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Abstract: Collective movement simulations are challenging and important in many areas, including life science, mathematics, physics,

information science and public safety. In this survey, we provide a comprehensive review of the state-of-the-art techniques for collective
movement simulations. We start with a discussion on certain concepts to help beginners understand it more systematically. Then, we

analyze the intelligence among different collective objects and the emphasis in different fields. Next, we classify existing collective move-

ment simulation methods into four categories according to their effects, namely versatility, accuracy, dynamic adaptability, and assess-
ment feedback capability. Furthermore, we introduce five applications of layout optimization, emergency control, dispatching, un-

manned systems, and other derivative applications. Finally, we summarize possible future research directions.
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1 Introduction

Creatures' movement behavior shows superior wisdom,
which is the inexhaustible power and rich source of hu-
man creativity[ll. Collective movement simulations de-
scribe how an object changes its location according to the
state of its neighbors and environment system(2=8l on the
basis of knowledge from mathematics, physics, psycho-
logy and computational sciencel. They focus on reprodu-
cing collective movement behavior and promoting the mi-
gration/iteration of collective intelligence, which is of
great significance for decision-making, control, planning,
etc.

For beginners, it is difficult to realize a high-quality
collective movement simulation. The main reasons are as
follows. Firstly, there are various types of collective ob-
jects, including living intelligent objects (such as bir-
dsl10: 11 fish schools!2], bees[!3], ant colonies/!4, humans,
etc.), non-living intelligent objects (such as robots, un-
manned aerial vehicles, etc.)[!5717, and the combination of
the above (e.g., vehicles, manned aircraft, etc.)[8l.
Secondly, there are many factors affecting collective
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movement, not only including diverse collective behavi-
ors (such as foraging, migration, obstacle avoidance, es-
cape, cooperation, confrontation, and conformity, etc.),
but also including inter-individual differences (such as
personality, emotion, experience, etc.). Characterizing the
above behaviors and reproducing collective intelligence
attract lots of researchers from different fields. There
have been lots of reviews to summarize the above work so
far(19-25], They summarize the difference between homo-
geneous and heterogeneous collective simulation methods.
There are still some problems: Firstly, lots of collective
movement simulation methods from different fields are
confusing for beginners, which increases their learning dif-
ficulties. Secondly, there is little analysis of the intelli-
gence among different kinds of collective objects, which
may lead to the lack of horizontal intelligence explora-
tion. Last but not the least, the classifications of existing
methods are usually based on the properties of the meth-
ods themselves, such as macro/micro methods and data-
driven/model-driven methods, etc. However, users often
prefer to find one type of method that can meet their ap-
plication requirements quickly, and then narrow the scope
to choose the best method, which is impossible according
to existing classifications.

In order to address the above problems, this paper or-
ganizes the related work on collective movement simula-
tions. This paper first introduces related concepts, and
then analyzes the related work from different collective
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objects, fields, and effects. Finally, applications and dis-
cussions are presented. The main contributions of this pa-
per are as follows:

1) Show related concepts about collective movement
simulations to help beginners clear the context.

2) Discuss intelligence among different collective ob-
jects according to the latest research.

3) Summarize the focus of different fields on collect-
ive movement simulations.

4) Classify existing collective movement simulation
methods according to their application effect, which can
help users quickly find the methods that they need.

The outline of this paper is as follows. Section 2 intro-
duces concepts about objects such as flock, swarm, crowd,
group and self-driven particles, clarifying the concept of
collective movement, and distinguishing the relationship
among model, simulation and animation. Section 3 firstly
analyzes the intelligence of four types of objects, includ-
ing creatures, crowds, robots and vehicles, and then
shows a lateral analysis. Secondly, it summarizes the fo-
cus of research on collective movement simulations in
four fields: life science, mathematics/physics, information
science and public safety. Then, existing methods are di-
vided into four categories according to their application
effects: versatility, accuracy, dynamic adaptability and
assessment feedback capability, and the related methods
involved in each category are introduced in detail. Sec-
tion 4 shows the application of collective movement simu-
lations in layout optimization, emergency control, dis-
patching, unmanned systems, and others. Section 5 sum-
marizes and looks forward to this paper.

2 Concepts

This section introduces some concepts about collect-
ive movement simulations to help beginners understand
collective movement simulations more systematically.

2.1 Objects of study

The research objects of collective movement simula-
tions are a set of objects that interact with each other.
Researchers introduced flock, swarm, crowd, group, self-
driven particle and so on to describe the above object set.
Here we summarize the differences among these concepts.

Flock. The first model of flocking behavior is pro-
posed by Reynolds[lll, mainly referring to flock of birds.
Considering that flocking behavior also exists in other liv-
ing objects, such as a herd of land animals, or a school of
fish, etc., Kownacki et al.[26: 27 proposed a broader defini-
tion of flock: a group of objects that exhibit this general
class of polarized, noncolliding, aggregate motion. Kown-
acki et al.[26, 27 subsequently introduced the well-known
flocking algorithm, which is widely applied to multi-agent
control. Then lots of scholars have continued the above
broader definition. For example, Vicsek and Zafeiris? in-

troduced that flocking motion occurs in the system, in
which the units (living and nonliving) are quite similar.
Olfati-Saber28] indicated that flock refers to a large num-
ber of interacting agents with a common group objective.

Swarm. The term of swarm comes from the idea of
flock. The swarm mainly refers to swarm intelligence
coming from the swarming behavior of social insects29].
Millonas?9 introduced that the swarm is a collection of
simple locally interacting organisms with global adaptive
behavior. The application of the famous particle swarm
intelligence optimization method is used for artificial
lifel30. Subsequently, scholars have used some bionic
knowledge for the optimization of swarm intelligence
methods[31733],

Crowds. Some researchers consider that crowds are
equivalent to human crowds3436, Some other research-
ers consider that a crowd is human and human-like
groups. For example, Xu et al.?4 introduced that crowds
refer to complex systems containing collections of indi-
viduals, such as human groups and vehicle flows. Gibelli
and Bellomol® introduced that a crowd is composed of
sufficient interacting individuals, and there is a collective
intelligence, or a self-organizing phenomenon.

Groups. Members within a group usually have social
relationships and intend to move togetherl37 381, The scale
of a group is no restriction: two vehicles, three persons
and a thousand animals, etc. The internal relationship of
one group is also no restriction: following a leader, turn-
ing around, etc. However, there is only one internal rela-
tionship in one group. Ren et al.3% believed that groups
in a crowd have different properties.

Self-driven particles. Self-driven particles, firstly
proposed by Vicsek, refer to particles that appear self-
ordered motion through biologically motivated interac-
tionsl4, It is used to describe the phase transition from
disordered to large-scale ordered movement. Helbing/4!]
described self-driven particles as a simplified representa-
tions of the dynamic behaviors of cells, animals, and hu-
mansl42.,

In conclusion, sometimes one concept owns different
meanings according to different needs. However, there are
still subtle differences among them. For example, the in-
teractions among objects in a flock or a swarm are al-
ways simple. There is usually only one type of interac-
tion within a group. The interactions among objects in a
crowd are personalized and complex. For the collective
scale, there is no strict restriction on the size of a group
or a self-driven particle system, in which both large and
small are all workable. Collective movement behavior
may disappear if the size of a flock/swarm/crowd is too
small. Table 1 shows some detailed comparisons.

2.2 Content of study

Collective movement is a type of collective behavior.
There are many types of collective behavior in the field of
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Table 1 Comparisons among flock, swarm, crowd, group, self-driven particles

Concept Object of study Internal interactions Scale Application
Flock Initially refer to birds Simple Large Intelligence optimization
Swarm Initially refer to insects Simple Large Intelligence optimization
Crowd Mainly refer to human Personalized and complex Large Control and optimization
Group Without any restrictions One More than one -

Self-driven particles Particles that have self-ordered motion

Unconstrained More than one -

bionics, such as aggregate behavior[lll, schooling behavior
of fish[12l, division of labor behavior(l3l, foraging behavior
of ant colonies['4], panic behavior3 and conformity beha-
viorl#l of crowds, migration behavior of animals[5], flick-
ering behavior of firefly swarms/6l and hunting behavior
of whale schoolsl4”l. As a behavior, the collective move-
ment behavior is influenced by other behaviors. For ex-
ample, the different division of labor in bees leads to dif-
ferent movement purposes!3l, the concentration of pher-
omones affects the movement path of antsl'4, panic af-
fects the movement speed and direction of crowds3], and
the brightness of firefly flickering affects the movement
direction of individuals in its vicinity46l.

Collective movement is, of course, also a type of
movement. For individuals within the collective system,
their movement behavior can be further divided into
numbers of sub-movement behaviors. For example, Reyn-
olds considered that collective movement behaviors in-
clude seek, flee, pursuit, evasion, offset pursuit, arrival,
obstacle avoidance, wander, path following, wall follow-
ing, containment, flow field following, unaligned collision
avoidance, separation, cohesion, alignment, flocking, and
leader following[48l. Helbing et al.49 considered that col-
lective movement behaviors in a crowd stamping include
acceleration, mutual obstruction, shoving, and falling.
Obviously, sub-movement is also influenced by other
movements.

There are also some subtle differences among collect-
ive movement simulations, collective movement modeling
and collective movement animation. Modeling refers to
the creation of a model that approximates an eventl50.
Simulation is a time-varying representation of the event,
which can be described by a mathematical model or a
symbolic model®!: 52, Animation is a term that comes
from the virtual reality and graphics. Simulation can
drive animation and it is often used as the engine for cre-
ating actions in computer animations/®0.

