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Abstract: Most modern consumer-grade cameras are often equipped with a rolling shutter mechanism, which is becoming increas-
ingly important in computer vision, robotics and autonomous driving applications. However, its temporal-dynamic imaging nature leads
to the rolling shutter effect that manifests as geometric distortion. Over the years, researchers have made significant progress in develop-
ing tractable rolling shutter models, optimization methods, and learning approaches, aiming to remove geometry distortion and im-
prove visual quality. In this survey, we review the recent advances in rolling shutter cameras from two aspects of motion modeling and
deep learning. To the best of our knowledge, this is the first comprehensive survey of rolling shutter cameras. In the part of rolling shut-
ter motion modeling and optimization, the principles of various rolling shutter motion models are elaborated and their typical applica-
tions are summarized. Then, the applications of deep learning in rolling shutter based image processing are presented. Finally, we con-
clude this survey with discussions on future research directions.
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1 Introduction

A vast majority of prevalent low-budget commercial
cameras are built upon complementary metal oxide semi-
conductor (CMOS) sensors due to their low cost and sim-
plicity in manufacturing, in which a rolling shutter (RS)
mechanism is generally employed. Unlike a global shut-
ter (GS) camera capturing all pixels simultaneously us-
ing a charge coupled device (CCD) sensor, pixels on the
rolling shutter CMOS sensor plane are commonly ex-
posed from top to bottom in a row-by-row fashion with a
constant inter-row delay, as illustrated in Fig.1. There-
fore, so-called RS effects (e.g., skew, stretch, and wobble)
would occur in the images and videos when relative mo-
tion exists between the camera and objects. The RS ef-
fect that arises in source media from digital single lens re-
flex cameras (DSLRs) and other CMOS sensor-based
cameras has become a nuisance factor in photography.

Geometric distortions that stem from RS effects viol-
ate the conventional perspective camera modellll, thus
simply ignoring the RS effect in computer vision applica-
tions leads to performance degradation or even failurel24l.
Considering the rich scene geometry and camera motion
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information embedded in the row-dependent distortion of
RS images® 8], the high dynamic sampling characteristics
of the RS mechanism itself possess underlying spatio-tem-
poral geometric constraints. After nearly 20 years of de-
velopment, researchers have made full use of the underly-
ing information in the temporal-dynamic imaging mech-
anism to remove RS distortions and create pleasing visu-
alizations, which has brought great success in down-
stream applications, such as simultaneous localization
and mapping (SLAM)W 10 and structure from motion
(SEM)[11-14],

Behind these exciting achievements, an in-depth ex-
ploration of RS motion models and deep learning tech-
niques is essential. On the one hand, a large number of
RS motion models/t: 15 and the resulting non-linear op-
timization methods/!3 14 have been developed to apply to
different types of camera motions, such as discrete, con-
tinuous, and special motions. On the other hand, the
powerful learning ability of deep learning also empowers
various rolling shutter image processing tasks, such as RS
image correction!6l and RS temporal super-resolutionls.
Unfortunately, to the best of our knowledge, there is no
review to date that systematically investigates the field of
RS. Therefore, this paper presents a comprehensive over-
view of RS cameras for the first time, with a view to pro-
moting the flourishing of this prestigious field.

The remainder of this paper is organized as follows. In
Table 1, we show the abbreviations that appear in the
text. Fig.2 presents a general overview of this paper. The
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Fig.1 Illustration of the imaging mechanism of GS cameras
(top) and RS cameras (below)

geometric modeling and non-linear optimization methods
for RS motion are introduced in Section 2. The typical
applications of the RS model are described in Section 3
according to the taxonomy. In Section 4, we review RS
image processing methods and datasets, especially in the
context of deep learning. Section 5 discusses some future
research interests, and Section 6 draws the conclusions.

2 Geometric modeling and non-linear
optimization of RS motion

In this section, we summarize the commonly used RS
motion models and the corresponding non-linear optimiz-
ation methods. The discrete model is mainly used for
various minimal solver problems (e.g., in relative/abso-
lute pose estimation); the continuous model is more suit-
able for adjacent frame motion modeling; and the special
model can pose better approximations under certain cam-
era motion patterns. Tables 2 and 3 present an overview
classification of RS motion models. See Section 3 for their
practical applications.

