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Abstract: Photorealistic rendering of the virtual world is an important and classic problem in the field of computer graphics. With the
development of GPU hardware and continuous research on computer graphics, representing and rendering virtual scenes has become
easier and more efficient. However, there are still unresolved challenges in efficiently rendering global illumination effects. At the same
time, machine learning and computer vision provide real-world image analysis and synthesis methods, which can be exploited by com-
puter graphics rendering pipelines. Deep learning-enhanced rendering combines techniques from deep learning and computer vision into
the traditional graphics rendering pipeline to enhance existing rasterization or Monte Carlo integration renderers. This state-of-the-art
report summarizes recent studies of deep learning-enhanced rendering in the computer graphics community. Specifically, we focus on
works of renderers represented using neural networks, whether the scene is represented by neural networks or traditional scene files.
These works are either for general scenes or specific scenes, which are differentiated by the need to retrain the network for new scenes.
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1 Introduction

For traditional computer graphics, generating
photorealistic rendering results of a scene is an import-
ant research direction, and researchers have developed a
variety of algorithms to solve this problem in recent dec-
ades, including modeling complex materials[!~3], sophistic-
ated sampling methodsl4 3], acceleration of global illumin-
ation computationl6: 7, etc. These methods are mainly ap-
plied in two fields: the rasterization pipeline for real-time
rendering that serves the latest video games and the ray
tracing pipeline commonly used in the film industry for
offline rendering that deals with global illumination ef-
fects. Regardless of the rendering pipeline, much time-
consuming manual work by artists and programmers is
essential, i.e., complex and sophisticated renderers or
shaders must be written by experienced programmers,
and scene construction, including geometry, material tex-
tures, lighting conditions, and animations are the respons-
ibility of artists. These preliminary preparations greatly
increase the time and capital cost of photorealistic ren-
dering. However, with the rapid development of com-
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puter vision and deep learning research fields in recent
years, the combination of traditional graphics rendering
pipelines and deep learning provides a new direction to
solve the above problems. A bunch of deep generative
models of generating high-resolution styled8! or high-fidel-
ity 2D images have emerged, e.g., the seminal generative
adversarial neural networks (GANs) and their follow-
ups(l® 11 also the variational auto encoder networks
(VAEs)[127 1], Reference [15] even realizes the control of
the generated image through additional condition input.
Armed with powerful neural network-based image
generation tools, researchers consider how to represent
traditional scenes as data types that neural networks can
handle and feed into generative networks to render
scenes. The first seminal method that combines a deep
neural network and a traditional rendering pipeline is the
generative query network (GQN)[I6. The network takes
several rendered images and the corresponding camera
parameters as input to encode the complete scene inform-
ation as a vector, and the vector is fed to a generative
network to enable the rendering of the scene from any
viewpoint (Section 4.4). Although the rendering results
generated by their method are not realistic enough, they
inspire a vast amount of subsequent work and create a
new field of research: neural rendering. Compared with
other deep learning research fields, the focus of neural
rendering is not only on the delicate network structure
design but also on the combination of physical and math-
ematical knowledge in traditional rendering. In fact, for a
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specific rendering task, the difficulty lies in embedding
the corresponding domain knowledge into the network,
e.g., for human skin rendering, how to embed the subsur-
face scattering process into the network to allow the
neural generator to generate more realistic skin effects.
Compared with the traditional rendering pipeline, the
rendering quality of neural rendering is closely related to
the quantity, distribution, and quality of the input data-
set. Thus, how to render high-quality results with insuffi-
cient data is also an important concern of neural render-
ing.

This state-of-the-art report (STAR) summarizes and
classifies the different types of deep learning-enhanced
rendering approaches. It should be noted that our work is
different from another review on neural renderingll?l. We
only focus on approaches that are integrated into the tra-
ditional rendering pipelines with neural networks, i.e., the
forwards subset of neural rendering which assumes known
input scenes (geometry, lighting, material, viewpoint) and
does not concern the specific representation. However, the
concept of “rendering” in their review is broader, includ-
ing a series of GAN-based 2D image generation works
and image-based rendering[!8l. At the same time, our clas-
sification of deep learning-enhanced rendering methods is
more in line with traditional graphics research and our
demonstration of each work is more detailed. The central
scheme around which we structure this report is the gen-
erality and application scenarios of each approach which
is essential for most kinds of graphic applications. Novel
view synthesis and relighting are commonly achieved in
the following methods. Thus, we do not classify the ap-
proaches by them. We start by clarifying the scope of our

report. Then we discuss the theoretical fundamentals of

physically-based rendering and deep generative networks
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to provide readers with a better understanding of the
methods described below. Then we discuss the landscape
of applications that is enabled by deep learning-enhanced
rendering. Finally, we summarize the entire report.

2 Scope of this STAR

In this state-of-the-art report, we focus on the classic
and latest applications that combine deep neural net-
works with renderer components in the computer graph-
ics rendering pipeline (Fig.1). Specifically, we discuss how
neural networks can replace or enhance the work of ren-
derers in traditional rendering pipelines, and the advant-
ages and disadvantages of the combinations. We categor-
ize the deep learning-based rendering techniques and rep-
resentative works that appeared in this survey in Table 1.
For a clearer understanding, we first introduce the funda-
mentals of traditional physically based rendering and
deep neural networks that relate to image synthesis.
Then, we discuss some classic and up-to-date works,
based on several aspects.

We do not cover any work based on neural radiance
fields (NeRF)[-78 which is not related to traditional
rendering pipelines. NeRF is a novel view synthesis and
3D reconstruction method with implicit scene representa-
tion (density field) combined with the ray marching al-
gorithm that draw great attention in the field of com-
puter vision. Please refer to [80] for a deep comprehen-
sion. Similar to NeRF, the signed distance function (SDF)
also utilizes implicit scene representation (signed dis-
tance field) which achieves better 3D reconstruction res-
ults. Although the SDF-based approach is somewhat dif-
ferent from the traditional rendering pipeline, this meth-
od utilizes the volume rendering algorithm, which is an
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Fig. 1
traditional rendering pipeline.
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Table 1 Categories of deep learning-based rendering techniques and representative works in each category

Papers
Technique category
Generalize Specific
Voxel-based scene representation [19-21] [22]
Vector-based scene representation [16, 23] [24, 25]
Scene representation Mesh-based scene representation [26] [27-29]
Point-based scene representation [30-33]
Network-based scene representation [34, 35] [36-39]
Ambient occlusion [40-43]
Direct illumination [44]
Global illumination
Indirect illumination [45-47] [48-50]
Volume and subsurface [51-56]
Human-related rendering [57-60] [61-64]
Post-processing [65-69]
NeRF (not discussed) [70-78]
Denoising (not discussed) [79]

important algorithm in traditional graphics. In view of
the fact that there is no review on SDF, we introduce one
of the most popular SDF methodsi¢! (Section 5.4). Please
refer to [81, 82] for more related work.

