 X 1 x d. Fa(x)
is utilized to represent the concatenated output of multi-
scale pooling layers in different kernel sizes, namely the mu-
Itiscale spatial features. The block set is represented by

X:FM(J})I{$1,'--,l’N}GRdXN (1)

where z, € RP*!. Similarly, y is divided into M blocks as

Y = Fu(y) ={y1, ,yM}GRdXM. (2)

Hence, x,, can be expressed by a linear combination of
Y, viz. reconstruct z, by finding out the similar blocks.
We define the sparse coefficients as wn, where w, €
RMXl, of x, in relation to Y. Thus, we work out wy. wn
is constrained with Ly norm. We define the sparse repres-

entation equation as
. 2
min [z, = Ywally + B flwnll, - 3)

The similarity between x, and Yw, is measured by
the first part. And the second part can astrict the
sparsity of w,. Considering that there are N spatial fea-
tures in X, (3) is overwritten as
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M =X —YW, the distance of sparse reconstruction
between X and Y is denoted by

Fig. 5 Examples of iris images after normalization

(i)

D, =———=.

The OFR strategy is the crux of robustness and flex-
ibility to match iris/periocular images with partial occlu-
sions. Therefore, OFR can use available iris/periocular re-
gions for rational identity verification.

(a) (b)

3.4 Loss function
Fig. 6 Examples of periocular images

mwi/n 1%~ YW||§ +BIWlr 4) method. The purpose of the batch triplet loss function is

to insure that an anchor image x,,; of a specific eye is

where W =w1, -+ ,wy € RM*Y denotes sparse recons- closer to all other positive images x,; of the same eye
truction coefficient matrix. W is solved by the least- than it is to any negative image z,,; of any other eye.

N

(5)

We employ the batch triplet loss function in our
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from image Y and J, respectively.

Hence, we try to make D(Zq,i,Zn;:) > D(Ta,i,Tp:i)+ ¢,
where ¢ enforces the separation between a pair of samples
(positive and negative) and D denotes the Euclidean dis-
tance between a pair of images. So the loss function is
represented by

N
L(0) = (D (9a,i:9pi) = D (Jasis gni) +¢]  (6)
3
where ga.i = GAP(fo(2a,i)), gpi = GAP(fo(2p:)), gn.i =
GAP(fo(xn,i)).

We randomly choose S subjects. Then, we select K
images from each subject to pick out more effective
triplet samples. In this way, a batch which contains SK
images is obtained. In the batch, a hard example mining
technique is adopted for each anchor sample. It means
both the hardest positive sample and the hardest negat-
ive sample will be chosen. The batch triplet loss function
for a mini-batch, viz. a data point x; ;, is represented as

K

=1 a=1

L:‘H?P?fKD (9a.i> gp.i) —

.

min D (gai gn.i) +c (7)
where z;; denotes the j-th image of the i-th subject in
the batch. Therefore, SK terms conduce to the loss. The
chosen triplets are optimum for learning with the triplet
loss and the hardest in a small subset

ZS’:K

i=1 a=1

8 (D (X Xp) + Dl 00.) -

min K (Dr (Xa,i7 X’n,z) + D (ga,ig gn,z)) +c

n=1,,

(®)

where D, denotes the reconstruction distance. The
similarity distance is expressed in (8). It is composed of
two parts: the distance of local feature matching (spatial
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reconstruction error) and that of global feature matching
(Euclidean distance).

Then, an alternating optimization algorithm is em-
ployed to solve 6.

Step 1. Optimize WP, W™ and fix 6.

The sparse reconstruction coefficient matrix is ex-
pressed by

-1
Wt = (X7 Xpi+51) XX

-1
wen — (XE, Xni+ 8- 1) XT X

To figure out this matrix. First of all, W is optimized
and 6 is fixed. w1, - ,wn are solved respectively when
optimizing. As adopted in [52], an optimal wy is solved
by the feature-sign search algorithm.

Step 2. Fix W/, W™ and optimize 0.