3 Classification

This section introduces three classifications for exist-
ing collective movement simulation methods according to
their research objects, fields and effects.

3.1 Objects

According to the intelligence of collective movement,
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the research objects are divided into four categories:
creatures, humans, robots and vehicles. The relationships
among them are shown in Fig.1. Creatures contain a
wealth of intelligence. Humans have evolved intelligence
over a long evolutionary process to be smarter than
creatures. The intelligence of the robots is transferred
from the creature and human intelligence. And the move-
ment of vehicles is jointly determined by the human-
vehicle, reflecting the fusion of human and robot intelli-
gence.

Creatures

Fuse intelligence

Vehicles

Fig.1 Intelligence relationship among different objects

3.1.1 Creatures

The collective movement from creatures contains rich
intelligence.

In a flock of birds, individuals interact with others to
obtain useful information53l. They also scan the environ-
ment around them and detect danger to increase the sur-
vival advantage of the whole flockl% %5, As the scale of
the flock increases, individual vigilance decreases, but the
risk of being attacked does not increasel56l. Similar to the
flock of birds, in a school of fishes, individuals obtain a
larger perceptual range through local visual interactions
to reduce risks7 58],

In a swarm of ants, individuals release and perceive
pheromones along their paths when searching for food.
The concentration of pheromone characterizes the dis-
tance to the food source, with higher a pheromone con-
centration indicating a shorter distance to the corres-
ponding path. Then they can search the shortest path un-
der the direction of pheromones/®9-61].

In a group of wolves, individuals perceive the environ-
ment around them to detect danger. In addition, there
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are social hierarchies within the pack. The division of
labor is clear, which is constantly changing with the sur-
vival of the fittest to ensure that the leader is always the
strongest individuall©2],

There are lots of other creatures that contain intelli-
gencel63-66], Here we don't list them all. These types of in-
telligence have provided a lot of inspiration for bionom-
ics scientists and have been widely applied to multi-ob-
jective optimization problems/67-71],

3.1.2 Humans

The collective movement intelligence from human
crowds may be inferior to creatures in some respects.
However, as the highest intelligence possessor on earth,
their significant physiology, personality, culture, emotion,
social, political, and cognition lead to autonomy, flexibil-
ity, and diversity of crowd movement[™ 73], Next, we take
emotion and political abilities as examples.

Emotion is a short-term psychological state of human
beings, which has a great influence on the movement of
the human crowd(™4-76], For example, human panic is easi-
er to be generated and spread in emergencies!’”, which
manifests themselves in moving faster movement, follow-
ing others, pushing and shoving between individuals,
blocking at bottlenecks/exits, and triggering crowd stam-
pedel™. However, after the guidance of security person-
nel, individuals can gradually change from negative emo-
tions (panic, anxiety, fear, impatience, anger) to positive
emotions such as calmness and optimism[™], such as se-
curity guards guiding humans to the exit and teachers
guiding students to evacuate from the school building/80l.
In crowd queuing events (automated teller machines
(ATMs), subway stations, bus stops, service windows,
etc.), individual queuing time and urgency can affect
their patience and friendliness, resulting in negative emo-
tions that confuse the queuing order. When many indi-
viduals in the crowd have negative emotions, it may
cause queue confusion8l,

Different political views lead to different values.
Crowds gathering is a typical political rally, such as a
presidential election or a parade. Individual movement is
influenced by its neighborhoods, and groups with differ-
ent political views may erupt into violent conflict/82l. In
crowd violence incidents, antagonism plays an important
role, which refers to the hostility of individuals with dif-
ferent identities, such as police and thugs/®3],

In conclusion, movements of human crowds are more
complex than creatures, with more influencing factors and
more powerful individual intelligence.

3.1.3 Robots

The collective movement intelligence of robots (ro-
bots, unmanned vehicles, drones, etc.) is machine intelli-
gence, which usually comes from bionic intelligence. Here
we show how to model individuals in robot collections to
generate collective intelligence according to the following
two types.

The first type is transformed by a kind of bionic intel-

ligence. Doctor et al.84 regarded each mobile robot as a
particle, and use the particle swarm algorithm to guide
collective robotics to search for single and multi-target.
Liang and Leel8] considered each robot as a bee, and use
an efficient artificial bee colony algorithm to adjust its
role according to the search results so that the multi-mo-
bile robots can reach the specified target without colli-
sion. Wang et al.l86] regarded each uninhabited combat
air vehicle as a bat, and perceive the distance by echo-
location to ensure that individuals follow the shortest
path each time. Qu et al.87 treated the drones as gray
wolves, where three individuals with better adaptation
form the leading wolf swarm and influence the rest, which
generate high-quality paths for the unmanned aerial
vehicles (UAVs) in a 3D complex flight environment.
Pandey et al.®8] considered the UAVs as a firefly swarm,
where individuals exchange local information in their
variable neighborhood and choose to go closer to others
that are better than themselves, which generates feasible
trajectories from source to destination for the UAV.

The second type is to blend various kinds of bionic in-
telligence for better performance. Das et al.89 considered
each robot as a particle and combined an improved grav-
itational search algorithm and improved particle swarm
optimization to update the acceleration and velocity re-
spectively, which minimizes the multi-robot motion time
and path length in a clutter environment. Qu et al.[%
treated UAVs as a wolf pack. They use the grey wolf op-
timization algorithm to search for possible solutions and
then optimize the solutions using the modified symbiotic
organisms search algorithm, which can generate effective
and safe paths for UAVs in complex and dangerous envir-
onments. He et al.l’! regarded UAVs as a particle swarm.
They update each particle's position using improved
particle swarm optimization, and then adopt a modified
symbiotic organisms search algorithm to boost the local
search capability of the particle, which can yield feasible
paths for UAVs in 3D complex terrain environments.

Theoretically speaking, we can use many types of
bionic intelligence to control the collective movement of
robots. Therefore, in some way, robots can be more intel-
ligent than creatures. However, lots of human behaviors
have not been artificially generated, and robots are less

intelligent than human beings.
3.1.4 Vehicles

The vehicles can essentially be seen as a fusion of hu-
man and robot intelligence, which contains both driver
perception decisions%? and intelligent control that comes
with the vehicle design. Therefore, the vehicles move-
ment shows complex traffic phenomenon[®3l.

A driver uses visual, auditory, vestibular and somato-
sensory sensory systems to perceive the environment.
Then he controls the longitudinal and lateral movement
of a vehicle by manipulating the throttle, brake, and
steering wheel. And the vehicle is able to cope with com-
plex dynamic traffic situations with the driver's high in-
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telligence. Among them, the visual perception plays a
crucial role. The central vision perceives the geometry of
roads and peripheral vision perceives the speed and relat-
ive position of surrounding vehicles. The closer vision
helps the driver to control the vehicle laterally and the
farer vision helps the driver to achieve smoother man-
euvers[9.

Similar to humans, there are many factors that affect
drivers' driving behavior, such as weather conditions, an-
swering/making calls, entering text messages, eating,
driving habits, proficiency in driving skills, age, and
gender(9%; 961 Studies have indicated that up to 20%—-30%
of traffic accidents are caused by physiological reasons
such as driver fatigue and distraction. Music with differ-
ent emotional values has different effects on driving beha-
vior. Cheerful music greatly distracts the driver and re-
duces lateral control. Drivers listening to sad music cause
them to slow down and stay in the current lanel®7l. Driver
emotion is also an important factor, relaxed and positive
emotions can help drivers make rational judgments[98],
angry emotions would decrease drivers' risk perceptions,
and fear can improve drivers’ alertness99.

In all, drivers determine the performance of the
vehicle’s underlying motor control, while vehicle dynam-
ics and kinematic constraints affect drivers' operating be-
havior. In other words, the driver's decisional intelligence
and the vehicle’s control intelligence jointly determine the
traffic behavior.

3.2 Fields

There are rich and wonderful connotations of collect-
ive movement. Researchers in a variety of fields, includ-
ing life science, mathematics, physics, information sci-
ence and public safety, have conducted extensive re-
search on this topic.

The relationship among these fields is shown in Fig. 2.
Life science and mathematics/physics are basic science,
with the former focusing on revealing the nature of the
collective movement and the latter on describing it by
constructing theoretical models. Information science and
public safety are applied science, with the former mainly
extending existing mathematical models or employing
other techniques to portray collective movement, and the
latter integrating the application of the above existing
methods to serve the real world. Next, we will give some
detailed descriptions.

Life science. To some extent, life science is a basic
science discipline of quantitative analysis, which gener-
ally uses observation and description, statistical experi-
ments, comparative analysis, etc., to discover the biolo-
gical roots of collective movement behavior genera-
tionll%], Li et al.ll91], by studying the unique interactions
of neuronal activity during competitive foraging in mice,
found that competition among animals within a group is
not only related to individual health, but also strongly in-
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Fig. 2 Relationship among life science, mathematics/phy-
sics, information science and public safety.

fluenced by neural signals Padilla-Coreano et al.[102] ex-
perimentally revealed how the mammalian brain encodes
social hierarchies and uses hierarchical information to
shape its own social competitive behavior. Lyu et al.[103]
investigated the discovery of regions within the droso-
phila brain involved in goal-directed navigation, which
can update spatial perception according to different
movement angles and body angles in order to compute
coordinate transformations and movement directions.
Bonl1%4 by observing the mass phenomenon caused by the
French Revolution, argued that these masses were often
susceptible to emotional agitation losing rational judg-
ment, which led to the collective mind. Scholars in this
discipline focus on the discovery of correlations, laws and
rules, and do not construct computable models of these
findings.