2.1 Discrete motion

Modeling. Due to the temporal-dynamic exposure
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Table 1 Abbreviation table

Abbreviation Full name

GS Global shutter

RS Rolling shutter

DoF Degree of freedom

FPS Frames per second

SfM Structure from motion
CCD Charge coupled device
IMU Inertial measurement unit

SLAM Simultaneous localization and

mapping
RSSR. Rollmg shutter temporal super-
resolution
CMOS Con.lplementary metal oxide
semiconductor
SLERP Special linear interpolation
RANSAC Random sample consensus

characteristics of the RS camera, each of its scanlines
usually possesses a different projection center, i.e., a
series of latent local frames, as shown in Fig.3. Suppose
that the local poses of each scanline of a general RS cam-
era trace out a smooth trajectory in the SE(3) space. In
the case of discrete motion, Meingast et al.l'5] proposed a
seminal geometric motion model in the context of an RS
camera, called uniform RS model. With this RS modeling,
the smoothly moving camera rotates at a constant angu-
lar velocity and translates at a constant linear velocity at
the same time. All the projection centers will form a spir-
al 3D trajectoryl2 17,

As illustrated in Fig.4(a), we utilize v € R® to ex-
press the constant linear velocity and w € R® for the con-
stant angular velocity. Note that they describe the inter-
scanline translation and rotation displacements, respect-
ively. Note also that here we leverage the axis-angle rep-
resentation of w, i.e., w = wn, which can also be repres-
ented by spherical linear interpolation (SLERP) in [19,
21, 37] (see Section 2.3 for more instructions). In addi-
tion, we assume that the first scanline of the RS image
has 6 DoF absolute poses Rg € SO(3) and to € R? in the
world coordinate system. Formally, the absolute camera
poses Py = [Rs,ts] of the s-th scanline will satisfy

Rolling shutter camera

Section 2 Section 3 Section 4
Geometric model/optimization |:> Typical application of models |:> Deep learning era
! i } ! } ! ! }
Discrete Continue Specific Relative Absolute 3D RS image RS temporal Datasets
motion motion motion pose pose reconstruction correction  super-resolution

Fig. 2 Overall architecture of this survey. We summarize work in rolling shutter cameras from two aspects of motion modeling and

deep learning.
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Table2 Comparison of the uniform RS model as well as its variants(!7l. Linear and orbital motions correspond to the
pure translation and pure rotation motions in Table 3, respectively.

Motion Pose P; Application examples

Linear I, sv] Vehicles traveling in a straight linel17. 18]

Orbital I + slw]x, v] Video clip taken by hand-held devices![!9: 20]

Spiral I + s[w]x, sv] General RS cameras with smooth motion[3: 4

Linear I + s[w]x, —s(I + s[w]x)v] 3D-2D projection geometry based on continuous video sequences!!2: 21]