The gradients of D,(Xa,:, Xp,:) with respect to Xa;
and X, and the gradients of D, (X4, Xn,:) with respect
to X,,; and X, ; are expressed by

0D, (Xa,i, Xp,i)
0Xa,i

0D, (Xa,i, Xpi)
0Xpi -

0D, (Xai, Xn,i)
0Xa,i

0D, (Xayi, Xn,i)
0Xni

=2 (Xa,i - Xp,iWiap)

—2 (Xa,i — Xp i WiP) WPT

=2 (Xa,i - Xn,iWian)

= =2 (Xai — X WY WL (9)
To calculate OL/00, we utilize these four equations.
Consequently, FCN supervised by OFR can employ

standard stochastic gradient descent (SGD) to optimize
and is end-to-end trainable.

3.5 Dual feature matching

In our proposed method, global features, multiscale
spatial features, and the weighted fusion of these two fea-
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tures are utilized for iris/periocular feature matching pro-
cess. We assume global feature and spatial feature ob-
tained from gallery subject ¢ are g. and S, respectively.
The global
G = [91,92,"'
set of the gallery can be denoted as S =

feature set can be denoted as
,gc), where g. € R?. The spatial feature
[S1,52,- -+, e,
where S. € R*<*? and k. represents the amount of spa-
tial features. As for the probe image, the global feature is
denoted by p, and spatial feature is denoted by X.

The similarity of global features between two images
is measured by FEuclidean distance. The distance is
defined as d. = ||py — gcll,- Thus, the global similarity

distance vector for total C' subjects is represented by
:[d17d27 7dc] (10)

Except for global features, the spatial feature plays a
more important role in our method. It can not only ac-
quire the local texture in iris images, but also perform
matching with disalignment. Therefore, the representa-
tion of multiscale spatial feature is robust to scale di-
versities. The similar spatial features can be searched by
OFR from the gallery to reconstruct the spatial feature of
the probe with minimum error. The similarity distance 7.
of spatial reconstruction is denoted by

tr ( MTM>
=Dr (X,5) = ——— (11)
In (11), M = X — S.W.. Thereinto, = (STS.+

B-I* ST X. Hence, the similarity distances for total C
subjects form a distance vector, which can be expressed by

R=1[ri,r2, - ,7c]. (12)

To realize higher accuracy, the weighted sum of these
two vectors forms the final distance. The distance is rep-
resented by

Soverall = o+ D + (1 — a) - R. (13)

n (13), « is a value which can regulate the weight of
spatial reconstruction and global feature matching. In
this way, the identity is decided by ¢y = arg min. S,
where S, is the c-th item of Syyerall-

3.6 Iris quality assessment and fusion
strategy

In this part, we will introduce the unsupervised iris
quality assessment based on random multiscale embed-
ding robustness and the fusion strategy of iris and peri-
ocular.

The purpose of iris quality assessment is to estimate
the suitability of an iris image for iris recognition. Actu-
ally, the quality of an iris image should reveal its expec-

ted recognition performance. Significantly, our iris image
quality definition is based on the relative robustness of
deeply learned multiscale embeddings of that image. The
image quality is defined as the magnitude of variations,
which are calculated by the variations of embeddings gen-
erated from random subnetworks of cross-scale spatial
feature extractor. The illustration of this method is
shown in Fig. 8.

Subnetworks of model M

51Ty

Fig. 8 Illustration of iris quality assessment: An input iris
image I is forwarded to different random subnetworks of the
used multiscale spatial feature model M. Each subnetwork
produces a different stochastic embedding 1. The variations
between these embeddings are calculated by pairwise distances
and define the quality of I.

In addition, our method predicts the iris quality Q([I)
of a given iris image | using multiscale spatial features.
The final layer of the multiscale spatial feature extractor
is passed to the dropout operation and the stochastic for-
ward passes are only repeated in the last layers. Each
stochastic forward pass, which captures different scale
spatial features, applies a different dropout pattern (dur-
ing prediction) producing a different subnetwork of M.
These subnetworks generates different stochastic multis-
cale iris embeddings. These embeddings are collected in a
set E(I)={e1, -
probe iris image is represented by a linear combination of

,em}. As we mentioned above, the

the gallery image. The total number of non-zero sparse
coefficients in W is Neyy. We define the iris quality of im-
age [ as

Z 20 (—732 Zd(ei,ej)>

Nejs i<j

(14)

where d(e;, e;) represents the Euclidean distance between
a stochastic embeddings pairs. In other words, the iris
quality of an image is defined as the sigmoid of the
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negative mean Euclidean distance between all stochastic
embeddings pairs. The sigmoid function o(-) ensures that
the quality score Q(I) € [0, 1]. A greater variation in the
stochastic embedding set E indicates a low robustness of
the representation and, thus, a lower sample quality Q.
Lower variations in F indicate high robustness in the
embedding space and is considered as a high sample
quality Q.