Mathematics and physics. Similar to the life sci-
ence, mathematics and physics are also basic science dis-
ciplines. The difference is that mathematics and physics
require not only discovering the origin of collective move-
ment behavior, but also constructing computable math-
ematical models for it through analytical and numerical
means. Helbing and Molnar[1% proposed a classical social
force model to simulate crowd evacuation behavior based
on Newton's second law. This model has been used to succe-
ssfully simulate the “fast is slow”, exit selection, and pan-
ic behaviors of crowds during evacuation/43]. Hughes/106, 107]
combined continuity equations, fundamental diagrams,
and potential fields based on continuum medium theory,
assuming that each agent has the same mass and velo-
city probability density function, for high-density crowd
simulation. Silverman et al.[108: 109 constructed a predict-
ive theory of pedestrian flows based on conservation laws,
symmetry principles and the spectral properties of the ve-
locity waves. This model allows to describe how a group
responds to perturbations to constrain continuum models
in polarized populations. The outstanding advantage of
mathematics and physics disciplines is that the results are
directly available for computer simulations.

Information science. The information science
provides a new research paradigm for the study of collect-
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ive movement simulations for the fields of life science,
mathematics and physics. It is the biggest booster of the
traditional study policy of “Learning through investiga-
tion” to the new research strategy of “Learning through
simulation”. The development of collective movement
simulation technology in this field can be generally
grouped into two aspects. One is to progress with ad-
vances in life science, mathematical and physics discip-
lines. When the collective movement simulation techno-
logy in mathematics and physics is not fully mature, aca-
demics in information fields are more likely to realize the
simulation of collective behavior based on some simple
rules(!l: 12l With the successive proposals of social force
model and fluid models, researchers have been inspired to
simulate more realistic and reasonable collective move-
ments with ample detailsl!10 111], Chao et al.l'2] simu-
lated a mixed traffic scenario of pedestrians, bicycles and
cars based on the concept of force, and portrayed in great
detail the following and lane changing behaviors of
vehicles, collision avoidance and overtaking behaviors of
bicycles. The other is directly based on the laws found in
life science disciplines, using machine learning and other
techniques to build models that describe the mechanisms
of collective movement behavior. Examples include, ge-
netic algorithms(!13] that simulate genetics, mutation, nat-
ural selection, and hybridization in biological evolution,
particle swarm optimization algorithml!?l, ant colony op-
timization algorithm[l4, artificial bee colony optimization
algorithm[13], firefly algorithml6] whale optimization al-
gorithm[7 and rat colony optimization algorithm/114],
Public safety. The public safety is a typical applied
science. It mainly integrates and applies the above-men-
tioned results to provide a theoretical basis for the safety
level and planning design of buildings, highways, etc.
Shenl15] proposed an evacuation simulation model to pre-
dict the crowd evacuation performance of buildings,
which is adopted for safety evaluation and helps to op-
timize the internal structure of buildings. Tian['16l repro-
duced the crowd evacuation process in public areas based
on a fluid dynamics model and analyzed the evacuation
efficiency of different layouts, which is helpful to improve
the building design and shorten the evacuation time of
humans. Wagner and Agrawallll” pointed out that the
evacuation time of a crowd does not decrease as the de-
sired speed of the crowd increases, but there is a process
of reducing and then growing. If everyone evacuates at
the exit at the desired speed, a huge crowding pressure is
generated and causes a stampedel!l8; 119 Ma et al.[l20]
combined a pedestrian space analysis model and an
agent-based pedestrian model on a geographic informa-
tion system platform to simulate pedestrians movement
for assessing the safety and comfort of complex buildings,
which is also applicable to the construction of transporta-
tion facilities. Castafieda et al.ll2ll proposed an intersec-
tion traffic simulation method based on the building in-
formation modeling approach to analyze and evaluate

roadway performance, which is useful to improve the
quality of intersection construction. Researchers in this
field focus on applying simulation methods to guide real-
world planning and construction.

3.3 Effects

In terms of simulation effects, collective movement
simulation methods can be classified into four categories:
versatility, accuracy, dynamic adaptability, and assess-
ment feedback capability. The following provides a de-
tailed description of the comparisons among them.

3.3.1 Versatility

Versatility refers to the ability of a method to mi-
grate to different scales, scenarios and kinds of objects.
According to the level of individual details, it is mainly
divided into microscopic models and macroscopic
modelsl122],

Microscopic models

Microscopic models drive collective movement with
high level of individual details, and several microscopic
models have been developed, primarily including rule-
based models, cellular automata models, and social force
model.

Rule-based models. Rule-based models usually
characterize collective movement through a series of be-
havioral rules. They have been applied to animals, crowd,
and traffic simulations. Reynolds/!!l proposed a distrib-
uted boids model using three rules of collision avoidance,
velocity matching and flock centering to simulate the sep-
aration, alignment, clustering, exploration, pursuit and
avoidance behaviors of bird flocks. Tu and Terzopoulos(2
suggested a fish intention generation rule to simulate the
behavior of artificial fish based on its perception informa-
tion, habits, and psychological states, etc. Yuan et al.[123]
designed rules to simulate interactions between walking
companions. Chao et al.124 successfully reproduced ped-
estrian-vehicle interactions in mixed traffic.

Rule-based models are simple and easy to implement.
However, they are difficult to describe complex behaviors
comprehensively, and deadlock caused by rule-to-rule
conflicts are unavoidable as the number of rules increases.

Cellular automata models. A cellular automata
(CA) model is a discrete computable model that discret-
izes the space into finite cells. Cells follow specific move-
ment rules, interact with neighboring cells, and evolve ac-
cording to time steps(l25. The earliest use of CA models
to study vehicle and crowd movements was by Nagel and
Blue, respectively. Nagel and Schreckenberg(!26l applied
CA to single-lane micro-traffic simulation!2”], and later
expanded it to two-lane scenarios[!28l. Next, Blue and
Adler!?9 developed a CA model to investigate unidirec-
tional pedestrian flow, and then proposed a new rule set
to extend the CA model to bidirectional pedestrian walk-
ways simulation[130].

A pioneering work is the introduction of the floor field
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in CA by Burstedde et al.13l namely the floor field CA
model (FFCA). Fig.3 shows the individual possible trans-
itions and associated matrix of preference M in this mod-
el. It is able to translate spatial long-ranged interactions
into non-local interactions in time and to reproduce col-
lective phenomena of human crowds. On this basis, the
scholars have carried out extensive research. Zhao et
al.[132] proposed a continuous FFCA model for the low ac-
curacy of discrete FFCA. Lu et al.[133] added leader-fol-
lower rules to extend the FFCA in order to better simu-
late the movement characteristics of groups (such as
friends and families). Kirchner and Schadschneider!34 ad-
opted static floor field to specify regions of space which
are more attractive, e.g. an emergency exit or shop win-
dows, and a dynamic floor field describes the pedestrian
virtual trace that diffuses and decays over time. This
method can simulate complex cases of crowd evacuation.

MI.*I MI,O Ml.l

Fig. 3 Individual possible transitions and associated matrix of
preferencel!31]

A well-known variant of the CA model is the lattice
gas modell!35], which treats pedestrians as biased random
walkers for simulating the counterflow of pedestrians in a
subway  passage. Subsequently, Muramatsu and
Nagatanil!36l extended this method to the congestion
problem of two-way and four-way pedestrian flows, and
study the congestion structure in different situations.

To improve the simulation precision of the CA, re-
searchers have conducted a lot of research. Ruan et al.[137]
redefined lattice, cells’ states, neighborhoods and trans-
ition rules as well as present multi-axle single-cell CA,
which generates microscopic vehicle sequences with de-
tailed axle positions. Liu and Shil'38] modeled multi-lane
vehicle lane change movement by introducing back-
propagation neural networks. Wang et al.l!39 imported
vehicle following and lane changing rules for different
traffic scenarios into the multi-agent CA model. Kirchner
et al.l10] introduced a factor affecting pedestrian move-
ment speed, to portray the mutual obstructive effect
between pedestrian. Weng et al.l!4l] proposed a CA mod-
el without a step back for pedestrian dynamics, which is
able to judge in some complex situations. Yamamoto et
al.[142] presented a real-coded CA model, which success-
fully simulates the oblique motion of pedestrians on grids.
Fu et al.l'3] introduced individual differences to study the
influence of individual personality and psychology on
evacuation behavior, and realistically simulate the evacu-
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ation behavior of crowds in crisis situations.

Due to the discreteness of the CA models in space,
time and state, the calculation speed is fast and the effi-
ciency is high when there are a large number of individu-
als. However, these models cannot describe interactions
among individuals in detail. It is suitable for low-density
and simple interaction scenarios.

Social force models. The famous social force model
(SFM) was proposed by Helbing and Molnér(1%%), and indi-
vidual behavior is determined by (1):

a5 ()€l ()= n ()
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where the left side is the product of individual mass and
acceleration, and the right side is the resultant force on
the individual, the first item of the right side is the self-
driving force, v{ (t) represents the desired speed, e_g(t)
represents the direction of the desired speed, o, (®)
represents the current speed, 7LJ represents the repulsive
force between pedestrians, and iw represents the
repulsive force between the pedestrian and the obstacle.