Although deep learning-based Monte Carlo denoising
methods that aim to reconstruct denoised results from
synthetic images generated by low sample per pixel
(SPP) have made significant progress in recent years, and
these processes are typically used as a post-processing
stage in a traditional ray tracing pipeline, we will not dis-
cuss them because they have been well studied by a re-
cent surveyl™l,

3 Theoretical foundation

3.1 Physically based rendering

Traditional graphics pipelines model image formation
as a physical process in the real world: the photons emit-
ted by the light source interact with objects in the scene
as a bidirectional scattering distribution function (BSDF)
determined by geometry and material properties, which
are then recorded by the camera. This process is known
as light transport and can be formulated by an equation,
the classical rendering equation(83l:

Lo (z,wo, A\, t) = Le (z,wo, A ) +

/ fr(z, wi, wo, A, t) L; (2, wi, A t) (wi - n)dw; (1)
Q

where L, represents the outgoing radiance from a surface,
T denotes the surface position, w, denotes the outgoing
direction of the light path, A denotes the light
wavelength, ¢t denotes the moment of interaction, n

denotes the surface normal, w; denotes the incident
direction of the light path, L; denotes the incident
radiance, f, denotes the BSDF function, and € denotes
the hemisphere around the surface point. This equation
omits consideration of transparent objects and any effects
of subsurface or volumetric scattering. The most classic
solver for this integral is Monte Carlo simulations[84. In
practice, the film only records three different wavelengths
corresponding to the R, G, and B spectrum. The BSDF
function is wusually obtained by fitting the actual
measured data of different materials. For more discussion
on modelling lighting, materials, cameras, and geometry,
please refer to [85].

3.2 Deep generative network

Traditional generative adversarial networks (GANs)]
synthesize virtual images with statistics resembling the
training set from a sampled random vector. The specific
content of the generated pictures cannot be controlled.
However, this is far from sufficient for scene rendering, as
generating a random image for a specific scene is mean-
ingless. To address this problem, feed-forward neural net-
works are trained with a distance to generate images giv-
ing conditional inputsl®%l. However, these networks usu-
ally suffer from blurry results caused by the distance that
only counts for individual pixels in image space and ig-
nores the complex visual structurel87l. Later work pro-
posed perceptual similarity distancesl®89 computed by
pre-trained networks (usually VGGnet) to measure the
distance between generated image and ground truth in
high-dimensional feature space. Additionally, the struc-
tural similarity index measure (SSIM)PL 92 distance is
considered to improve the prediction quality. Although

@ Springer



802

pairwise supervised training might achieve better metrics,
the generated images may look unnatural. The condition-
al GANs (cGANs)M and StyleGANI[3 aim to generate
images matching the conditional distribution of outputs
given inputs that are indistinguishable from the human
visual system. Although the generation can be controlled
by the condition, the network cannot yet achieve explicit
scene-level control.

4 General methods

There are many applications of deep learning-en-
hanced rendering, including surface rendering, subsurface
rendering, volume rendering and novel view synthesis, re-
lighting, photorealistic human appearance rendering, etc.
Here, we categorize these applications into general meth-
ods and specific methods because the ability to use a
trained network to different input scenes is important for
rendering. Under each category, we detail each applica-
tion by the renderer’s input and output types. Instead of
classifying by novel view synthesis and relightingl”l, we
focus on the overall pipeline of the application as it is
closer to the traditional computer graphics process.

General methods only need to be trained once and can
then be applied to a range of scenes without retraining.
The applications described below are general methods by
default, and no additional explanations will be given.

4.1 Ambient occlusion generation methods

Ambient occlusion (AO) is a typical screen-space ef-
fect that is usually used in a real-time rendering pipeline
that simulates the occlusion effect of objects in the scene.
High-quality AO is usually generated by offline rendering
while there is still work to generate inaccurate AO in
real-timel%. Deep shadingl4?l presents a novel technique
to generate several rendering effects, including AO utiliz-
ing deferred shading buffers and convolutional neural net-
works. This is an early classic work using neural net-
works as renderers, using a U-shaped network that takes
deferred shading buffers as input to generate specific ren-
dering results. Erra et al.*l] introduce another method to
generate AQ, different from [40], the input to their net-
work is not deferred shading buffers but sampled nor-
mals in the object space. And they use OpenGL Shading
language to implement network inference which enables
direct integration into the real-time rendering pipeline.
Similar to [40], Zhang et al.*?] use a similar U-shape net-
work structure and deferred shading buffer to generate
AQ. They also implement a Compute Shader Library to
integrate the network into a real-time rendering pipeline.
AOGANM3l is the latest approach to generate screen-
space AQ. Different from all the above methods, they
build a GAN-based neural network with a self-attention
module with position and normal shading buffer as input.
They also combined the perceptual loss of the VGG struc-
ture with the adversarial loss of the GAN structure to
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train the generator and discriminator jointly. Benefitting
from their advanced network structure, they generate res-
ults close to offline rendering in real-time, see Fig. 2.

Fig.2 Left to right: Results from Deep shading, AOGAN, and
ground truth, respectively. Images taken from Ren and Songl43l.

4.2 Volume and subsurface rendering

The techniques of rendering participate medium are a
crucial part of traditional computer graphics, which can
represent effects such as clouds, smoke, flames, waxes,
multiple liquids, skin, etc. These rendering techniques can
be divided into two types, one is the volume rendering of
the medium as particles, including homogeneous volume
renderingl® and heterogeneous volume rendering96: 97,
and the other is the approximation of internal scattering,
i.e., bidirectional scattering surface reflectance distribu-
tion function (BSSRDF) based methods® %] commonly
used to render high density, high albedo medium such as
wax, skin, marble, etc. Although the rendering of the par-
ticipating medium is relatively mature, there are still
problems with time-consuming volume rendering and the
inaccuracy of BSSRDF-based methods, so deep learning-
based volume and subsurface rendering techniques have
emerged in recent years.

Deep scatteringl5ll proposed a method to synthesize
multi-scattered illumination in clouds using deep radi-
ance-predicting neural networks (RPNN), which effi-
ciently synthesize the in-scattered radiance to replace the
costly evaluation of Monte Carlo (MC) integration. In-
stead of predicting the full radiance directly, they opt for
only multi-scattered transport and employ MC integra-
tion for the rest of the transport. Their method achieves
an up to 4 000x speedup over path tracing and the bias is
visually acceptable. Panin and Nikolenkol52 improved
Deep scattering by proposing the Faster RPNN which is
2-3 times faster than the RPNN. They decrease the
RPNN network size by using a baking network for bak-
ing light of a single directional light source and decrease
the descriptor by passing in the rendering network a
much smaller cloud descriptor, thus saving time both on
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inference and collection while obtaining a lower bias com-
pared to RPNN. Abbas and Babaheninil®3 introduce the
latest method of rendering forest fog using a method sim-
ilar to [40]. Although fog is a cloud-like medium, instead
of considering a specific scattering process, they simply
generate forest fog rendering results utilizing shading buf-
fers (normal map, depth map, albedo map, RGB color
map without fog) and a U-shape-based generative ad-
versarial neural network. Their ground truth is images of
forest fog rendered by traditional rendering pipelines.
Zheng et al.[%4 proposed a new method for rendering het-
erogeneous volumes that utilizes three neural networks to
predict visibility, single scattering, and multiple scatter-
ing. Different from [51], this work not only predicts mul-
tiple scattering but also predicts all scatter processes at
once, and they present multiple scattering by spherical
harmonic (SH) basis functions. Thus, the network only
needs to predict the coefficients of SH. Fig.3 shows their
rendering results of translucent materials and opaque ma-
terials.