Table 3 Taxonomy of various well-known RS models and their typical applications

RS model Motion type Typical application Author Venue Year Cameratype
Uniform modeling Full motion Relative pose Meingast et al.[!5] Arxiv 2005 Monocular
Dai et al.l2] CVPR 2016 Monocular
Zhuang et al.l6] CVPR 2019 Monocular
Lao and Ait-Aiderl4] TPAMI 2020 Monocular
Wang et al.[22] ICIP 2020 Stereo
Absolute pose Ait-Aider et al.[23] ECCV 2006 Monocular
Ait-Aider and Berry[24 ICCV 2009 Stereo
Magerand et al.[21] CVPR 2012 Monocular
Hedborg et al.[14] CVPR 2012 Monocular
Albl et al.l3] CVPR 2015 Monocular
Albl et al.[23] CVPR 2016 Monocular
Albl et al.[20] ECCV 2016 Monocular
Kukelova et al.[27] ACCV 2018 Monocular
Albl et al.[28] TPAMI 2019 Monocular
Kukelova et al.[29] ECCV 2020 Monocular
Albl et al.[30] CVPR 2020 Stereo
Wang et al.[31] RAL 2021 Stereo
Pure translation Relative pose Dai et al.l2] CVPR 2016 Monocular
Lao and Ait-Aiderl4] TPAMI 2020 Monocular
Absolute pose Saurer et al.[17] ICCV 2013 Stereo
Saurer et al.[18] IROS 2015 Monocular
Albl et al.[30] CVPR 2020 Stereo
Pure rotation Relative pose Forssén and Ringaby![19] CVPR 2010 Monocular
Ringaby and Forssénl32l 1JCV 2012 Monocular
Rengarajan et al.[20] CVPR 2016 Monocular
Ito and Okatanil33] CVPR 2017 Monocular
Lao and Ait-Aider[34 CVPR 2018 Monocular
Purkait and Zach/[3] WACV 2018 Monocular
Lee et al.[36] Arxiv 2019 Monocular
Absolute pose Hedborg et al.[37] ICCV 2011 Monocular
Albl et al.[30] CVPR 2020 Stereo
Continue modeling Full motion Relative pose Zhuang et al.[l1] ICCV 2017 Monocular
Zhuang and Tran/38] ECCV 2020 Monocular
Absolute pose Im et al.[39] ICCV 2015 Monocular
Im et al.[13] TPAMI 2018 Monocular
Fan et al.[40] CVIU 2021 Stereo
Fan et al.[4!] IvVC 2022 Stereo
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Fig. 3 Illustration of different projection centers of different RS
scanlines. For any pair of correspondences (indicated by “ x™),
the co-planarity constraint still holds [2].

R, = (I +sin (sw) [n]x + (1 — cos (sw)) [n]i) Ry
t; =to + sv (1)

where [-]x denotes the skew-symmetric matrix associated
with a 3 x 1 vector. Since the camera typically has a
rapid scanning time, it is reasonable to make the
assumption that the inter-scanline rotation displacement
is sufficiently small. Using the small-rotation approxim-
ation, the uniform RS model can be obtained by rewriting
(1) as

R, = (I + s[w]x) Ro
t, = to + sv. (2)

Optimization. Given N pairs of 3D-2D correspond-
ences, including the 3D point coordinate X; € R® and the
corresponding 2D image coordinate x; = (u;,v;) € R2, we
can obtain the absolute pose of x; according to (2) as fol-
lows: P,, = [Ru,,ty;]. Note that X; is defined in the
world coordinate system, which is usually relative to the
first scanline of the first frame when processing video im-
ages. Consequently, the RS-aware reprojection error can
be derived as

N
o', W' =argminy  |lz; — 7 (X, Pu)ll3 3)

i=1

where 7(-):P® = P? denotes the projection function,

. . -
e First scanlines

(a) Discrete motion
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defined as

W(Xi?Pui) = <K (RuiXi + t“i))
(@9 2)") = @)z /)" )

Here, K is the intrinsic matrix whose calibration is
easy to implement, e.g., by applying any standard cam-
era calibration procedure to a still scene image captured
by a stationary RS camera.

Note that, in (3) we only show the optimization for
RS camera motion parameterized by (v,w). In rolling
shutter bundle adjustment (BA)[12-14, 26, 42] it is often ne-
cessary to alternatively optimize 3D point coordinates X;
and camera motion (v,w), similar to the traditional glob-
al shutter BA[3]. At this point, (3) will become a stand-
ard RS BA problem.

For a moving RS camera, according to (2), each scan-
line is exposed at a different place in space along the mo-
tion trajectory. However, the camera pose is essentially
determined by the RS scanline, so the image measure-
ment noise will affect the RS BA due to the coupling
between the camera pose and the projected scanline. To
solve the non-convex objective (in (3)) more efficiently,
most RS BA methods (e.g., [14, 26, 42]) usually ignore
the influence of measurement uncertainty on the reprojec-
tion function, which may sacrifice the accuracy of RS BA.
One way to deal with the measurement noise is error
standardisation®4, i.e., by introducing an inverse covari-
ance matrix to provide more confidence for low-variance
image measurements. Towards this goal, an acceleration
strategy for RS BA is proposed recently in [45], based on
the sparsity structure of the Jacobian matrix and Schur
complement. Moreover, constructing more accurate cor-
respondences can also alleviate this issue to some extent,
for example by filtering outliers through bidirectional
consistency check(!3; 46,