The SFM has received widespread attention since it
was proposed, leading to lots of derivative works. Lakoba
et al.l44 modified the original SFM for repulsive forces,
social force direction and pedestrian perception of the dir-
ection in which the target is located to generate a more
realistic simulation. Based on this, new expressions for re-
pulsive forces(145-147 are proposed. Pascucci et al.l'48] put
forward a multilayer SFM, to simulate different traffic
conditions from free flow to congestion. Huang et al.[149]
linked three sources of social forces to research vehicles
interactions. Jiang et al.1% introduced dynamic naviga-
tion field, which can reproduce various scenarios of pedes-
trian evacuation, like self-organized arching and queuing
phenomena, and is also able to capture pedestrian behavi-
or, like exit selection and path choice.

In the real world, each individual is diverse and het-
erogeneous, and there are great differences in their in-
nate character. Therefore, social and psychological factors
are also incorporated into SFM. Pelechano et al.l51] pro-
posed a layered behavioral architecture for the simula-
tion of movement with high-density autonomous crowds,
which combines the psychological and geometric rules
with a SFM. Wu et al.l'52l quantified the physical and
psychological attributes of pedestrians by introducing in-
dividual physical and psychological coefficients respect-
ively, to construct a pedestrian heterogeneity-based SFM.

The SFM describes the interactions among individu-
als and between individuals and the environment, effect-
ively reproducing the self-organization of collective move-
ments.

Rule-based models, CA models and social force mod-
els focus on descriptions of individual behavior in detail.
Among them, rule-based models are easiest, but CA mod-
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els and social force models do not introduce the deadlock
problem. Compared with CA models which solve indi-
vidual behaviors in discrete space, social force models can
show more complex and diverse individual behaviors.

Macroscopic models

Macroscopic models describe collective movement in
low-level individual details, represented by velocity, dens-
ity, flow, etc., mainly including continuous models and
potential field models.

Continuum models. Many properties of a collective
at high densities are similar to a fluid, hence the term
“thinking fluid”. Fluid dynamics and gas dynamics have
inspired scholars to migrate and apply them to vehicle
and crowd simulation as early as the 1970s. McDowell[!53]
applied the idea of fluid dynamics and propose partial dif-
ferential equations describing multi-lane traffic flow.
Henderson34 posed a hydrodynamic model describing
pedestrians movement, which assumes that each pedestri-
an has the same mass and velocity probability density
function. Subsequently, Helbing(!4 came up with a hy-
drodynamic method based on the Boltzmann-like gas-kin-
etic model, by taking the direction of pedestrian motion
and the anisotropy of interactions between pedestrians in-
to account.

A landmark model in traffic flow simulation is the
LWR modell!3] allowing for larger flows when the traffic
density is moderate. The model adopts the first-order
mass conservation equation in fluid mechanics to derive
the continuity equation describing the motion of traffic
on a long straight road, as shown in (2):

Bup+ s (p) = 0 (2)

where p is the density, v is the velocity at the
corresponding position, and v does not increase as p
increases. p is from 0 to the maximum density pn,, which
is determined by the traffic congestion situation.
Continuum models are able to simulate large-volume,
high-density collective movement, which has stimulated
the research interest of scholars. Chenneyl!56 suggested
the flow tiles model based on the design of velocity fields
in small constrained regions called tiles. Coscia and
Canavesioll®” modeled pedestrian motion strategies and
panic behavior using mass conservation equations and
boundary conditions based on the continuous medium
theory. Narain et al.[!58] posed a hybrid continuous medi-
um approach that scales to simulate dense crowds of up
to 100 000 individuals. Bellomo et al.!59 parameterized
the mean velocity for constructing mass conservation
equations and fluid dynamics equations to model homo-
geneous behavioral crowd movements, heterogeneous
walking strategy, and social behaviors. Mohan and Ra-
maduraill® developed an existing second-order con-
tinuum traffic flow model in order to model heterogen-
eous traffic flows, using area occupancy rather than dens-
ity to describe traffic flow concentrations. Liang et al.[161]

put forward a second-order pedestrian model including
two types of equations: a continuity equation and a set of
transmission equations.

Continuous models focus on the study of large-scale
collective movement trends according to the laws of phys-
ics. They are suitable for high-density scenarios. However,
the simulation results lack diversity, which means that
each agent has uniform speed and single behavior.

Potential field models. Potential field models are
another model to describe collective movement from a
macroscopic perspective, and the most common method is
the artificial potential field (APF) method162, which cal-
culates repulsive forces away from obstacles and attract-
ive forces close to the target.

The attractive potential field is shown in (3):

1
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where kqt+ is the position gain of the attractive potential
field, = is the current individual position, and =4 is the
goal position.

The repulsive potential field is shown in (4):
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where krep is the gain factor of the repulsive potential
field, x4 is the distance between the individual and the
obstacle, and p is the influence distance of the obstacle.

From the above equations, an agent is affected by the
superposition of an attractive potential field and multiple
repulsive potential fields.

However, the conventional APF method has two
drawbacks, namely, target unreachability and local min-
ima. Therefore, researchers have proposed improvement
from two aspects.

One is to optimize internal parameters. Chen and
Lil'63] modified the APF function to increase the attract-
ive field and decrease the repulsive field when approach-
ing an obstacle. Lin and Hsieh['64 proposed the concept of
a rotating repulsive field by introducing a target factor in
the repulsive field to provide feasible directions. Song et
al.[165 presented a predictive APF with three modifica-
tions, namely angle limitation, velocity adjustment, and
potential prediction, as a way to improve the feasibility
and flatness of the generated paths. Chen et al.[160]
avoided the local minima problem by setting virtual
obstacles and targets, and used a simulated annealing al-
gorithm to search for the optimal parameters of the artifi-
cial potential field.

The other is to combine it with other methods. Zheng
et al.ll67 developed a multi-agent path planning al-
gorithm based on hierarchical RL and APF. Noguchi and
Makill68] advanced an APF based on binary Bayesian fil-
tering with RL to create paths in a simulated environ-
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ment. Li et al.l'69 defined the concepts of distance rein-
forcement factor (DRF) and force reinforcement factor
(FRF), and decomposed the reward function into two
parts by the DRF and FRF.

Potential field models abstract the environment into a
virtual force field, with a simple formula and fast calcula-
tion. However, it is not suitable for the environment with
more complex obstacles.

In the above two types of models, each agent does not
consider the individual level interactions between others
and the environment. The difference is that the continu-
ous models represent collective movement as a con-
tinuum flow, while the potential field models calculate
the resultant force for each agent.

3.3.2 Accuracy

Accuracy refers to the simulation results close to the
real situations. According to the level of the data, it is
mainly divided into microscopic data-driven methods and
macroscopic data-driven methods.

Microscopic methods

Microscopic data-driven methods use microscopic data
(trajectory) to simulate collective movement[17].

This approach represents collective movement in
terms of “state-response” value pairs. A series of “tate-re-
sponse” value pairs (representing how the collective
would react in different states) are extracted from real
videos. In the simulation, the current “state” of the indi-
vidual is calculated, and then the current “state” is
matched with the “state” in the extracted data. Finally,
the “response” corresponding to the best matching
“state” is used to drive the collective movement. Lerner
et al.l71 processed the real crowd data into a large num-
ber of instances and stored them in the database. In the
simulation stage, the crowd movement is driven by find-
ing the instance most similar to the current simulated
scene in the database. Lee et al.l!72l proposed an action
selection mechanism based on regression. Later, Lerner et
al.'7] further improved this method by annotating the
trajectories of agents with actions-tags to enhance the in-
teraction between the agent and the environment.

In recent years, with the continuous improvement of
neural network methods, micro data-driven methods have
been further developed. Instead of searching the data-
base to find the optimal action, the neural network is
trained directly with “state-response” pairs. Wang
et al.ll™] established a car-following model based on gated
recurrent unit NN, which takes the observed speed, speed
difference and position difference in the past several time
intervals as inputs. Bi et al.[175 combined a convolutional
NN and a recurrent NN to simulate the movement of
vehicles and pedestrians at intersections. Wei et al.[176]
used a back propagation neural network (BPNN) with
two hidden layers to simulate real crowd behavior, with
less simulation error. Yao et al.l77 suggested that hu-
man crowd movement characteristics contain both phys-
ical and psychological directions. They extracted the
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physical attributes of crowd motion (position, velocity)
from real data, and used them to quantify the social at-
tributes of the crowd (cohesion, collectivity). Zhao et
al.['78] designed an ANN containing two sub-model to sim-
ulate the magnitude and direction of pedestrian velocity
using semicircular forward space based sub-model and a
rectangular forward space based sub-model, respectively.
Xie et al.'™ simulated the vehicle lane change decision
using a deep belief network (DBN) and long short-term
memory (LSTM), which produces simulated trajectories
that are almost identical to the real trajectories. Bi et
al.l'8 coupled a random forest model with a BPNN to
simulate the vehicle lane change decision process and
vehicle lane change speed, respectively. Song et al.[!8! ad-
dressed the problem that inability of a lot of NNs to learn
the spatial information of dense crowd motion, proposing
a deep convolutional LSTM network to learn the interac-
tion between the pedestrian and the environment, which
is able to simulate more realistic motion trajectories of
dense crowds such as evacuation and contraflow. Zhao et
al.[182] presented a multi-feature fusion recursive NN by
mapping preceding crowd states to causally consequent
future states, which accurately reproduces the self-organ-
ization phenomenon in bidirectional crowds. Song et
al.[83] constructed a four-layer neural network and train
it with multiple scene data to generate pedestrian posi-
tions and velocities to simulate crowd movements in dif-
ferent scenarios. Compared with the traditional social
force model, the mean square error of this model and the
fluctuation of pedestrian position are smaller. Tkachuk
et al.l84 accurately modeled crowd evacuation inside
buildings in emergency situations based on a deep NN
with several hidden layers and dropouts.