Ours GT

Fig.3 Rendering results and ground truth of translucent
material and opaque material under different environment maps.
Images taken from Zheng et al.[54]

In addition to the volume rendering method, there are
also works related to subsurface scattering. Hermosilla
et al.b% introduced a deep learning-based method to learn
the latent space of light transport from a 3D point cloud
to represent the ambient occlusion, global illumination,
and subsurface scattering shading effects. Compared to
screen-space methods, their method represents the 3D
scene as an unstructured 3D point cloud, which is later
projected to the 2D output image during rendering. For
each effect, they trained a network individually. For the
subsurface scattering network, its input is the position,
normal, albedo, direct illumination, and scattering coeffi-
cients corresponding to each point of the point cloud, and
the final output is the rendering result of the point. The
state-of-the-art approach for subsurface scattering render-
ing was proposed by Vicini et al.[56! To address the error
caused by the semi-infinite plane assumption and diffu-

sion-based approximation in the traditional BSSRDF
method, they abandon the idea of diffusion approxima-
tion and use a neural network to predict the sampling
point directly and their contributions while rendering. By
fitting the scene surface to a quadratic polynomial, their
network can handle arbitrarily shaped inputs. Their work
produces a more realistic appearance and lower error
compared to a photon beam diffusion path-traced refer-
ence (see Fig.4).

(a) Photon beam diffusion  (b) Shape adaptive BSSRDF

Fig. 4 Rendering of translucent soap blocks with photon beam
diffusion and their work. Images taken from Vicini et al.[56]

4.3 Voxel-based scene representation ren-
dering methods

Regardless of the rendering method, the representa-
tion of the scene determines the input form of the render-
ing neural network. The traditional renderer takes a scene
representation file as input. However, this representation
cannot be represented as a tensor, so it cannot be used as
an input to a neural network. Inspired by recent progress
in computer vision, many approaches that represent the
scene as a voxel grid have emerged.

Visual object networks (VON)9] presents a novel gen-
erative model, synthesizing natural images of objects with
a disentangled 3D representation. Inspired by classic
graphics rendering pipelines, they decomposed the genera-
tion model into three independent factors-shape, view-
point, and texture. They first learn a shape-generative
adversarial network that maps a randomly sampled shape
code to a voxel grid. Then they project the voxel grid to
2.5D sketches with their differentiable projection module
under a sampled viewpoint. Finally, they trained a tex-
ture network to add realistic, diverse textures to 2.5D
sketches to generate 2D images that cannot be distin-
guished from real images by an image discriminator. The
whole model is trained end-to-end on both 2D and 3D
data. Their scenes, although randomly generated, are still
represented using a voxel grid to represent three-dimen-
sional structures. RenderNet[2)l proposed a differentiable
rendering convolutional network with a projection unit
that can render 2D images from 3D shapes represented
by a voxel grid. Benefitting from their differentiable ren-
derer, their work enables relighting, different kinds of
(phong,
occlusion), novel view synthesis, and shape reconstruc-

shading contour line, cartoon, ambient
tion from images. RenderNet passes a voxel grid, camera
pose, and light position as input, and applies a view-pro-

jection transformation to convert the voxel grid to the

@ Springer



804

camera coordinate system. After trilinear sampling, the
transformed voxel grid is sent to a 3D convolution net-
work with a projection unit to produce 2D feature maps
that are sent to a 2D convolution network to compute
shading. The network can alternatively produce normal
maps of the 3D input. They also demonstrate their abil-
ity to iteratively recover a 3D voxel grid representation of
a scene from a single image utilizing the differentiable
renderer. Neural voxel renderer NVRI2! presents a deep
learning-based rendering method that maps a voxelized
scene into a high-quality image. Their method allows con-
trol of the scene that is similar to a classic graphics
pipeline, including geometric and appearance modifica-
tions, lighting condition modification, and camera posi-
tion modification. They demonstrate the effectiveness of
their method by rendering scenes with varying scene set-
tings. Their main contribution is presenting a novel neur-
al network model that takes a voxel representation of the
scene as input and learns how to render it. Two neural
renderers: NVR and NVR+ are designed to render the
scene. However, NVR generates a blurry and artifact res-
ult when the color pattern of the input voxels forms a
high frequency and irregular texture. RenderNet(2) is the
backbone of the NVR network. As the input of the NVR
network, the voxel is first sent to the 3D encoder, which
contains a series of 3D convolutions, and then passed
through the reshape unit to become a 2D feature. These
features are finally subjected to a series of 2-dimensional
convolutions as the final feature of the voxel. Light condi-
tions are also processed by two-layer fully connected lay-
ers and tiled to the final feature so that the lighting in-
formation is encoded. Finally, a 2D decoder processes the
final feature to generate the output image. The NVR +
network adds the splatting processing network and the
neural rendering network based on the NVR network.
The splatting processing network first synthesizes an im-
age by splitting the center of the colored voxels in the
target view and then passes this image through a 2D con-
volution encoder. The output of this network is then con-
catenated with the features from NVR, and the final res-
ult is processed by a U-Net (Neural rendering network) to
generate the output image. Fig.5 shows the neural ren-
dering results of objects with NVR4. Although scene
parameters can be modified, there are still some fixed at-
tributes, such as light color, camera focal length, object
material, etc.

4.4 Vector-based scene
rendering methods

representation

Since deep neural networks deal with tensors, it is an
intuitive way to represent the scene as a vector that can
be directly passed to neural networks. There are also
methods dealing with vector-based scene representation
in recent years.

Eslami et al.l'l introduced the generative query net-
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Input

Ground truth  Prediction

Fig.5 Neural rendering of cars and textured objects with
NVR+. Images taken from Rematas and Ferrari(21,

work (GQN), which is a framework for learning a vector
embedding of a scene relying only on a few scene observa-
tions. The GQN takes several images taken from differ-
ent viewpoints, and the corresponding camera poses as in-
put and constructs a latent vector that encodes informa-
tion about the underlying scene. This latent vector is de-
signed to represent the complete scene (e.g., object geo-
metries, colors, positions, lighting, and scene layout), and
it is unaware of the viewpoints. Each time a new observa-
tion is added, the latent vector representing the scene will
sum up the latent vector of the observation to obtain a
more complete and accurate scene representation. The
GQN's generator is responsible for generating an image,
given the scene representation and a new camera view-
point as input. Only when the latent vector represented
by the scene is accurate enough can the generation net-
work synthesize the correct novel view image. At the
same time, although only a few viewpoints per scene are
used to train GQN, it is able to render unseen scenes
from arbitrary viewpoints. However, their approach can
only handle simple scenes with basic shapes and unreal
lighting.

Liao et al.23] defined a new task of 3D controllable im-
age synthesis and proposed a method for solving it. They
considered generating a vector-based scene representa-
tion from a controllable 3D generated and rendering it us-
ing a 2D generator. Their method consists of three main
parts: a 3D generator, a differentiable projection layer,
and a 2D generator. The 3D generator maps a latent code
drawn from a Gaussian distribution into a set of abstract
3D primitives. Then, the differentiable projection layer
takes each 3D primitive as input and outputs a feature
map, an alpha map, and a depth map. Finally, the GAN-
based 2D generator refines them and produces the final
rendered image. A background vector is also projected
and rendered to composite with the final render generat-
ing the full rendered result. Although their work can gen-
erate controllable scenes (object rotation and translation),
the generated geometry and lighting are relatively simple,
and there is no control over properties such as materials
and lighting.



Q. Wang et al. / State of the Art on Deep Learning-enhanced Rendering Methods 805

4.5 Network-based scene representation
rendering methods

Whether the scene is represented by voxel, point
cloud, mesh, or any discrete form, the precision of the
representation is limited, so interpolation is always ap-
plied. However, implicit representation of a scene utiliz-
ing a neural network provides a continuous 3D scene rep-
resentation method that infinite precision which is inde-
pendent of the original scene representation. Therefore,
methods for rendering implicit scene representations have
emerged in recent years.