2.2 Continuous motion
Modeling. Under the continuous camera motion, as

depicted in Fig.4(b), the inter-frame and intra-frame mo-
tion smoothness during image acquisition needs to be ex-

Intey oot
ejpofatjon\"-$

== Other scanlines

(b) Continuous motion

Fig. 4 Illustration of RS motion parameterization, including discrete and continuous camera motions
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ploited to account for the scanline-varying camera poses.
Specifically, one first assumes that there is a relatively
small inter-frame camera velocity (v,w) between the first
two scanlines of two consecutive RS frames (other refer-
ence scanlines can be selected without loss of generality).
Then, the intra-frame camera motions of all other scan-
lines can be obtained by interpolation. Formally, the ab-
solute camera position and rotation (pj',r;') (resp.
(p32,752)) of the si-th (respectively, so-th) scanline in
frame 1 (respectively, frame 2), w.r.t. the first scanline of
frame 1 can be expressed as

S1 __ S1 S1 __ S1
P =My, it =Atw

Py’ = \u, = Nw (5)

where AJ! and A\}? denote the corresponding interpolation
factors. Therefore, the relative motion between the si-th
and so-th scanlines obeys the full-motion differential
formulation, i.e.,

Vorsp = P37 — P = (A — AT w
Wsysy =152 — 1t = (A2 — A w. (6)
To efficiently model the above interpolation factor,

Zhuang et al.[lll proposed a linear interpolation under the
assumption of constant velocity motion, i.e.,

o _ 081
=28
A;’-’:1+L;2. (7)

Here 7 is the readout time ratio, which indicates the
ratio between the total readout time and the total frame
time (including inter-frame idle time) and can be calib-
rated by [15, 44]. h is the total scanline number in an RS
image. In particular, with this RS modeling, the scanline-
varying camera poses can be recovered through a simple
linear scaling operation. Further and more generally, un-
der the constant acceleration motion assumption, a quad-
ratic interpolation was also proposed by Zhuang et al.[ll],
ie.,

s 2 vs1 k /vs1\2
1 L — | =—=
M _k+2<h +2(h))

s 2 vs2  k Y82\ 2
2 __ P — L=
)\2_k+2<1+h+2(1+h)> ()

where k denotes the acceleration factor and is in the same
direction as the camera velocity, i.e., k>0 for
acceleration and k£ < 0 for deceleration. Note that & needs
to be estimated additionally when used. Note that it is
easy to verify that (8) will reduce to (7) when the
acceleration factor vanishes, i.e., k = 0.

Optimization. Given N normalized image points
x; = (zi,y:), (i=1,---,N) in scanline s¢ of frame 1, it

corresponds to a forward optical flow of f* = (fi, fi) and
corresponds to a 3D point of depth Z;. Assume that the
scanline where the match point of x; in frame 2 is sé.
Therefore, the vertical optical flow has fi=sb—si
Based on (6), we note that 3; = )\35 - X;i. Hence, accord-
ing to the differential formulation4”. 48] the RS-aware dif-
ferential reprojection error can be developed as

al Av 2
v, W= argminz fi— B <7ZZ + Biw)
vw T i

9)

2

where
[ *f 0 Z;
A; =
U ]
| (+y)

with f being the camera focal length. More details about
RS-aware differential formulation can be found in [11, 40].

2.3 Special motion

In addition to the above-mentioned uniform and dif-
ferential models for approximating discrete and continu-
ous camera motions, respectively, their simplified ver-
sions can often reduce the minimum number of corres-
pondences and the algorithm complexity to compute RS-
aware geometry for some specific types of camera mo-
tions. For instance, if a car travels along a straight line,
the projected center of each scanline will lie on a straight
line in 3D space. Therefore, we can naturally ignore the
angular velocity w, i.e., w = 0. At this point, the camera
movement becomes a pure translation that is defined only
by a constant linear velocity v. That is, (2) can be simpli-
fied as P, = [Ro,to + sv], i.e., a linear trajectory is
formed. Moreover, except for some wide-angle images, in-
plane rotation can be neglected to perform RS
correction and RS deblurring®%. More details on other
variants (e.g., orbital motion, linear motion) are provided
in Table 2.