Microscopic data-driven methods learn behavioral fea-
tures from real data and can present more realistic simu-
lation results. However, they are limited by the sample
database, and can only be processed well when there are
similar samples. In addition, the efficiency of model learn-
ing and searching must be considered.

Macroscopic methods

Macroscopic data-driven methods adopt the velocity
field, navigation field, vector field, optical flow, geomet-
ric flow, etc. to represent collective movement[185],

The main idea is to separate the original video into
many frames arranged in chronological order and extract
the velocity field from the successive frames. The environ-
mental information of the simulated scene is compared
with the environmental information in the video on a
macroscopic level, and then the existing velocity field in-
formation is used to drive collective movement simula-
tions. Musse et al.l'86] captured crowd movement informa-
tion based on video data of low-density scenes, and ex-
tract pedestrian motion trajectories to build an extrapol-
ated velocity field. Later, some scholars conducted re-
search on analyzing video data of high-density congested
scenes. Zhong et al.l'87] calculated velocity fields by com-
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bining offline and online videos to guide agents move-
ment at the global level, where offline data can quickly
capture pedestrian motion features and online data can
refine motion details. Then, Zhong et al.['88] character-
ized the crowd behavior modeling problem as a symbolic
regression problem, using a self-learning gene expression
programming approach to automatically learn and gener-
ate behavior rules from crowd video data. Patile et al.[!89
built velocity and navigation fields from real scene data
to provide global preferred velocity for crowd movement.

In addition to the velocity field, researchers also pro-
pose navigation field, vector field, the optical flow and so
on. Hu et al.l% proposed optical flow method. This
method employs motion flow fields instead of long-term
motion tracks, and calculates flow vectors for each frame.
Jin et al.[191 realized large-scale crowd navigation simula-
tion in complex scenes using multiple vector fields. Wu et
al.192] constructed a conjugate field on the basis of the
motion vector field, and these two fields describe tangen-
tial and radial motions, respectively. They also take the
curl and scatter of motion trajectories into account to ef-
fectively simulate the human crowd movement behavior.
Nayan et al.[19] building upon the research by Hu et al.
(190 expanded the optical flow method to correlate the
amplitude matrix of optical flow vectors. Khan['94 util-
ized optical flow and particle advection to extract crowd
motion features assuming that pedestrians are not free
and usually undergo lateral oscillations in high-density
crowded environments.

Other researchers simulate collective movement from
a geometric perspective. Lin et al.l!9% 196 learnt crowd
movement and generated the geometric flow instead of
motion flow. In [195], integral motion was first captured
through elementary geometric transformations, followed
by the introduction of a Lie algebraic representation,
which maps the transformation group to a vector space.
In [196], the geometric flow of movement in space and
time was described simultaneously, as well as a stochast-
ic flow model incorporating Gaussian processes was built
to simulate continuous motion in dynamic scenes. Based
on this, Fan et al.197] represented the vehicles movement
as a set of geometric flows moving in the time direction.

Macroscopic data-driven methods learn global fea-
tures (such as the velocity distribution in the current
space) of collective movement from real data and are able
to reproduce real and large-scale movements. The disad-
vantage is that the simulation result depends on the data
quality, and the transferability and flexibility are poor.

Summary

In the above two types of methods, the data comes
from the real world, so the simulation results are highly
accurate. However, the focus of the two methods is differ-
ent. Specifically, microscopic methods focus on learning
behavioral features, and macroscopic methods focus on
learning global features.

3.3.3 Dynamic adaptability

Dynamic adaptability refers to the self-adaptive abil-
ity of a method according to the environment. In the real
world, the environment is constantly changing, which af-
fects collective movements. Many scholars have noticed
this property and proposed simulation methods with dy-
namic adaptability. These methods can be broadly classi-
fied into three categories: hybrid model-driven and data-
driven, deep reinforcement learning and human-in-the-
loop according to their different adjustive methods.

Hybrid model-driven and data-driven

By combining model-based methods and data-driven
methods, the hybrid model-driven and data-driven meth-
ods are able to show mechanism descriptions and real res-
ults.

Scholars improved classical model-driven method
based on real data. Rudloff et al.[l%] calibrated a SFM de-
picting the boarding, alighting, and waiting behavior of
pedestrians in a subway station based on measured data
that incorporates pedestrian acceleration and desired ve-
locity. Seer et al.199 analyzed the depth data of crowd
movements within a corridor captured by three Kinect
sensors using a clustering approach and calibrate three
improved SFM to promote collision avoidance behavior
by adding relative velocities between individuals. Tang
and Jial2%] adopted regression methods to process pedes-
trians trajectories data from real-world subway stations
and use least squares to modify the SFM so that it can
accurately reproduce the pedestrian flow characteristics in
subway stations. Ko et al.20ll employed maximum likeli-
hood estimation to construct a SFM based on observed
pedestrian walking trajectory data. Seer et al.292] ana-
lyzed real-world pedestrian data through a nonlinear re-
gression-based approach to validate SFM and estimate its
model parameters. Liu et al.293] employed a maximum
likelihood estimation method to estimate SFM paramet-
ers based on real road video data. Lovreglio et al.204 cal-
ibrated different pedestrian models based on an open ped-
estrian trajectory dataset and proposed two FFCA mod-
els with Euclidean and modified Euclidean distance metrics.

Other researchers have calibrated the parameters of
different models on real data. Lemercier et al.[20%] presen-
ted a calibration of a pedestrian following model for simu-
lating crowd queues. Anvari et al.[206] developed a micro-
scopic model to simulate pedestrians and vehicles behavi-
or, using an optimization algorithm to process empirical
data and determine the interaction parameters of indi-
viduals. Zeng et al.207 applied a genetic algorithm to
evaluate the error between the model and actual data in
terms of pedestrian flow, speed, acceleration, pedestrian-
vehicle conflict and the lane formation phenomenon. Hus-
sein and Sayed[208] presented a model for simulating the
movement of pedestrians in a congested environment, in
which a genetic algorithm is used to calibrate the model
parameters. Bodel20 fitted model parameters based on
data from a one-way crowd passing a bottleneck using the

@ Springer



462

approximate Bayesian computation method. Liu et al.[210]
proposed a velocity-based dynamic crowd movement sim-
ulation method to find the optimal velocity of agents
from a real-world crowd velocity dataset.

Hybrid model-driven and data-driven methods can op-
timize their model parameters by multiple sets of high-
quality data that match the simulation scenarios to max-
imize the benefits of the model. However, there is no solu-
tion to the limitations of the model itself (idealized as-
sumptions).

Deep reinforcement learning methods

In collective movement simulations, deep learning
methods allow learning potential movement features from
high-dimensional data; reinforcement learning methods
enable multi-agent to learn optimal movement strategies
in the process of interacting with the environment[2!1].
Combining them, an agent is able to have both the un-
derstanding ability of deep learning and the decision-mak-
ing ability of reinforcement learning, with the ability to
better handle complex situations.

Many researchers have studied mobile robot naviga-
tion simulation. Kato et al.2!2] in order to achieve adapt-
ive navigation of a robot in a congested environment,
combined local navigation based on DRL and global nav-
igation based on topological maps. This method enables
the robot to reach its destination while avoiding dynamic
obstacles, but it is trained in a 2D simulator, which can
speed up the learning time but has limitations with the
real 3D environment. Therefore, Feng et al.213] trained
agents in a 3D simulator based on double deep Q net-
work (DDQN) to achieve collision-free path planning for
a mobile robot. Zhang et al.24] presented a successor-fea-
ture-based reinforcement learning (DRL) for robots to
quickly adapt to changing navigation targets and environ-
ments, which can transfer previously acquired navigation
knowledge to new tasks. Hsu et al.[2!5] suggested a distrib-
uted DRL in different local regions, achieving indoor visu-
al navigation in the large-scale environment without ex-
tra map information and human instruction.