Oechsle et al.34 proposed a novel implicit representa-
tion of surface light fields that captures the visual appear-
ance of an object. They condition the surface light field
with respect to the location and spectrum of a small light
source which allows relighting and novel view synthesis
using environment maps or manipulating the light source.
Taking the encoding of an input image, the encoding of
the corresponding input shape, and a lighting configura-
tion, the conditional implicit surface light field (cSLF)
outputs a predicted image which computes a photomet-
ric loss with the ground truth image. The ¢SLF network
is a two-step model. First, the 3D location, shape feature
vector, and image feature vector are mapped to a D-di-
mensional appearance feature. This appearance feature is
a localized appearance representation independent of the
viewpoint and lighting condition. Then, the appearance
vector, lighting vector, viewpoint, and shape feature vec-
tor are fed into the lighting model to synthesize the RGB
image. Their cSLF is capable of inferring light fields of
novel unseen objects and preserving the texture, reflec-
tion, and shadow effects. However, their work can only
handle relatively simple scenes and lighting conditions
and cannot restore the specular effect well.

IBRNet[35] proposed a method to synthesize novel view
images of complex scenes by interpolating a sparse set of
nearby views. Utilizing an MLP and a ray transformer,
they estimate radiance and volume density at continuous
5D locations (3D spatial and 2D viewing directions) only
taking multi-view images as input. Unlike NeRF-based
methods that need to retrain for a novel scene, they learn
a generic view interpolation function that generalizes to
novel scenes. The framework of their method is very sim-
ilar to NeRF and is divided into three parts. They first
identified a set of neighboring source views and extracted
their image feature using a shared U-Net-based convolu-
tional neural network. Then, for each ray in the target
view, the IBRNet predicts the colors and densities for
each sample along the ray. In practice, they aggregate the
image color, features, and view direction from the neigh-
boring source views as the MLP input and output of the
color and density feature. The density features are then
passed to the ray Transformer, which contains positional
encoding and multi-head self-attention to the sequence of
density features to predict the final density value for each

sample. They use volume rendering to accumulate colors
and densities along the ray to render the final image. Al-
though their approach can handle the novel unseen scene,
they still need to fine-tune each scene to obtain compar-
able results (see Fig.6).

Fern

Fig. 6 Qualitative comparison on real-forward-facing datal%l.
From left to right: Ground truth, their fine-tuned method,
NeRF[™, and their method, LLFF9). Images taken from Wang
et al.l3]

4.6 Mesh-based scene representation ren-
dering methods

A polygon mesh is the most traditional way to repres-
ent scenes for traditional graphics pipelines. However, it
is not commonly used in deep learning-based rendering
due to the non-derivable nature of rasterization that pre-
vents back-propagation. However, there are still works to
solve this problem in a number of ways.

Neural 3D mesh render[26l proposes a method to ap-
proximate gradients for rasterization, which enables the
back-propagation of neural networks. They are able to
perform single image mesh reconstruction supervised with
silhouette images utilizing the neural renderer. Their
method demonstrates the potential of integrating mesh
renderers into neural networks. The focus of this work is
on the computation of rasterization gradients. Tradition-
al rasterization is a discrete operation that determines the
color of each pixel by judging whether it overlaps with
the mesh. They replace the sudden change in pixel color
caused by the intersection of the mesh with a gradual
change using linear interpolation. Thus, the color change
becomes a continuous process associated with mesh ver-
tices.

4.7 Global illumination rendering methods

Although the rendering method mentioned in the
above paragraphs can cope with various scene representa-
tions and achieve novel view synthesis and relighting,
they basically do not handle global illumination caused
by light interaction with different objects in the scene.
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According to our survey, most deep learning-enhanced
global illumination rendering methods do not explicitly
use a neural renderer to generate the final rendering im-
age but replace part of the render equation with a neural
network while integrating. Therefore, we introduce the
following work briefly.

Deep illumination[4®l presents a novel deep learning
technique for approximating global illumination (GI) in
real-time using conditional generative adversarial net-
works (cGANs)M5]l. Their pipeline is intuitive: First, they
generate deferred shading buffers (normal map, direct
lighting, diffuse map, depth map) and global illumina-
tion ground truth via VXGII0 and GPU path
tracingl!0l; Then, the generated buffers are passed to a U-
Net-based generator network to predict the GI image. Fi-
nally, the predicted GI image and buffers or ground truth
image are passed to the discriminator network. Their
method is a relatively early work and provides a baseline
for global illumination neural rendering. Neural control
variates (NCV){7 propose a method for unbiased vari-
ance reduction in parametric Monte Carlo integration.
Using the neural network to learn a function that is close
to the render equation, as well as a neural importance
sampler to produce the probability of sampling, and an-
other neural network that infers the solution of the integ-
ral equation, they dramatically reduce the noise at the
cost of negligible visible bias.

4.8 Direct illumination rendering methods

In general, direct lighting can be easily and efficiently
obtained through rasterization or ray tracing. However,
there is still work to learn the rendering of direct lighting
through neural networks.

Suppan et al.[4 proposed a neural direct-illumination
renderer (NDR) to render direct-illumination images of
any geometry with opaque materials under distant illu-
mination. The network framework is relatively simple:
Given deferred shading buffers (normal map, roughness,
depth), they first generate diffuse and specular coarse
shading results, then the illumination, which is encoded
as a vector of 75 SH coefficients, combined with coarse
shading and deferred shading buffers are fed into the
NDR to generate the diffuse and specular shading result.
Finally, they obtained the final render result by multiply-
ing albedo input with shading results and adding diffuse
and specular parts together.

4.9 Post-processing methods

As higher resolutions and refresh rates, as well as
more photorealistic effects bring great challenges to real-
time rendering, neural networks are used in the post-pro-
cessing stage to alleviate the burden of rendering
pipelines. Superresolution and frame interpolation enable
rendering pipeline work at a lower resolution or frame
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rates and recover target resolution and frame rates by
deep learning methods.

Superresolution is introduced to real-time rendering
by NVIDIA. NVIDIA released DLSS2.0069 in 2019, which
is the first deep learning-enhanced superresolution meth-
od that can be applied in practice. However, since
DLSS2.0 relies on NVIDIA’s hardware platform, no tech-
nical information is publicly available. Xiao et al.l[56] pro-
posed NSRR, using U-Net[192] as the backbone to recon-
struct the final result with the input including low resolu-
tion color, depth map and motion vector over multiple
historical frames. High-resolution results can be achieved
with NSRR at a real-time frame rate and most of the
high-frequency detail can be recovered.

Frame interpolation in rendering is another way to re-
duce rendering task. Guo et al.l7 proposed ExtraNet to
predict an extrapolated frame according to previous
frames and current Gbuffers. Briedis et al.[68] presented a
frame interpolation method for offline rendering applica-
tions.

Deep CG2Reall69 presented a method to improve the
quality of OpenGL rendered images as a two-stage post-
processing process. Their two-stage pipeline first gener-
ates an accurate shading with the supervision of physic-
ally-based renderings (PBR). Furthermore, they increase
the realism of texture and shading utilizing a
CycleGANM  network. They demonstrate that their
method yields more realistic results compared to other
approaches via evaluations on the SUNCG[I93] dataset.
They first leverage the generative neural networks that
take deferred shading buffers (albedo map, normal map,
and OpenGL shading map) as input and predict the PBR
shading map. This shading map is then product with the
albedo map generating the PBR image. Note that this
training process is supervised with PBR rendering results.
Later, another generative neural network predicted the
real albedo and shading image which are responsible for
generating the real result. This stage of training is super-
vised with unpaired data. Fig.7 shows their predicted real
image compared to the OpenGL image and CycleGAN
result.