On the other hand, other types of motion representa-
tions have also received extensive attention. First,
without relying on standard kinematic models, the cam-
era trajectory is fitted using a polynomial, e.g., [20, 50, 51].
Afterward, B-splines led to a well-known representation
of continuous trajectories in 3D space with better curve-
fitting performance. Therefore, many worksl% 44 52-59]
heavily exploit B-spline modeling and parameterize the
camera trajectories in terms of 3D knots. As a final note,
while the rotation of the camera has predominantly been
studied in the case of axis-angles (a.k.a. rotation vectors),
more complex representations of rotation are also often
explored as follows.
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SLERP-based model

It is a linear interpolation on the quaternion sphere,
which is used in [14, 19, 37]. It interpolates between two
quaternion rotation representations qo and i, namely,

( f = sin(2 —tQ2) sintQ
qo;q1,t) = qo sin Q q1 s

where (2 = arccos (qg ql). It uses a constant angular
velocity in practice and poses a good property (for exam-
ple, a camera mounted on a rotating platform, which is
turning with constant angular velocity). Nevertheless, the
presence of sine and cosine yields higher-order variables
in the linear polynomial solver3l, resulting in a relatively
large computational complexity.

Cayley transform model

For any n = (a,b,c) € R3 the rotation matrix R(n)
can be represented as

14+a®—0b2—-¢2 2ab — 2c 2b + 2ac
I 2¢ + 2ab 1—a?+b2—-¢2 2bc — 2a
2ac — 2b 2a + 2bc 1—a?2—b2+¢?

where L =1+ a? +b% + ¢2, which is used to normalize
the rotation matrix so that it corresponds to the
quaternion of 1+ ai + bj + ck. It is used for the rotation
parameterization of the RS absolute pose probleml[28],
Since m can also be seen as the axis of rotation scaled by
tan(0/2), with 6 being the rotation angle, thus the Cayley
parameterization is not able to represent the 180-degree
camera rotation, resulting in a singular case. More details
on interpolation methods for rotations can be found in
[60].

3 Geometric problems with RS models

We provide an overview of the applications of the
aforementioned geometric RS model from three perspect-
ives: relative pose estimation, absolute pose estimation,
and 3D reconstruction. Some representative examples are
given in Table 3.

3.1 Relative pose estimation

Relative pose estimation is usually based on a certain
number of matched 2D image points and can be used as a
subroutine for various computer vision applications, such
as visual odometryl61, 62 and SLAMI63, 64],

Dai et al.l proposed a generalized RS epipolar con-
straint for discrete two frames, where 20-pt and 44-pt lin-
ear solutions were derived based on the pure translation-
al and uniform models, respectively. Utilizing the consist-
ency of continuous motion between and within frames,
Zhuang et al.lll presented the 8-pt and 9-pt linear solv-
ers based on constant velocity and constant acceleration
motion assumptions (see Section 2.2) across two consecut-

@ Springer
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ive images, respectively. Fan et al.40 further extended
them to standard RS stereo cameras and proposed an RS-
stereo-aware differential epipolar constraint. Wang
et al.22l proposed a linear solution for the standard RS
stereo camera using the RS uniform model, requiring only
nine correspondences for each of the left and right im-
ages. More recently, Lao and Ait-Aiderl¥ derived an RS-
homography matrix to transform two discrete RS images,
while Zhuang and TranB8 proposed a differential RS-ho-
mography matrix to compensate for the camera ego-mo-
tion between two consecutive frames. Lee et al.[36] pro-
posed a minimal 5-pt solution between two discrete
frames with the help of the angular velocity obtained
from the gyroscope. Furthermore, simplified motion as-
sumptions detailed in Section 2.3 were considered in
[19, 20, 32, 34].

3.2 Absolute pose estimation

In addition to some methods based on known GS tem-
plates(® 54 65 there is a body of work dedicated specially
to the design of linear solvers (e.g., minimal solvers). This
is called the RS perspective-n-point (RnP) problem, i.e.,
estimating the position and orientation of the RS camera
based on a certain number of correspondences between
3D scene points and 2D image points.