Several scholars have focused on the navigation prob-
lems of unmanned aerial vehicles (UAVs), unmanned
ground vehicles, etc. Wang et al.l216l argued that the
UAV navigation problem in large-scale unknown com-
plex environments is viewed as a partially observable
Markov decision process (POMDP), and proposed a
faster policy learning algorithm for POMDP based on
actor-critic architecture. They advanced an online DRL
algorithm to tackle the POMDP problem subsequently,
which directly maps UAVs' raw sensory measurements in-
to control signals for navigation. This method is able to
expand autonomous navigation of UAVs to more com-
plex, large-scale 3D environment217, And then they adop-
ted a Markov decision process with sparse rewards and
put forward a non-expert-assisted DRL algorithm that
ensures that the solution is not biased in a potentially
suboptimal direction[218l,

In addition, the DRL approach has been widely ap-
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plied to crowd simulation. Xu et al.219 integrated ORCA
with the DRL method, proposing the ORCA-DRL local
motion simulation method. This approach implements
local collision avoidance by optimal reciprocal collision
avoidance (ORCA) and trajectory smoothing by DRL. A
deep neural network (DNN) is used for the agent state-
action mapping and the DNN parameters are updated us-
ing proximal policy optimization based on the actor-crit-
ic. Subsequently, Xu et al.?20] introduced a multi-exit
crowd evacuation simulation method based on DRL,
called Multiexit-DRL. It employs a DNN to facilitate the
mapping of agent states to actions and applies Rainbow
DQN to enhance data utilization and algorithm stability,
with movement space divided into eight isometric direc-
tions available to pedestrians. Zhu et al.22ll proposed a
novel context-aware multiagent broad reinforcement
learning method for simulating mixed pedestrian-vehicle
traffic. Zhang et al.[22] came up with a data-driven crowd
evacuation framework based on hierarchical DRL that al-
lows for path planning and collision avoidance, respect-
ively. Zhang et al.223 refined human perception and be-
havioral decision strategies to reproduce the classical bot-
tleneck effect along with pedestrian navigation.

The DRL methods adapt to the dynamic and com-
plex environment. However, there are two problems.
First, when the environment becomes complex, the num-
ber of interactions between the agent and the environ-
ment increases sharply, which requires a long training
time. Second, because the data distribution between the
virtual environment and the real environment is quite dif-
ferent, it is difficult to migrate from the virtual environ-
ment to the real environment.

Human in the loop

The human-in-the-loop approach is more worthy of in-
vestigation due to robustness and user preference consid-
erations. Combining autonomy with user control, taking
advantage of human-in-the-loop allows for higher-level
task planning and control.

Concepts. The most common methods of sharing
control between the user and autonomous system include
two: control switching/division, and shared autonomy.

Control switching refers to discrete switching between
full autonomy and direct control during the control pro-
cess. Control switching depends on a predefined environ-
ment, and in each state, the robot evaluates whether to
take over224 or prevent the system from entering an un-
safe statel??’] based on the plausibility of the user’s intent
inference.

Control division means that the human and autonom-
ous system are each responsible for a part of the task and
do not change dynamically. Simpson and Levinel226] pro-
posed an adaptive approach for a shared control system
that uses a Bayesian network to combine two adaptation
mechanisms of user speed control and autonomous sys-
tem direction control. Driessen et al.227l divided the con-
trol space by placing end-effectors in the z-axis, y-axis,
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and z-axis directions, respectively, with the user to con-
trol the actuators in the z-axis and the system to control
the z-axis and y-axis directions, thus forming a collabor-
ative controller. While the control division approach
clearly categorizes the tasks within the system, the re-
sponsibilities of humans and autonomous systems remain
unchanged regardless of the environment. Therefore, it is
not well applicable to complex, unknown, and dynamic
environments.

The above approaches are often referred to as shared
control, where a robot control framework is designed to
achieve human-robot interaction, and the control between
the human and the robot is constant unless manually ad-
justed by the human.

As sensing, reasoning, modeling, and learning meth-
ods continue to advance, the ability of shared control and
its applications are expanding, called shared autonomy
(SA). Shared autonomy strives to fuse human intent and
autonomous system computation results with each other
in a shared manner, avoiding the current problem of rely-
ing on one party entirely when human-robot decisions are
inconsistent. Shared autonomy elevates the robot from a
passive motion follower or actuator to a partner, lever-
aging the adaptability of human decision making in dy-
namic, uncertain environments and the robot’s ability to
automate. It is possible for a multi-agent system to auto-
matically scale the level of autonomy based on internal or
external (e.g., human, task, or environmental) informa-
tion, eliminating the need for manual human adaptation
and allowing better adaptation to the surrounding envir-
onment[228],

Shared autonomy strategy. The most critical is-
sue in shared autonomy is the division of autonomy
between human and autonomous systems. There are
mainly two approaches to generate autonomy policies: ar-
bitration methods and policy-based methods.

In arbitration methods, user behavior and full
autonomy are considered as two independent sources, and
the amount of mixture is usually determined using an ar-
bitration function. Taking into account the dynamic com-
plexities of the environment, it is necessary to assign dif-
ferent weights to the two distinct decision-making entit-
ies, humans and autonomous systems. Linear combina-
tion is one of the most common strategies. Jansen et
al.229 measured the trustworthiness of the user and the
autonomous system considering the state of the environ-
ment, adopting a linear hybrid approach to obtain the fi-
nal arbitration policy. Gopinath et al.[239 proposed a user-
driven arbitration parameter optimization method based
on optimal control theory, considering high user satisfac-
tion, where the user adjusts the interaction parameters
until their desired goal is reached, instead of using a
standard nonlinear optimization algorithm. Oh et al.[231]
suggested a natural gradient that allows shared autonomy
to be described as an optimization problem. Shared ac-
tions are chosen to maximize the internal action value

function of users while limiting the sharing policy to devi-
ate from the autonomous robot policy. Xu et al.232 dy-
namically scaled user arbitration weights by RL al-
gorithms based on user control efficiency and walking en-
vironment. Reddy et al.233 maximized task reward and
user feedback rewards using DQN. Following on this,
Schaff and Walter[234] expanded the approach by using re-
sidual policy learning to maximize human control author-
ity. Oh et al.23%] employed a deep deterministic policy
gradient approach based on RL methods to learn optimal
arbitration policies from user interactions. It is possible to
both assign more control for human and learn different
preferences of different users, meanwhile allow the robot
to complete control tasks in continuous action space.

The strategy-based approaches focus on the distribu-
tion of all targets and may help even when the confid-
ence in predicting targets is relatively low. This is help-
ful in adapting to complex environments where it is diffi-
cult to predict a single goal in a cluttered environment.
The core idea is to minimize the cost function of shared
autonomy when the user goals are unknown. Hauser[236]
minimized a distance-dependent cost function to reason
about the goal distribution, and Javdani et al.[237 expan-
ded on this by allowing the use of any cost function for
which a value function is calculable. Their proposed
framework is shown in Fig. 4, where u is user actions, a is
a system action, and T is the transformation of the world
from x to x’. When the system is unsure of a user’s goal,
it optimizes a secondary action that helps achieve many
goals. And it focuses on specific goals when the system
confidently predicts individual user goals. Reddy et al.[233]
put forward a model-free deep reinforcement learning
framework to assist users in tasks with unknown dynam-
ics, user policies, and goals.

World
(X' |x, u, a)

Fig.4 Shared autonomy framework[237]

Human-in-the-loop methods take full advantage of hu-

man  perception, decision-making, and operation.
However, there are still challenges in judging whether hu-
man intervention is required, estimating the human in-

ternal state, evaluating whether human operations are
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correct, and effectively integrating instructions.

Summary

The above three kinds of methods have dynamic self-
adaptive ability. Their differences consist in the way to
achieve the adaptation, hybrid model-driven and data-
driven by switching different methods/optimizing their
model parameters, DRL by learning and exploration, and
human-in-the-loop by human intelligence. And the adapt-
ability of these three methods is incremental.

3.3.4 Assessment feedback capability

Assessment feedback capability refers to the ability of
the methods that can give users some assessment feed-
back. The most significant assessment feedback capabil-
ity is risk assessment. Risk assessment first assesses risks
around an agent, and then makes sequential action de-
cisions to avoid them[238 239, Risk assessment methods are
classified into two categories, deterministic and probabil-
istic methods.

Deterministic methods use a rule-based expert system
with simplified predictive models (constant yaw rate and
acceleration) to calculate predetermined risk metrics
(time interval, time to collision, braking time, stopping
time, and reaction time) to determine whether a poten-
tial collision will occur24%; 241, Among them, time to colli-
sion (TTC) is the most representative metric because this
time-based metric physically reflects spatial distance and
speed differences. In general, by the current state of the
agents, the collision time can be derived by calculating
the relative distance between two agents. Kim and
KumP9 predicted the future trajectory of surrounding
vehicles by target lane detection to accurately calculate
the collision time. Bosnak and Skrhancl?*l integrated
laser ranging sensors with a moving system motion mod-
el and forecast the virtual paths of obstacles in the
sensor’s local coordinate system. It avoids discretization
of temporal or spatial prediction layers and estimates the
collision time using analytical methods. None of these
methods has a large computational burden and enables
accurate collision risk assessment in simple scenarios.
However, they perform poorly in more complex scenarios,
fail to explicitly model the uncertainty of the input data,
and inherently fail to reflect the uncertainty of future mo-
tion.

Probabilistic methods describe risk level by probabil-
ity description. Noh and An[242 applied Bayesian models
to combine conventional metrics into risk probability as-
sessment and then developed rule-based expertise to con-
trol primary vehicles at intersections and on highways.
Yu et al.243] modeled vehicles as particles, and propag-
ated the particles through their kinematics, by using the
distribution of particles during propagation as the risk
distribution for collision avoidance. Shin et al.*4] intro-
duced vehicle-to-vehicle communication to predict re-
mote vehicle locations with uncertainty and evaluate risk
probabilities by the number of collisions within the uncer-
tainty boundary. However, these methods do not take
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driver style preferences into account. Li et al.245] pro-
posed a probabilistic method for collision avoidance risk
assessment that considers both driving safety and driver
style preferences. For special crash scenarios, Shen et
al.246] ysed surrounding vehicle states (relative position,
velocity, and acceleration) and a predictive occupancy
map algorithm for side and rear-end collision scenarios.
Intersections are high risk areas, and Deveaux et al.[247]
presented a risk metric applicable to crossings and al-
lowed for dynamic adjustment of risk thresholds based on
driver style. Zhu et al.[248] proposed a method that com-
bines supervised learning and Bayesian hierarchical mod-
els, which predict the probability at different risk levels.