Our method aims to evaluate the iris image quality
from the perspective of employment in recognition tasks,
which might be different from accessing the notion of im-
age quality. Given that the recognition network training
aims at being robust against intra-identity variations, an
image which produces relatively stable identity-related
embeddings despite various variations should have high
utilization in a recognition task. The agreement between
the subnetworks can be used to estimate the embedding
robustness. If the m subnetworks have similar outputs
(high agreement), and the variations over these random
subnetworks (the stochastic embedding set E) are low.
Hence, the robustness of this embedding, which is correl-
ated to the quality of the sample, is high. Otherwise, if m
subnetworks have dissimilar outputs (low agreement),
and the variations over the random subnetworks are high.
Consequently, the robustness in the embedding space is
low and the quality of the sample can be considered low.
In contrast to previous work, our method does not re-
quire quality labels for training.

To retain the recognizing advantages of iris and peri-
ocular as much as possible, the iris matching score and
periocular matching score are weighted and summed up
to achieve score-level fusion. The final matching score can
be denoted as

Si=QI) X Soveran(I) + (1 — Q(I)) X Soverau(P) (15)

where Soverqii(I) represents the iris matching score of an
image and Soveraiz(P) represents the periocular matching
score of the same image. Furthermore, Q(I) will be set as
0 when the iris part of the probe image fails to match.

3.7 Preprocessing of input

In our method, the segmentation method proposed in
[53] is employed. Then, Daugman'’s rubber sheet modell>4
is utilized to normalize the iris region to polar coordin-
ates and the original resolution of normalized images is
540 x 70. Square iris images are employed as input in [5]
to retain as much information of short edges as possible.
If the input directly utilizes the rectangle images, the fil-
ters in tail convolutional layers tend to ignore the inform-
ation of short edges. In [8], it is proved that the input of
square iris images achieves better performance than the
input of rectangle. The width of an iris (iris radius minus
pupil radius) in iris images is less than 70 pixels. There-
fore, the differences between square input images pro-
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cessed by indirect resizing or direct normalization are
minor. We preprocess the iris images into square as men-
tioned in [5]. Then, they are resized to 224 x 224 to in-
put into the feature extractor.

As for periocular images, we have already acquired the
the iris centre in iris image preprocessing. The original
ocular image size is 640 x 480. Since our method does not
have strict requirements for image alignment, we directly
utilize the centre of the iris as the centre point to trim a
480 x 480 image from the raw image as the periocular
biometric. Then these square images are resized in the
same way as the iris images.

4 Experiment

To verify the validity of our method more compre-
hensively, it is tested on a few public ocular biometric
datasets from multiaspects. First of all, to demonstrate
the effectiveness of our method for iris recognition, we
test on 4 public iris datasets. According to [14], UBIRIS.v2
datasets and CASIA-Iris-Distance can be used to evalu-
ate the effectiveness of IAAD system. Next, we study the
influence of different occluded area on iris recognition
performance by adding 20%, 30%, 40% and 50% oc-
cluded dimension on iris images. The performance is com-
pared with that of several existing approaches on differ-
ent sizes of occlusion areas. We randomly select the loca-
tion of occlusion and adopt a rectangular occluded shape.
As shown in Fig.9, the iris images are added random
rectangular occlusion. After that, to prove the effective-
ness for periocular recognition, we test our method on 2
public periocular datasets. Finally, the performance of the
fusion strategy is tested on the same 2 datasets. As for
the performance index, we employed the equal error rate
(EER), false rejection rate (FRR), false acceptance rate
(FAR), and the detection error trade-off (DET) curve.