4.10 Human-related rendering methods

Human-related rendering has drawn great attention in
computer graphics including skin rendering, hair render-
ing, face rendering, body animation rendering, etc. Tradi-
tional computer graphics usually model the human ap-
pearance as the physical process of light interacting with
the human body and rendering with real-time rasteriza-
tion or offline ray tracing. With the development of neur-
al networks in recent years, deep learning-based human-
related rendering methods have started to proliferate and
are gradually replacing traditional methods. Some of the
methods described below are similar to the previous para-
graphs, but the focus of this paragraph is on human-re-
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(c) Our predicted real image

Fig. 7 Compared to OpenGL rendering (a) and single-stage
prediction with CycleGAN (b), their result restores more
realistic lighting and textures. Images taken from Bi et al.[69

lated rendering; thus, it's all covered here.

Wei et al.’7l present an adversarial network for ren-
dering photorealistic hair that takes a strand-based 3D
hair model as input and provides user control for color
and lighting through reference images. Benefiting from
the simple forward pass of their network, they achieve a
real-time rendering rate. Given a natural image, they gen-
erate four processed images by three sequential image
processing operators: the segment hair image, the gray
image, the orientation map, and the edge activation map.
The segment hair, gray image, and orientation map are
all encoded into their own latent space with a feature
vector. Given a 3D hair model at inference time, they
first extract the edge activation map from a randomized
rendered image of the desired viewpoint. Then generat-
ors are applied sequentially in the inverse order of the im-
age processing flow (see Fig.8).

Input image Segmented hair 7,

Gray image I, Orientation map /s Edge activation map

-

Edge activation map CG hair model

Reconstructed
orientation map

i
Reconstructed

Reconstructed
color image gray image

Fig. 8 Pipeline of [57]. The top row shows the image processing
flow of an input natural image, and the bottom row shows the
inference flow from right to left. Image taken from Wei et al.l5"]

LookinGood[8] proposed a novel method to augment a
real-time performance capture system with a deep neural
network that takes a coarse rendered textured 3D recon-
struction from a novel viewpoint and outputs high-qual-
ity rendering results that perform super-resolution, de-
noising, and completion of the original images. They test
their method in two situations: One involving an upper-
body reconstruction of an actor from a single RGB-D
camera, and the second consisting of full-body capture.
They use extra cameras except for the reconstruction
camera to provide ground truth, which achieves self-su-
pervised training. The backbone of LookinGood is a U-
Net-like architecture. The system is specifically designed
for VR and AR headsets and accounts for consistency
between two stereo views. Fig.9 shows the re-rendering
results w.r.t. to viewpoint changes. Although their meth-
od can be generalized to a different actor, the quality of
the unseen actor is reduced.

Input view

Predicted view

Fig.9 Neural re-rendering results of different viewpoints.
Image taken from Martin-Brualla et al.[58]

Meka et al.l’] introduced a method that combines tra-
ditional graphics pipelines with neural rendering to gener-
ate photorealistic renderings of dynamic performances un-
der novel viewpoints and lighting assuming the availabil-
ity of an approximate geometry of the subject for every
frame of the performance. Their method is capable of ren-
dering unseen subject poses and novel subject identities
and significantly outperforms the existing state-of-the-art
solutions. A U-Net architecture is first exploited to ex-
tract features from the two spherical gradient illumina-
tion images of each viewpoint that concatenated each
pixel with view direction. After acquiring the feature,
they warp the features of every viewpoint using warp
fields and pool all of them together into a single tensor to
remove the dependency on the order of the input images
according to the feature weights computed by the dot
product between the camera viewing direction and the
surface normals. The texture coordinate feature is then
sampled by a warp corresponding to the target camera
view to generate the resampled features. Then, they gen-
erate a reflection map and a light visibility map and mul-
tiply the light visibility map elementwise with the concat-
enation of resampled features, reflection map, and view
direction, generating the neural diffuse rendering image.
Additionally, the resampled features are fed into an Al-
pha Matting network, predicting the alpha mask. Finally,
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the neural diffuse rendering image and alpha mask are
passed through a U-Net that generates the actual
rendered images, see Fig.10 for a comprehensive under-
standing.

Rendering with stylel50 proposes combining the tradi-
tional rendering pipeline and neural rendering of faces,
automatically and seamlessly generating full-head
photorealistic portrait renders from only facial skin render
without any artist intervention. Their method is also cap-
able of rendering and preserving identity over animated
performance sequences. They first synthesize a high-qual-
ity skin render via a traditional rendering pipeline with
an alpha mask from a 3D face geometry and appearance
maps. This rendered image is then projected into a pre-
trained Style-GAN2 network(1%4 to realistically inpaint
the missing pixels of the portrait (eyes, hair, the interior
of the mouth). The final compositing step overlays the
raytraced skin appearance on top of the projection res-
ults.

5 Specific methods

Usually, only scenes or objects specified during net-
work training can be rendered by specific methods. A new
network needs to be retrained for every new scene or ob-
ject. For example, if the method operates on a single car
scene (with a specific lighting condition, in a specific loca-
tion), then changing the instance of the car, increasing
the number of cars, changing the lighting conditions, etc.,
will disable the network. In general, specific methods pro-
duce higher quality than general methods at the expense
of training time. The applications described below are
specific methods by default, and no additional explana-

Machine Intelligence Research 20(6), December 2023
tions will be given.

5.1 Voxel-based scene representation ren-
dering methods

DeepVoxelsl?2 is a learned viewpoint-invariant, per-
sistent, and uniform 3D voxel grid of feature representa-
tion that encodes the view-dependent appearance of a 3D
scene without explicitly modelling its geometry. The fi-
nal rendered image is formed based on a 2D network that
receives the perspective resampled version of the 3D
volume. The scene-specific DeepVoxels feature represent-
ation is formed from a set of multi-view images without
explicit 3D supervision. They first extract 2D feature
maps using 2D U-Net and explicitly lift the features to
3D based on a differentiable lifting layer. The lifted 3D
feature volume is fused using a gated recurrent network
architecture. After feature fusion, the feature volume is
processed by a 3D U-Net and then mapped to the cam-
era coordinate system of the two target views via a differ-
entiable reprojection layer. An occlusion network then
computes the soft visibility of each voxel. Finally, a
learned 2D U-Net rendering network generates the two fi-
nal output images. Their network is trained end-to-end
by a 2D re-rendering loss that forces the predictions to
match the target views. They show several novel view
synthesis results on challenging scenes and outperform
baseline methods (see Fig.11).

5.2 Point-based scene representation ren-
dering methods

In addition to voxel representation, another common

Reflection map

Resampled features

Camera warp W*

Resampling to view k&

View direction

Neural shading

Light visibility

Neural
rendering

Resampled features

UV features

nf-1

Predicted mask

Alpha mask prediction

Fig. 10 Neural rendering pipeline. Given a target camera, the UV features are resampled. A neural shading model adds view-related
information to resampled features. An alpha mask is predicted by the Alpha Matting network. A U-Net finally renders the target

images. Image taken from Meka et al.[?]
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Ground truth  Worrall et al.'! Pix2pix Ours

Ours-test views

Fig. 11 Comparison of the best three performing models to ground truth and other samples of novel views generated by their model.
From left to right: ground truth, Worral et al.[193], Isola et al.[!5] and DeepVoxels. Images taken from Sitzmann et al.[22]

method of scene representation is using a point cloud.
The advantage of this representation is that there have
been works in computer vision to reconstruct point clouds
from images, and the reconstructed point clouds can be
rendered directly using these methods.