Assessment feedback capability allows real-time
quantitative analysis and provides a flexible, dynamic
feedback for simulation. It is a promising work to con-
struct an objective, structured, and comprehensive assess-
ment feedback framework.

3.4 Summary

A comparison among four categories of collective
movement simulation methods is presented in Table 2. In
order to help users to find a type of method that can
meet their specific applications, we summarize the above
methods according to their collective types, scales, indi-
vidual behavior descriptions, input data and pre-training.

Tables 3—6 successively shows some collective simula-
tion methods for the type of human crowds, vehicles, ped-
estrian-vehicles, and robots successively. The collective
scale describes how many individuals that the methods
can calculate in general. The limited scale refers to the
number of individuals less than 500, and the large-scale
refers to the number of individuals from 500 to 1 000, or
even morell%. The data-driven describes whether the
methods need datasets for learning, and the pre-training
means whether there are pre-trainings for the methods
before applications.

Specifically, as the highest intelligence on earth, hu-
mans have rich collective types and individual behaviors.
As shown in Table 3, crowds present collective types such
as queuing, grouping, confrontation, etc., and individuals
also have diverse behaviors in terms of personality, emo-
tion, physiology and psychology, etc. The movements of
vehicles are always lane-based, showing collective types
such as car-following and lane-changing. Their move-
ments are closely related to the individual behavior of the
driver. As seen in Table 4, researchers have paid atten-
tion to the effects of driver style, preference, cognition
and so on. In addition, traffic is a complex scenario with
multiple traffic participants, of which pedestrian-vehicle
is a typical heterogeneous interaction. As shown in Table 5,
pedestrian-vehicle interactions mainly occur in crossings.
For robots, the research focuses on their navigation in
complex environments, as shown in Table 6, which
mainly includes 2D and 3D environments.
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Table 2 Characteristics of collective movement simulation methods

Technical Advantages Disadvantages Methods contain Typical work
objectives
Versatility Mechanism Universal; Not real Microscopic models Rule-based modell11:12:123,124]
description Transfer to other Cellular automata modell127-143]
similar scenes Social force modell105,144-151]
Continuous model[153-161]
Potential field model[162-169]
Accuracy Reconstruct real Vivid results Need data; Poor Microscopic data- Lee et al.[l72]] Bi et al.[175],
scenes transformation driven Wei et al.[176], Zhao et al.[182] etc.
performance
Macroscopic data- Musse et al.[186] Jin et al.[191],
driven Lin et al.[195,196] Fan et al.[197], etc.
Dynamic Transfer to other Excellent Immature method Hybrid driven Seer et al.[199 Rudloff et al.[198],
adaptability scenes transformation Ko et al.[201], Bodel209], etc.
performance
Deep reinforcement Kato et al.[212] Zhang et al.[214],
learning Zhang et al.[223] etc.
Human in the loop Jansen et al.[229] Oh et al.[231]]
Xu et al.232], Reddy et al.[233], etc.
Assessment Quantitative Flexible Including Deterministic methods  Kim and Kum/240],
feedback capability results assessment subjective Bosnak and Skrjancl241], etc.
criteria factor

Probabilistic methods

Noh and Anl242], Yu et al.[243],
Shin et al.[244] Li et al.[243], etc.

Table 3 Characteristics of crowd simulation methods

Collective scale Collective type Individual behavior Data-driven Pre-training Reference
- Personality, psychology No No [143, 154, 155]
- - No No [131-136, 144-147]
- - No Yes [219, 220, 223]
- - Hybrid No [198-201]
- - Yes Yes [181-184]
Limited scale
- Physiology and psychology Yes Yes [177]
Queuing Emotion No Yes [81]
Queuing Following Hybrid No [208]
Group Friends, Families No No [133]
Confrontation Emotion No No [82, 83]
- - No No [156-159, 161]
Large scale - - Yes No [189, 191, 196]
- - Yes Yes [192-195]
Table 4 Characteristics of vehicles simulation methods
Scenario Collective scale Collective type Individual behavior Data-driven Pre-training Reference
Large scale - No No [153, 155, 160]
- Yes No [190, 197]
Car-following
Limited scale - No No [127, 128, 137]
- Yes Yes [170, 174]
Lane-based - No No [138, 139, 240, 241]
- Yes Yes [179, 180]
Limited scale Lane-changing Cognitive psychology No No [92]
Driver preferences No No [245]
Driver state No No [94-99]
- No No [242]
Crossing Limited scale -
Driver preferences No No [247]
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Table 5 Characteristics of pedestrian-vehicle simulation

methods
Scenario Data-driven Pre-training Reference
Crossing No No (148, 149]
Crossing Yes Yes [175]
Crosswalk Hybrid No [203]
Street Hybrid No [112, 204]

Table 6 Characteristics of robots simulation methods

Scenario Data-driven  Pre-training Reference
No No [163]
2D
No Yes [212, 229, 234]
No No (86, 88, 90, 91, 164, 169]
3D 3915
No Yes [213-215, 217, 218,

230-233, 235-237]

4 Applications

Collective movement simulation technology has been
extensively used in layout optimization, emergency con-
trol, dispatching, unmanned systems, and other derivat-
ive applications.

4.1 Layout optimization

The collective movement is closely related to the lay-
out of buildings. A reasonable layout will bring users a
satisfactory and comfortable experience. Otherwise, it
may lead to a decrease in the utilization of facilities and
even cause certain safety hazards. In particular, railway
stations, parks, squares, shopping centers, traffic roads,
etc. Therefore, the evaluation and optimization of the
comfort, usability, and functionality of buildings based on
collective movement simulation technology from the per-
spective of the users have become a key step in the fields
of ship construction, building design, and infrastructure
construction(249, 250],

The simulation results of collective movement assist
architects or related experts to make informed design de-
cisions that improve both building utilization and user
comfort. Aschwanden et al.250 incorporated a parametric
approach with an agent-based model to simulate the be-
havior of residents in an urban environment to further
optimize the efficiency of public transportation and the
availability of convenient facilities. Mathew et al.251] im-
proved the structure of urban traffic walkability through
interactive design. Feng et al.252 trained nonlinear re-
gressors through a data-driven approach to mine the rela-
tionship between crowd attributes (mobility, accessibility,
and comfort) and the geometric features of the layout. It
synthesizes crowd-aware layouts to improve layouts with
better crowd flow characteristics. Khamis et al.[253]
merged collective simulation models with multi-objective
optimization techniques to evaluate and optimize plant
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layout. It promotes worker productivity while ensuring
their life safety. In addition, Garcia-Dorado et al.[2’4 ad-
vanced an interactive method in which the designer dis-
plays the specified desired vehicle traffic behavior (lane
occupancy, travel time, emissions), and the system auto-
matically calculates a 3D urban traffic models (road net-
works, neighborhoods). Haworth et al.[2%] optimized the
design, by simulating the effect of newly added environ-
mental elements (columns, doors, passageways) on crowd
movement and feeding back to the designer with aggreg-
ate statistics and heatmaps. This system permits the de-
signer to iteratively improve the design solution, while
also specifying  different crowd configurations.
Chakraborty et al.[256] argued that small changes in envir-
onmental design may affect crowd motion in unexpected
ways and use crowdsourcing techniques to integrate the
wisdom of users (ordinary experiencers and experts) with-
in a gamified collaborative design framework. Users pro-
pose designs based on computer simulations and receive
feedback from other users to quickly update their designs.

4.2 Emergency control

Crowd evacuation efficiency is significantly related to
the public safety of the humans. An efficient evacuation
plan leads humans out of the danger zone in the shortest
possible time. In contrast, it may cause more adverse ef-
fects. Therefore, crowd evacuation simulation in emer-
gency situations is able to optimize evacuation plans, and
improve emergency management measures in public
places(24; 257],

Several scholars have studied crowd evacuation based
on place types, such as airports, shopping centers, and
school buildings. Tsai et al.258] believed that there are
four distinctive features of airport evacuations: first, there
are many different types of agents, such as families (par-
ents, children) and first-time visitors; second, emotional
interactions, children tend to turn towards their parents;
third, information interactions, tourists rely on signage
indicating exits; and fourth, behavioral interactions, the
number of human collisions increases as panic spreads.
Therefore, they propose a multi-agent evacuation simula-
tion method for simulating crowd escape behavior in air-
port terminals to provide specific recommendations to the
security department. Tan et al.?’ presented an agent-
based model for building evacuation and evaluate its im-
pact on evacuation efficiency by considering individuals’
estimation of feasible space and knowledge of firefighting
facilities. Wong et al.260] calculated the optimal path for
each local area within a building, aiming to complete
crowd evacuation quickly and reduce congestion while
maximizing the number of humans reaching the exit. This
method determines the optimal path considering crowd
distribution, exit location and corridor width, etc. Zang
et al.26l] studied the impact of obstacles (desks, benches,
podiums) on crowd evacuation in a high-rise school build-
ing, as well as point out that a standardized evacuation
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order and reasonable desk arrangement.