(a) (b)
(© (d)

Fig. 9 Examples of iris images with random occlusion

4.1 Iris and periocular datasets

4.1.1 ND-IRIS-0405 iris image dataset

ND-IRIS-0405055 contains 64 980 images from 356 sub-
jects. There are no subjects which wore glasses during im-
age collection. In this dataset, an LG 2200 sensor was
employed to acquire the images. This sensor utilized near-
infrared lumination during collecting and assisted the
subject situate their head properly for image collection by
audible prompts. As shown in Fig. 10, there are ND-IRIS-
0405 examples.
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@ (b)

Fig. 10 Examples of the ND-IRIS-0405 images

4.1.2 CASIA-Iris-Distance

CASIA-TIris-Distance contains 2 572 images from 142
subjects. Each image included both two eyes and was col-
lected from 3 meters away. To crop the eye regions, a de-
tector implemented by OpenCV was employed.
4.1.3 CASIA-Iris-M1-S3

CASTA-Iris-M1-S3 contains 3 600 images from 360
Asian subjects. These images are captured by a mobile
phone which installed NIR iris scanner. It has the largest
number of subjects among the NIR iris dataset acquired
on mobile equipment.
4.1.4 UBIRIS.v2 iris dataset

UBIRIS.v2I56] contains 11, 102 iris images from 261
subjects. The images were acquired under unconstrained
conditions with realistic noisy factors. The images in
UBIRIS.v2 are collected under visible wavelength lumina-
tion rather than near-infrared wavelength. The primary
purpose is to evaluate the feasibility of visible wavelength
iris recognition under far-from-ideal shooting conditions.
There are images with different kinds of occlusions in
UBIRIS.v2. This dataset is appropriate for proving the
recognizing ability in visible wavelength. There are
UBIRIS.v2 examples in Fig.11.

@ o © @

Fig. 11 Examples of the UBIRIS.v2 iris dataset images
4.2 General settings

Our project is based on the PyTorch framework.
Linux with GTX TITAN X GPU is employed to train
and test all models in this paper. The model is trained
with 500 epochs. To perform the best performance, we set
c = 0.25 and 8 = 0.001. The set of ¢ and S is referred to
[31].

4.3 Experiments on iris recognition

4.3.1 Iris recognition on public datasets

In this section, we focus on demonstrating the effect-
iveness of the proposed method on public datasets. The
comparison with existing methods is more intuitive

through the experiments in this section.

To pretrain the FCN, we utilize some images from
CASIA-Iris-Thousand. After obtaining the the pretrained
FCN, we fine-tune it by different datasets. To fine-tune
the pretrained FCN with OFR, five hundred positive
pairs and five hundred negative pairs of images are util-
ized. For each image pair, there are one intact image and
one occluded image. As shown in Fig.2, all the images are
normalized to the size of 540 x 70. As introduced in Sec-
tion 3.6, these normalized images are transformed into
the shape of square.

We train and test our method on the first three data-
sets. In ND-IRIS-0405, the first 25 images of all subjects
which belong to left eye are chosen for training, and the
first 10 images of all subjects which belong to right eye
are chosen for testing. After removing some incorrectly
segmented samples, the testing set includes 5 743 231 im-
postor pairs and 14 780 genuine pairs. Next for the
CASIA-Iris-Distance dataset, we choose the images of all
subjects which belong to right eye as training set and the
images of all subjects which belong to left eye as testing
set. The testing set contains 2 969 533 impostor pairs and
20 702 genuine pairs. Then the first 180 subjects of
CASIA-Iris-M1-S3 are used for training and the last 180
subjects for testing. The testing set generates 1611 000
impostor pairs and 8100 genuine pairs. As for
UBIRIS.v2, we select a total of 2000 images of the first
100 subjects for our experiments. The first 10 images of
left eye and the first 10 images of right eye in each sub-
ject are maintained. We use the images of all subjects be-
long to left eye for training, and the images of all sub-
jects belong to right eye for testing. The testing set gen-
erates 495 000 impostor pairs and 4 500 genuine pairs.
Four DL-based methods are selected for comparison:
VGG-16P0,  pairwise CNNsl, ZhaoIlCCV2017[7 and
DRFNet24. Because the source code of [24] is lacking, it
is compared on only two datasets. In [7], four Caffe mod-
els are trained on ND-IRIS-0405 Iris, CASIA-Iris-Dis-
tance, CASTA-Iris-M1-S3 and UBIRIS.v2, respectively. A
brand new expanding loss function is utilized. Additional
supervision of iris region masks is necessary. In the cor-
responding experiments, the test dataset of CASIA-Iris-
Distance and the models trained on ND-IRIS-0405 are
directly tested. Furthermore, to make the experiments
more comprehensive and convincing, we also select some
conventional and representative iris recognition al-
gorithms based on hand-crafted features and traditional
local features for comparison, such as the LBP feature-
based USIT, Gabor filter-based OSIRIS, and ordinal
measures (OMs)23. To select the most discriminative fea-
tures of OMs, AdaBoost algorithm is utilized for compar-
ison. Inbuilt iris segmentation/normalization programs
are employed. In addition, we perform single-eye condi-
tions in these experiments.