Meshry et al.30 applied traditional 3D reconstruction
from internet photos of a tourist landmark to generate a
point cloud corresponding to the landmark. They train a
neural rendering network that takes deferred shading buf-
fers (depth, color, semantic labelling) as input and gener-
ates realistic renderings of the landmark with relighting
and novel view synthesis. Given a large internet photo
collection of a scene, they first reconstruct a dense
colored point cloud using structure-from-motion(1% and
multi-view stereoll9” and then render the point cloud
from the viewpoint of each image to generate the aligned
dataset. Per-pixel albedo and depth are generated by us-
ing point splatting with a z-buffer. To model the differ-
ent appearances with relighting under a viewpoint, they
pre-train an appearance encoder that takes deferred buf-
fers and real images as inputs using a triplet loss. Then a
neural renderer is trained using reconstruction loss and
GAN loss and finally fine-tuned with an appearance en-
coder. To account for the transient object in the scene
(pedestrians, cars, etc.), they also concatenate the se-
mantic label to the deferred buffer. The ground truth se-
mantic segmentations are computed using DeepLabl1%8] on
the input image, while they train a separate semantic la-
belling network that takes deferred shading buffers as in-
put for inference. However, their work produces poor res-
ults for landmark details, such as text, and there are not
enough input images for a scene.

Aliev et al.Bl presented a novel point-based method
that uses a raw point cloud representation of the scene
and generates novel view synthesis render results with a
learnable neural descriptor of each point and a deep ren-
dering network. They first attach an 8-dimensional

descriptor to each point and rasterize the points with a z-
buffer at several resolutions corresponding to the given
camera parameters. Each rasterization is fed to different
downsampling layers of U-Net and synthesis of the final
render result. They optimized the parameters of the ren-
dering network and the neural descriptors by back-
propagating the perceptual loss function. They also show
that their approach is able to model and render scenes
captured by hand-held RGBD cameras as well as simple
RGB streams.

Dai et al.32 presented a novel neural point cloud ren-
dering pipeline through multi-plane projections. The
neural network takes the raw point cloud of a scene as in-
put and outputs image or image sequences from novel
camera views. They propose a method to project 3D
points into a layered volume of camera frustum so that
the network automatically learns the wvisibility of 3D
points. The whole framework of the network consists of
two modules: multi-plane-based voxelization and multi-
plane rendering. The first module divides the 3D space of
the camera view frustum uniformly into small frustum
voxels according to image size and a predefined number
of planes. Aggregation operations are also adopted for
each small frustum to generate a multi-plane 3D repres-
entation that concatenates with normalized view direc-
tion and sends it to the render network. The render net-
work predicts a 4 channels output (RGB + blend weight)
for each plane. The final output is produced by blending
all planes according to blend weights. Finally, the whole
framework is supervised by perceptual loss. They demon-
strate that their method produces more stable renderings
compared to previous methods (see Fig.12).

Sanzenbacher et al.33 trained a deep neural network
to generate photorealistic rendering results of a specific
scene in real time by learning light transport in a static
or dynamic scene. Their approach operates in both 3D
and 2D space, thus enabling global illumination effects

@ Springer



810

(a) Point clouds (b) Pix2pix

(c) NPG
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(d) Our results

(e) Ground truth

Fig. 12 Two comparisons on cases with noisy depth. NPGB1 and Pix2Pix[!%l either completely miss the correct objects or produce a

mixture of foreground and background. Image taken from Dai et al.[32]

and 3D scene geometry manipulation. They first repres-
ent the scene in the form of an unstructured point cloud
sampled from the scene's surface and attach additional
properties (albedo, light spectrum) to each point. The
point cloud is then processed with a light transport layer
which is a PointNet-based architecture® with ResNet-
blocks(!10] of depth two to learn light transport in the
scene. The network output is projected into a 2D image.
Then combined with additional image space information
(depth, normal, albedo, view ray), the projection features
are sent to the image synthesis layer to synthesize the fi-
nal image. By minimizing the MSE error of the gener-
ated image and noisy rendering obtained from a physic-
ally-based renderer, they jointly optimize the whole mod-
el. They also prove that using noisy images as ground
truth, the gradient estimates are unbiased.

5.3 Vector-based scene
rendering methods

representation

Chen et al.[4 proposed a novel relightable neural ren-
derer (RNR) for novel view synthesis and relighting util-
izing multi-view images as input. RNR models the physic-
al rendering process of image generation, specifically, in
terms of environment lighting, object intrinsic attributes,
and light transport function (LTF). RNR conducts re-
gression on these three individual components rather than
translating deep features to appearance. Benefiting from
the physically-based rendering process, their method im-
proves the quality of novel view synthesis and relighting.
They decomposed the render equation into albedo, LTF's
and lighting, and use spherical harmonics (SH) to fit the
lighting. They first follow the step of [111] and apply a K-
nearest neighbor (K-NN) method to search the neighbor-
hood of each 3D mesh vertex and then apply multiple
graph convolutional networks (GCNs) to extract the
global features as a vector of the 3D geometry. After
that, they repeat and concatenate the feature vector with
the U-Net feature map after the first downsampling layer.
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This U-Net network is the light transport net (LTN) and
takes neural texture, normal map, and light direction
map as input and outputs a light transport map that con-
tains per-pixel light transport at each sampled light direc-
tion. Finally, they retrieved the radiance on each sampled
light direction and integrated it with albedo and SHs to
render the final image. They use the L1 loss for the differ-
ence between rendered images and ground truth images.
Fig.13 shows the relighting and novel view synthesis res-
ults of RNR.

“Light 1

g L 1":

Light

Reference View synthesis  Relight 1 Relight 2

Fig. 13 Relighting and novel view synthesis results of RNR on
real data. Image taken from Chen et al.[24]

Granskog et al.2’l present a technique to adaptively
disentangle lighting, material, and geometric information,
generating a vector-based scene representation that pre-
serves the orthogonality of these components. The scene
encoding network takes several high-quality observations
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of the scene attached with deferred shading buffers (posi-
tion, normal, depth) and camera parameters as input and
produces a view-independent neural scene representation
vector. This vector is the average of all generated obser-
vation feature vectors. For a novel view, the representa-
tion vector, camera parameters, and corresponding de-
ferred shading buffer are passed into a neural renderer to
obtain an image of the novel viewpoint. Their method is
similar to [16] but focuses on adaptively partitioning the
neural scene representation and in-depth analysis of exist-
ing image generators with respect to the partitioned rep-
resentation. Since their work disentangles elements in a
scene, it is possible to use the lighting of one scene to re-
light another scene by replacing the lighting part of the
scene representation vector (see Fig.14).

5.4 Network-based scene representation
rendering methods

Scene representation networks (SRNs)B7 is a classic
method that proposes a continuous 3D-structure-aware
scene representation that encodes both geometry and ap-
pearance. They map the world coordinates to a feature
representation of local scene properties. Taking only 2D
images and their camera poses as input, SRNs can be

Scene A

Prediction Reference Prediction

Reference

Scene B

Fig. 14 The lighting partition of scene A replaces the lighting partition of scene B. The relighting result is shown in the right column.
Image taken from Granskog et al.[25]

trained end-to-end with a differentiable ray-marching al-
gorithm. In practice, the scene representation function is
represented by a multi-layer perceptron (MLP) that
learns to map a spatial location to a feature representa-
tion of scene properties of that spatial location. A two-
step differentiable ray-marching algorithm is used to gen-
erate the final rendered image by first finding the world
coordinates of the intersections of the camera ray with
scene geometry and then mapping the feature vector to a
color. They introduced a ray marching long short-term
memory (RM-LSTM) to handle the first problem and a
per-pixel MLP to map a single feature vector to a single
RGB vector. After training, the view-independent MLP
can be queried by a novel camera view with the ray-
marching algorithm and then rendered by the per-pixel
MLP.