Other researchers start from the types of emergencies,
such as earthquakes, fires, and tsunamis, etc. Lu et al.[262]
quantified the impact of debris falling during earth-
quakes on crowd evacuation. Wang and Jial263] proposed
a multi-modal personnel evacuation model considering the
speed-adjusted behavior of pedestrians and multiple es-
cape modes (walking, by car) in a tsunami. In addition to
sudden emergency safety events, the spread of epidemic
diseases also affects the health of humans. Lv et al.[264] es-
tablished an agent-based infection model with mean-field
theory, proposing a simulation model of campus virus in-
fection and control. This model simulates the probability
of virus transmission in a dense population, which facilit-
ates the development of reasonable prevention and con-
trol measures to reduce the risk of disease transmission.

4.3 Dispatch and schedule

There are many scheduling problems in real life, such
as logistics scheduling problems26%, and traffic schedul-
ing problems like signal controll266]. Collective movement
simulations have become the main solution to these prob-
lems.

Logistics scheduling is a highly complex system, in
which a favorable scheduling scheme leads to efficient and
fast transportation. Otherwise, it will reduce the effi-
ciency of logistics and transportation, and even cause
safety problems. Simulation techniques are available to
evaluate or optimize scheduling schemes in advance for
efficient production. The container terminal system was
modeled using an agent-based method, aiming to im-
prove its scheduling and decision makingl267l. Elia et
al.[268] presented a hybrid simulation model aimed at im-
proving the efficiency of garbage collection services, and
proposed a hybrid scheduling scheme that improves truck
utilization while flexibly meeting customer demand.

The traffic congestion problem of the current urban
road network is becoming more and more serious. By op-
timizing the traffic efficiency, fuel consumption and safety
indicators, the service performance of the road can be im-
proved and the probability of accidents can be
reduced209. Kamal et al.2 suggested a vehicle coordina-
tion scheme for unsignalized intersections, which calcu-
lates the optimal vehicle trajectory by avoiding the risk of
collision near the intersection and minimizing the occur-
rence of conflicts. Moradi-Pari et al.27ll adopted a dy-
namics model for large-scale networked vehicles to depict
their basic motions (braking, acceleration). This method
describes the following, steering and other movements of
vehicles, realizes multi-vehicle coordination, and im-
proves road network capacity. Zhang et al.266] proposed a
traffic signal scheduling strategy for pedestrian-vehicle
mixed-flow networks. With the integration of the pedes-
trian-vehicle model, the traffic light performance is in-
vestigated to provide convenience to pedestrians and re-
duce delays for both vehicles. Then, Zhang et al.272 put

forward a new traffic signal scheduling strategy for urb-
an traffic networks to address the problem of pedestrians
who are unable to cross crosswalks within the specified
time due to violations.

4.4 Unmanned systems

With the continuous development of intelligent
devices, unmanned vehicles, UAVs, and other unmanned
systems are increasingly used in the real world using ex-
isting collective intelligence.

The cooperative control of unmanned systems is the
most direct application of collective intelligencel273, 274],
Das et al.l2® used an improved gravitational search al-
gorithm to achieve the coordination of multi-robots, so
that they could cooperate with each other to accomplish
a common goal in a cluttered environment. For tackling
the formation control of unmanned systems, Zhao and
Mal276] developed a path-following guidance system based
on a virtual leader, which enables unmanned surface ves-
sels (USVs) to maintain a well-formed formation, and Jin
et al.277l proposed a distributed soft formation control
strategy, achieving formation collision avoidance with loc-
al observations under dynamic environmental disturb-
ances, which can easily adapt to changes in the forma-
tion shape and size throughout the mission process. For
addressing path planning problem of multi-UAVs, Shi
et al.[278] proposed the multiple swarm drosophila optimiz-
ation algorithm achieving information exchange and colli-
sion avoidance, De Alcantara Andrade et al.2™ raised the
particle swarm optimization algorithm for multiple UAVs
during search and rescue missions. For solving target
tracking of multi-UAVs in urban environment, Yao
et al.[280 proposed a hybrid algorithm combining model
predictive control and an improved gray wolf optimizer,
Wu et al.281] suggested a distributed model based on the
adaptive locust optimization algorithm, and Wang et
al.[282] advanced an improved gray wolf optimization al-
gorithm using a distributed Gaussian estimation strategy.

4.5 Derivative applications

In addition to the above applications, there are other
derived applications to solve complex combinatorial op-
timization problems, like traveling salesman problem
(TSP)283], social platform supervision/?*4, financial com-
puting[285], and electronic power systemsl286],

The TSP problem is a classical combinatorial optimiz-
ation problem with a wide range of applications, like
transportation, circuit board design, etc. Dorigo et al.[!4]
put forward an ant colony optimization algorithm to
solve the TSP problem, which pioneers the application of
biological intelligence to solve combinatorial optimization
problems. Quaarab et al.287 used an improved discrete
cuckoo search algorithm in which local perturbations are
introduced to increase the flexibility of solving the TSP
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problem. Osaba et al.288] solved symmetric and asymmet-
ric TSP problems using a discrete bat algorithm. Huang
et al.289 addressed the TSP problem using a discrete
shuffled frog-leaping algorithm, which not only yields a
higher accuracy solution but also has good stability.

Social platform supervision often uses manual audit-
ing to remove undesirable content, etc. With the growth
of collaborative collective intelligence algorithms, more
and more social platforms are applying them to improve
the supervision methods. Roaming bots in Wikipedial290],
which are able to perform tasks such as supervising web-
site content, merging similar knowledge entries, splitting
complex work, and closing glitches29l, play an important
role in the process of knowledge editing.

Furthermore, in economic finance, Shi et al.292 de-
veloped appropriate insurance investment plans using
data-driven models and distribution estimation al-
gorithms. In power systems, particle swarm algorithms
provide solutions to different applications of power sys-
tem optimization problems[286l. In aerospace, Asafud-
doula et al.[293] researched spacecraft design problems us-
ing decomposition-based evolutionary algorithms, and
Wang et al.294 improved particle swarm optimization al-
gorithms based on active learning for wing design optim-
ization problems. In biomedicine, Fjell et al.l29] applied
genetic algorithms for the identification of antimicrobial
peptides to improve identification efficiency.

5 Conclusions and future work

This paper reviews the methods in collective move-
ment simulations. Some confusing concepts are clarified,
and methods are classified according to objects, fields,
and effects, so as to facilitate users to make correct
choices. In addition, this paper summarizes the applica-
tion of collective movement simulations in layout optim-
ization, emergency control, dispatching, unmanned sys-
tems and other derived applications.

In terms of collective movement simulation methods
themselves, here we discuss the following five future dir-
ections.

Explainable data-driven methods. Existing data-
driven collective simulation methods have achieved good
results in simulating collective movements. However,
these methods usually rely on large amounts of perfect
data. The transferability and robustness of these meth-
ods are generally poor. How to learn and explore the es-
sence of collective movements based on existing data is a
topic worthy of research.

Intersections between individual behavior mod-
el and collective movement models. Many Individu-
al behavior factors, such as personality, culture, emotion,
sociality and politics, affect collective movements. At
present, individual behavior models are mainly from the
life science field. Their computational efficiency is usu-
ally low. How to integrate these individual behavior mod-
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els with existing collective movement models to realize
large-scale collective movement simulations efficiently is a
promising research topic.

Intersections between collective movement
models. Scholars in mathematics, physics and informa-
tion field have developed various kinds of collective move-
ment models. The outputs of these models are similar,
but each has its own advantages and disadvantages. How
to integrate the above methods and interactively optim-
ize them to realize simulations effectively is one of the
topics worth studying.

Simulation evaluation. In recent years, collective
movement simulation methods have proliferated.
However, there are relatively few studies on model evalu-
ations. In fact, realism and accuracy are key concerns
when users want to use collective movement simulation
methods. Therefore, how to quantitatively and systemat-
ically evaluate existing methods is a direction worth in-
vestigating

Human-in-the-loop simulation. Machine intelli-
gence is limited, and mathematical models cannot simu-
late all phenomena in detail. In recent years, the human-
in-the-loop approach has attracted the attention of many
scholars, interacting with users during the simulation pro-
cess, and performing user-editable simulations, such as
real-time adjustment of environmental parameters, agent
states, etc. However, there is still a lot of work. For ex-
ample, when humans need to participate in a simulation?
How to integrate human intelligence into the machine in-
telligence?

In terms of the applications of collective movement
simulation methods, here we discuss the following two
points.

Co-optimization between collective movement
methods and their applications. More and more
scholars and industry experts consider collective move-
ment simulations as an inseparable sub-part of layout op-
timization, emergency control, scheduling optimization.
There has been lots of work on the use of collective move-
ment (such as human and vehicles) simulation in these
applications. However, there are still few co-optimization
methods for collective movement and the applications,
which is important for decision-making and control. How
to combine the existing collective movement simulation
methods with layout optimization, emergency control and
scheduling algorithms to realize a co-optimization is
worthy of further research.

Human-in-the-loop digital twins. The collective
movement behavior exists widely in various digital twin
systems. At present, scholars generally use digital twins
by integrating collective movement methods. How to real-
ize iterative optimization between collective movement
and other functional modules or the actual physical
world, and how to fully integrate human (user) intelli-
gence into the optimization, still need to be further re-
searched by scholars in the fields of life science, mathem-
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atics, physics and information science.
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