As shown in Table 3 and Fig. 12, the experimental res-
ults and detection error tradeoff (DET) curves are listed
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Table 3 Summary of EERs and FRRs at 0.1% FAR for the iris recognition
ND-IRIS-0405 CASIA.v4-distance CASIA-M1-S3 UBIRIS.v2
FRRat FAR=0.1% EER FRRatFAR=0.1% EER FRRat FAR=0.1% EER FRRatFAR=0.1% EER
OSIRIS 3.73% 1.70% 21.15% 6.52% 41.63% 11.02% - -
USIT-LBP 3.31% 1.87% 20.32% 6.45% 40.62% 10.70% - -
OMS 3.22% 1.74% 17.05% 6.21% 14.62% 3.06% - -
VGG16 2.03% 1.05% 15.17% 6.09% 16.81% 4.13% 16.34% 8.73%
Pairwise-CNN 1.79% 0.92% 14.92% 5.83% 13.01% 3.65% 13.25% 7.12%
UniNet 1.78% 0.99% 11.54% 3.88% 8.76% 3.01% 13.93% 6.67%
DRFNet 1.62% 0.82% 9.21% 2.92% - - - -
OFR (single-scale) 1.64% 0.80% 8.45% 2.62% 7.02% 2.12% 12.34% 6.49%
OFR (multi-scale) 1.46% 0.75% 7.83% 2.17% 5.89% 1.63% 10.67% 5.58%
0.10 0.50
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22 0.05 - % — Our method § 0.25 : — Our method
= 0.04 [ " 0.20F
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Fig. 12 DET curves on four public datasets for iris recognition. (a) ND-IRIS-0405; (b) CASIA-Iris-Distance; (c¢) CASIA-Iris-M1-S3;

(d) UBIRIS.v2.

more intuitively. We do not only test our method on the
datasets collected under NIR wavelength, but also data-
set collected under visible wavelength to prove the uni-
versality and flexibility. Besides, the ablation experi-

performance on the mentioned datasets. The application
of spatial feature reconstruction and the robustness of

multiscale spatial features bring more reliability. The
combination of global features and multiscale features is

ments of single-scale are conducted to test the efficacy of
multiscale features, and the experimental results are lis-
ted in Table 3.

As the results demonstrate, it is proved that our pro-
posed method can significantly improve the recognition
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more effective for iris recognition than the features ex-
tracted by CNNs. Because of the stronger recognizing
ability on the images with occlusions and deformation,
our method achieves better performance in these public
datasets. Meanwhile, the multiscale pooling has more ro-
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bust receptive field than the single-scale pooling. The res-
ults prove that the proposed method has much more ro-
bustness and universality too. Besides, it demonstrates
that our method does not entirely depend on a high-qual-
ity gallery of these datasets. More importantly, our meth-
od is not only valid on the NIR images but also gets sat-
isfying results on the images in visible wavelength. It is
proved that our method has good generalization ability
and is extremely valuable for practical applications in
TAAD systems. In summary, our method can signific-
antly boost the iris recognizing performance.
4.3.2 Influence of different occlusion area sizes on
recognition

In this part, the influence of different occluded sizes
on recognition performance is investigated. To find out
the results, the iris images from CASIA-Iris-Distance are
covered with 50%, 40%, 30%, and 20% occlusions ran-
domly. For the sake of fairness, other methods based on
DL are also tested for comparing, including VGG-16/[50
and Zhao-ICCV20177. The DET curves of different oc-
cluded sizes are listed in Fig.13.