Differentiable volumetric rendering (DVR)P8! presents
a differentiable rendering formulation for implicit shape
and texture representations. Similar to [37], they also rep-
resent the shape and appearance with a neural network.
However, they design an occupancy network assigning a
probability of occupancy to every point in 3D space and
extract the object surface using isosurface extraction
techniques(!!? instead of the RM-LSTM network. They
also generate the final rendered image directly from the

Scene B w/lighting from A

L by
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texture field'!3 instead of the per-pixel MLP. For the
single-view reconstruction task, they process the input
image with an encoder and use the output to condition
the occupancy network and texture field. They show their
multi-view 3D reconstruction results and single-view re-
constructions (see Fig.15). Similar to [37], their method
can also achieve novel view synthesis.

.

(c) Texture

(a) Shape

(b) Normals

Fig. 15 They show the shape, normals, and the textured shape
for their method trained with 2D images and sparse depth maps
for scan 106 of the DTU dataset!ll. Image taken from Niemeyer
et al.38]

Yariv et al.3l modelled the volume density as a func-
tion of the geometry, different from previous work model-
ling the geometry as a function of the volume density.
They defined the volume density function as Laplace’s cu-
mulative distribution function (CDF) applied to a signed
distance function (SDF) representation. This new dens-
ity representation produces high-quality geometry recon-
struction and enables the disentanglement of shape and
appearance. Their framework consists of two MLPs, the
first approximating the SDF of the learned geometry and
the global geometry feature of dimension 256. The second
MLP presents the scene’s radiance field. Fig.16 shows
qualitative results sampled from the BlendedMVS[L15]
dataset.

Neural lumigraph rendering (NLR)B9 implicitly rep-
resents a scene surface and radiance field using a neural
network that accelerates state-of-the-art neural rendering
by approximately two orders of magnitude and is com-
patible with traditional graphics pipelines which enable
real-time rendering rates. They present both the shape
and appearance of 3D objects similar to IDRIL6],
However, their backbone network is sinusoidal representa-
tion networks (SIREN)['7 instead of MLP. They model

GT

NcRF++

VoISDF

. [

Fig. 16 Qualitative results sampled from the BlendedMVS dataset.

and their results. Image taken from Yariv et al.[36]

@ Springer

Machine Intelligence Research 20(6), December 2023

the shapes of the scene as SIREN-based SDF representa-
tion. The appearance is modelled as a radiance field for
directions. They take multi-view 2D images and object
masks as input to supervise the 3D representation. The
loss function is relatively complex and contains a L1 im-
age reconstruction loss for true foreground pixels, an
eikonal constraint to regularize the scene representation
network, a soft mask loss proposed in [116] defined for
the non-foreground pixels, also a smoothness term to lin-
earize the angular behavior of SIREN. Compared to the
NeRF-based method, they only need to use sphere track-
ing to find the first intersection of the ray and the model,
and then query the value of the radiance field, without
accumulating samples along the ray, which leads to a
faster rendering process. They also embedded their meth-
od into the traditional rasterizing pipeline to achieve a
real-time rendering rate by extracting the mesh from SDF
using marching cubes and then rasterizing the mesh us-
ing OpenGL to compute the vertex position buffer and
angles between the ray towards the current rendering
camera and the rays towards each of the projective tex-
ture map viewpoints. Finally, they apply the unstruc-
tured lumigraph rendering techniquel!8l, generating the
rendered image.

5.5 Mesh-based scene representation me-
thods

Deep surface light fields (DSLF)[27 present a neural
network called the DSLF to model light transport on ver-
tices of object mesh using only moderate sampling of
multi-view images. Their DSLF can achieve a high data
compression ratio while performing real-time rendering on
the GPU. They first obtain the 3D model of the object as
a mesh by structure-from-motion (SFM) and then re-
gister the multi-view images with the mesh using feature
extraction and matching and perspective-n-point (PnP)[119
techniques. They also conduct texture-aware remeshing
to avoid blurring of the line features. The deep network
finally takes the vertex position (represented by texture
coordinates) and ray direction as input and outputs the

final light transport of that vertex. During rendering,
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their method integrates well with traditional rasteriza-
tion pipelines by replacing the vertex shader with DSLF
to predict the vertex color. Fig.17 shows the novel view
synthesis results of synthesis and real scenes.

Synthetic

Real

Fig. 17 DSLF rendering results from different viewpoints.
Their method produces high fidelity results in both real and
synthesis scenes with different materials. Images taken from
Chen et al.27]

Deferred neural renderingl?8] introduces the neural tex-
tures, a learned feature map that is stored as maps on
top of 3D mesh proxies that contain significantly more in-
formation than traditional textures. Different from the
original 2D generative neural networks, their method
achieves explicit control over the generated output. They
show the effectiveness of their method on novel view syn-
thesis, scene editing, and facial reenactment. They first
obtain the coarse geometric proxy with UV-map paramet-
erization and camera parameters using the COLMAP[107]
structure-from-motion technique. Taking the geometry
mesh and a neural texture as input, the standard graph-
ics pipeline is used to render a view-dependent screen
space feature map. This feature map is then converted to
a photorealistic image via a U-Net-based deferred neural
renderer.

Deferred neural lighting2®) proposes a novel method
for novel viewpoint relighting of a specific scene. Differ-
ent from traditional methods, which require dense
samples of the view direction and lighting condition com-
bination, their method utilizes unstructured photographs
taken from a handheld acquisition scheme that only re-
quires two cellphones. They demonstrate the effective-
ness of their method in a variety of real-world and syn-
thetic scenes. Similar to deferred neural renderingl28, they

also reconstructed the geometric mesh with UV-mapping
via COLMAP and generate a neural texture to represent
the feature of the object. Instead of directly passing the
projected neural texture to a neural renderer, they com-
bined (via per-pixel multiplication) radiance cues, which
are synthesized by rendering scene-independent bias ma-
terials under the target light onto the rough geometry,
with projected neural texture and passed to a neural ren-
derer to produce the final relit image of the scene.
Moreover, they also predict a binary mask from the pro-
jected neural texture for compositing the relit appearance.
Fig. 18 shows their simultaneously novel view synthesis
and relighting results on captured scenes.