0.7 —— OFR-50% occlusion
e —— OFR-40% occlusion
0.6 L. . —— OFR-30% occlusion
: . —— OFR20% occlusion
~. UniNet-50% occlusion
05k :
X e UniNet-20% occlusion
0.4 NN - -~ VGG16-50% occlusion
o~ N R ——- VGG16-40% occlusion
a4 -+ VGG16-30% occlusion
[S5 03k --- VGG16-20% occlusion
02}
0.1
0 . . . . S
0.001 0.01 0.1 1 10 100

FAR (%)

Fig. 13 Comparison of the effect of the occluded size on the
recognition performance

After comparing with other DL based methods, our
method has much more robustness to the variations in
occluded size. Even though the occluded size is 50% of
the whole image, our method can achieve satisfactory re-
cognition performance. By comparison, the state of the
art (SOTA) methods is not robust enough to the vari-
ations in occluded size. The recognition performance de-
grades prominently. The larger the occlusion area, the
lower the accuracy.

4.3.3 Cross-dataset performance evaluation

The generalization is a crucial factor in practical ap-
plications of recognition system. Therefore, the cross-
dataset performance is a very important indicator to
value the generalization. In this part, we evaluate the
cross-dataset performance of our method. The model
trained by the ND-IRIS-0405 without fine-tuning is used
to test on CASIA-Iris-M1-S3 and CASIA.v4-distance. The
test dataset is the same as described in Section 4.3. As
shown in Table 4, the experimental results are listed.

Table 4 Comparison of EER in the cross dataset
performance evaluation

Cross-dataset performance

CASIA.v4-distance CASIA-Iris-M1-S3

VGG16 10.56% 7.68%
Pairwise CNN 8.34% 6.96%
UniNet 5.61% 4.75%
OFR 4.32% 2.38%

The experimental results prove that our method has
the satisfying generalization ability, which has positive
meaning for practical applications.

4.4 Experiments on periocular recognition

In this part, the experiments is to demonstrate the ef-
fectiveness of our method on public periocular datasets.
The proposed method is tested on 2 public periocular
datasets, CASIA-Iris-Distance and CASIA-Iris-M1-S3. In
addition, to assess the TAAD performance, the CASIA-
Iris-Distance dataset is employed. We follow the same
datasets settings and pretraining settings, both for the
iris recognition and periocular recognition as described
above.

The OFR is compared with 3 DL based methods:
AlexNetb7, VGG-166%, ZhaoTIFS201734 and maxout
CNNsl8l. As periocular recognition experiments were con-
ducted in [8], the same experimental protocol as the max-
out CNNs for AlexNet and VGG-16 is used for fairness.
For the method proposed in Zhao-TIFS2017[34, they re-
leased NIR and VW frameworks and Caffe models trained
on UBIpr and face and ocular challenge series (FOCS)
datasets. The model needs additional supervision of left
or right eye information and the gender information. The
trained NIR Caffe model is directly employed. Further-
more, 2 algorithms based on hand-crafted feature are ad-
opted: Gaborl33 and LBPI58.

As shown in Table 5 and Fig. 14, the comparison res-
ults and the DET curves are listed. Moreover, the com-
parison results with multiscale and single-scale features
are shown in the Table 5 to prove the effectiveness of
multiscale features.

Our method, which is based on the OFR, achieves su-
perior performance on periocular recognition over other
methods based on both deep features and hand-crafted
features. In addition, the multiscale spatial feature can
further improve the accuracy of recognition.

4.5 Experiments on fusion recognition

The experiments in this part test the performance of
bimodal fusion. We also study the contribution of differ-
ent fusion strategies.

The proposed fusion strategy is compared with the ad-
aptive weights method and the score level fusion method
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Table 5 Summary of EERs and FRRs at 0.1% FAR for the
periocular recognition

CASIA-Iris-M1-S3 CASIA.v4-distance

FRR at FAR = FRR at FAR =

0.1% EER 0.1% EER

LBP 66.22% 29.41% - -
Gabor 57.91%  17.62%  49.31%  13.53%
TIFS17-SCNN 40.53%  12.66%  23.62% 6.61%
Maxout CNNs 9.50% 1.89% 9.21% 1.92%
AlexNet 11.52% 2.83% 11.94% 2.73%
Our method 8.62% 2.59% 8.81% 2.72%

(single-scale)

Our method 6.91% 1.72% 8.01% 1.89%

(multi-scale)

based on the weighted sum rule. We perform the fixed
scorepreset score weights for iris w; and periocular w, as
comparisons to manual score-level fusion methods. To ob-
serve the performance variations with iris and periocular
weights changing, w; is changed by 0.1 in the range of
0.3-0.7, and wp, = 1 — w;. The results of score-level fu-
sion by weighted sum are shown in Fig.15. For example,
0.31-0.7P score fusion means the weight of iris is 0.3 and
the weight of periocular is 0.7.

Moreover, we also utilize another SOTA DL based iris
quality assessment method to obtain adaptive fusion
weights and compare them with our proposed iris quality
assessment method. The results are also shown in Fig.15
and Table 6.

Then, we test feature-level fusion by concatenating
the global feature set and spatial feature set of iris and
periocular respectively. The similarity distance of concat-
enated feature set is calculated as (13) to decide the iden-
tity.

As the results show, weight plays a vital role to fu-
sion result. Fusion performance is worse than iris recogni-
tion when the periocular modality has larger weights. Fu-
sion performance is improved by a considerable margin

1.0
LBP
09 F — GABOR
0.8+ — TIFS17-SCNN
’ — Maxout CNNs
0.7 F AlexNet
0.6 L * Our method (single-scale)
~ : — Our method (multi-scale)
~ 051
s
04+
0.3+
0.2
0.1
0 L L T
0.001 0.01 0.1 1 10
FAR (%)
(a)

Fig. 14
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when the iris has larger weights. However, iris recogni-
tion is much stricter than periocular recognition for im-
age quality. It means that the larger iris weight is not al-
ways more suitable for all images. When the iris quality
in the image is poor, giving more weight to periocular can
greatly improve the recognition efficiency. In addition,
the proposed iris quality assessment can provide a more
suitable sum weight than the SOTA DL based iris qual-
ity assessment method. The proposed fusion strategy can
significantly improve the recognition performance of a
single ocular biometric.

5 Conclusions

In this paper, a new ocular biometrics recognition
method is proposed, which is occlusion-robust, deforma-
tion-aware, and alignment-free for multi-modal ocular re-
cognition. OFR is implanted in FCN to obtain suitable
global features and multiscale features. Spatial feature re-
construction is leveraged to ensure the reconstruction er-
ror between a pair of images from different eyes is max-
imum and that between a pair of images from the same
eye is minimum. Thus, the local feature at different posi-
tions and scales can be matched. The proposed score-level
fusion strategy, based on unsupervised iris quality assess-
ment, can enhance the recognition performance than un-
imodal ocular recognition significantly. The superb per-
formance demonstrates the effectiveness and robustness of
our method on both periocular and iris recognition, and it
does not depend on high-quality probe images. In addi-
tion, excellent performance is achieved on both visible
and NIR datasets. It implies that the proposed method
can adapt to various application scenarios. Moreover, the
generalization ability of our method is proved by the
cross-dataset performance evaluation.

There are still some imperfections in the proposed
method, e.g., the computational efficiency. These imper-
fections will be improved predictably in the future. On
the whole, we propose a viable way to recognize low-qual-
ity images obtained from IAAD systems and will inspire
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0.6 —— Our method (multi-scale)
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—— Maxout CNNs
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(b)

DET curves on four public datasets for periocular recognition. (a) CASIA-Iris-M1-S3; (b) CASIA-Iris-Distance.
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Table 6 Summary of EERs and FRRs at 0.1% FAR for the
fusion recognition

CASIA-Iris-M1-S3 CASIA.v4-distance

FRR at FAR = FRR at FAR =
0.1% EER 0.1% EER
Only iris 5.89% 1.63% 7.83% 2.17%
Only periocular 6.91% 1.72% 8.01% 1.89%
Fea;“rie'le"el 5.32% 1.46% 7.86% 1.86%
usion
Fusion by 5.13% 1.32% 6.92% 1.58%
1JCB2020 oo e wese 0BT
Fusion by our
3.12% 0.93% 4.26% 1.39%

method

other investigations on multi-modal ocular recognition in
real-world scenarios.
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