Fig. 18 Qualitative comparison between captured scenes
ground truth (right) and simultaneously novel view synthesis
and relighting results of their method (left). Difference images
are shown in the insets. Images taken from Gao et al.[29]

5.6 Global illumination rendering methods

Ren et al.l*8] proposed the first method to model glob-
al illumination with a neural network. They introduce a
radiance regression function (RRF), presenting a non-lin-
ear mapping from local attributes to indirect illumina-
tions. They first define the closed-form of indirect illu-
mination and then train an MLP that takes position,
view direction, point light position, and normal and re-
flectance parameters as input and predicts the RGB com-
ponents of indirect illuminations. Combined with direct
illumination, they finally obtain the global illumination
result. Neural radiosity? directly uses a neural network
to predict the solution of the rendering equation by min-
imizing the norm of its residual for each point in a 3D
scene. They derive the MC estimate of the residual norm
and the MC approximation of the residual norm gradient
with respect to network parameters. Different from tradi-
tional neural network optimization, their model optim-
izes network parameters in the traditional ray tracing
framework and computes gradients using the formula
they derived. After training, images from arbitrary view-
points can be computed efficiently (see Fig.19). Diolatzis
et al.P introduced the latest active exploration (AE)
method using Markov chain Monte Carlo (MCMC) to
render novel scene instances given an explicit parameter-
ization of the scene configuration. The scene configura-
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Multiple views of LHS Ours GT

MAPE: 0.058

' MAPE: 0.066

Fig. 19 Multiple views of a solution of their network. Images
taken from Hadadan et al.[4]

tion controls the variables of the scene, such as changing
objects, materials, lights, and viewpoint. The MCMC
method generates scene configuration samples that best
help training hard light transport paths (e.g., caustics
and transmittance). During training, they explicitly mod-
el the scene and the set of variable parameters as a vec-
tor. They generate difficult instances of the variable scene
to guide the PixelGenerator network using AE. In addi-
tion to the scene representation vector, the PixelGenerat-
or also takes auxiliary deferred shading buffers as input
and predicts the global illumination image path. At infer-
ence time, the explicit scene representation vector which
contains requested configuration information is fed into
the PixelGenerator with deferred shading buffers of the
corresponding scene configuration to predict the final im-
age. Note that their method is relatively efficient (4-6
FPS) and is capable of interactively altering the scene il-
lumination by moving objects, the viewpoint, and modify-
ing materials. Fig.20 shows the interactive rendering res-
ults of their methods and controllable variables depicted
in red.

Interactive rendering

Ground truth

Spaceship

Ground truth

Veach door

Sl MAPE: 0.042
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5.7 Human-related rendering methods

Lombardi et al.fl] introduced a data-driven deep ap-
pearance model for rendering the human face that learns
both facial geometry and appearance from a multi-view
capture system. Their method generates realistic novel
view images with no need for an accurate geometry mod-
el, which is a significant departure from the traditional
graphics pipeline. They also integrated their model with
an unsupervised technique for mapping images to facial
states into virtual reality applications. Begining with
multi-view input photos of an identity and a reconstruc-
ted mesh, they first unwrap the photos to generate the
view-specific texture maps. They then computed the aver-
age texture of the texture maps. The average texture and
the mesh are sent to a variational autoencoder (VAE)[12
which is conditioned by an output viewpoint and pre-
dicts a mesh and view-specific texture corresponding to
the output viewpoint. With texture and geometry, it can
easily render images from a mnovel point of view. The
whole VAE is supervised by the generated mesh and
view-specific texture reconstruction loss.

Liu et al.[62] proposed a method to generate video-real-
istic animations of real humans under user control. Com-
pared to traditional human character rendering, they do
not require a high-quality photorealistic 3D model, but a
video sequence and a 3D template model of the person.
They first reconstruct a 3D character model of the target
person from static posture images and then obtain the
training motion data from the monocular training video
based on the method of [120]. These motion data are then
fed to the character-to-image translation network with
the color and depth of body part images to produce
video-realistic output frames. At inference time, the
Character-to-Image translation network takes the source
motion data with the conditioning input (color and depth
body part images with a 3D character model) as input to
reenact the target human character. The source motion

Variables

Fig. 20 Interactive rendering results. From left to right: Ground truth path traced images; their interactive neural renderer with 4 to
6 FPS; the rendering result of a varied scene; the variable parts of the scene depicted in red. Images taken from Diolatzis et al.[50]
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data can not only be provided by monocular video but
also from user-defined motion or motion capture data.
Their results outperformed the state-of-the-art methods
in learning-based human video synthesis.

Wu et al.l%3] present a neural human renderer (NHR)
for rendering photorealistic free-view video (FVV) from
dynamic human captures under a multi-view setting. Ex-
periments show that NHR outperforms the state-of-the-
art neural and image-based rendering techniques, espe-
cially on hands, hair, nose, foot, etc. As the input to the
NHR, the multi-view stereo (MVS), which consists of a
synchronized, multi-view video sequence, is exploited to
construct a point cloud at each frame. Each point in the
point cloud has color, computed through reprojection on
the input view images. Next, feature extraction (FE)
based on PointNet++[121 was used to process the spati-
otemporal point cloud sequence generating 3D-point
descriptors. The descriptor with camera parameters is
projected and rasterized to produce a feature map and
depth map corresponding to the viewpoint. Finally, a U-
Net-based renderer maps the feature map and depth map
to the output RGB image and mask image. The point
cloud reconstructed from MVS produces patches of holes
on textureless or occluded regions. Thus, they refine their
geometry by rendering a dense set of new views and us-
ing the resulting masks as silhouettes and conduct visual
hull reconstruction based on space-carving or shape-from-
silhouettes (SfS). Fig.21 shows the FVV results on a
dance scene.

Zhang et al.l% proposed a method for learning a neur-
al representation of light transport (LT) of the human
body with a rough 3D geometry and multi-view one light
at a time (OLAT) images. They model non-diffuse and
global LT in texture space as residuals added to physic-
ally based diffuse rendering and enable high-quality (with
complex material effects and global illumination) novel
view synthesis and relighting simultaneously. Their
framework consists of two main paths: the observation
path and query path. The observation path first takes
several nearby texture-space residual maps (observed
minus diffuse base) sampled around the target light and

[llumination varies (view constant)

View varies (illumination constant)

View varies (illumination constant)
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Fig. 21 Free view video results on a challenging dance scene
using NHR. Red blouses impose significant challenges in 3D
reconstruction. Image taken from Wu et al.[63]

viewing direction. The physically-based diffuse base tex-
tures are generated by multiplying the albedo texture, the
light cosines texture, and the view visibility texture cor-
responding to the sampled view and lighting direction.
The residual maps are then fed into an encoder generat-
ing multiscale features that are pooled to remove the de-
pendence on their order and number. The pooled feature
is concatenated to the feature activations of the query
path network, which takes the query light cosines map,
query view cosines map, and diffuse base map of the tar-
get view and lighting direction. The query path network
then synthesizes the non-diffuse residuals, which repres-
ent global illumination and complex material effects. Fi-
nally, the non-diffuse residuals and diffuse base textures
are wrapped to image space utilizing UV wrapping pre-
defined by coarse geometry. Fig.22 shows the simultan-
eous relighting and views synthesis results of their meth-
od.

6 Conclusions

Deep learning-enhanced rendering has drawn great at-
tention in both computer graphics and computer vision
research fields in recent years. This state-of-the-art re-
port spans a variety of use cases that range from general
and specific methods of ambient occlusion generation,
volume and subsurface rendering, multiple scene repres-

Illumination varies (view constant)

Fig. 22 Their model is able to perform simultaneous relighting and view synthesis, and it produces accurate renderings for unobserved

viewpoints and light directions. Image taken from Zhang et al.[64]
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entation rendering, global illumination rendering, direct
illumination rendering, and human-related rendering,
which embodies the rapid growth of deep learning-en-
hanced rendering methods. Deep learning-enhanced ren-
dering has already shown impressive ability at real-time
global illumination rendering, novel view synthesis, and
relighting with only several images as input. We believe
that the traditional graphics rendering pipeline can be
partially or completely replaced by deep learning-en-
hanced rendering in the future. We hope that our report
can provide researchers with a deep understanding of
deep learning-enhanced rendering, and help them devel-
op the next generation of deep learning-enhanced render-
ing and graphics applications.
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