Ait-Aider et al.23] presented a closed-form solution
based on 8.5-pt by assuming a planar scene. An exten-
sion to line correspondences was given in [66]. Magerand
et al.l2ll developed a globally optimal solution by con-
structing and minimizing polynomial equations with the
Gloptipoly solver, while better results were obtained by
at least 7 correspondences compared with the 8.5-pt
method. For a forward-moving car, Saurer et al.ll8l pro-
posed a minimal 5-pt method using the pure translation
model, but this simplified model inevitably limits its ap-
plication in most real-world applications4l. Albl et al.l3l
initialized the camera pose using the standard P3P meth-
0dl7 and then utilized the double linearized RS model
and the Grobner basis solver to derive a minimal 6-pt
solution (R6P), which requires only six 3D-2D corres-
pondences. Afterward, Albl et al.28 further solved this
double linearized model using hidden variable techniques,
obtaining a faster and more accurate solution. Meanwhile,
the Cayley parameterization for rotations was studied, re-
moving the reliance on P3P initialization. Later, Albl
et al.?9] fused Inertial measurement unit (IMU) data and
proposed R5P using known gravity directions. To im-
prove the efficiency of R6P, Kukelova et al.l27l devised a
novel alternating iteration strategy, yielding a simpler
and faster linear solver. When the camera focal length
and radial distortion are unknown, Kukelova et al.29 fur-
ther combined this iterative scheme with fast generalized
eigenvalue and Grobner basis techniques to propose a
minimal 7-pt solution.
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3.3 3D reconstruction

Image-based 3D reconstruction is of great importance
in the fields of robot navigation®8], visual perception[69],
and 3D modelingl™. In the following, we summarize the
classic 3D reconstruction methods based on RS video se-
quences or RS stereo images. Note that the RS structure
from motion (RS-SfM) is mainly investigated, which inev-
itably involves absolute pose estimation (from the per-
spective of non-linear optimization).

Using image pairs taken by two stationary RS camer-
as, Ait-Aider and Berry[?Y used non-linear least-squares
to estimate the structure and velocity of rigid moving ob-
jects. Saurer et al.l7l proposed a plane sweeping method
for RS stereo images, which can solve for the exposure
time and the scene depth simultaneously. Subsequently,
Saurer et al.[l2l developed sparse-to-dense 3D reconstruc-
tion for wide-baseline RS images. Hedborg et al.ll4 pion-
eered an RS bundle adjustment method for RS video im-
ages by introducing the SLERP model for rotation inter-
polation. Based on this framework, Im et al.!3] further
linearly interpolated the rotation and developed an RS
plane sweeping technology for accurate 3D reconstruc-
tion. Note that a deep learning version of RS plane
sweeping was proposed by Fan et al.["!l Assuming a pure
rotation motion, the critical motion sequences of RS-SfM
were recast as self-calibration of the imaginary camera in
[33]. Additionally, the degeneracies of RS-SfM in multi-
view reconstruction were pointed out in [26]. Recently,
Albl et al.30 explored an RS stereo rig, e.g., in smart-
phones, with a negligibly small baseline and opposite
scanning direction, to recover the camera pose and scene
geometry. Wang et al.3l proposed an RS stereo depth es-
timation method that uses a coarse-to-fine scheme to al-
ternately update the depth map and refine the camera
motion. Fan et al.[4!l proposed an RS-stereo-aware differ-
ential SfM method, compensating for 3D degradation ef-
fectively by a simple linear scaling operation.

4 RS image processing

RS image processing has been a hot topic for a long
timel5, 11, 16, 38, 72 Not only RS modeling has contributed
to its prosperity, but with the advent of the deep learn-
ing era, convolutional neural networks have gradually
made a big splash in the field of RS image processing,
such as RS image correction, and RS temporal super-res-
olution. In this section, we will provide an overview of
these new paradigms based on deep learning, along with a
summary of relevant public datasets.

4.1 RS image correction
RS image correction aims to remove RS artifacts to

recover the underlying GS image. Fig.5 summarizes its
development according to a timeline. In the following, for

compactness, we first give a brief description of the tradi-
tional RS image correction methods. Then, the focus is on
the deep learning-based RS image correction approaches.

Traditional methods. Early on, pure translation
modell®% 81 and pure rotation modell!?: 32 82 were usually
utilized. A representative work comes from Grundmann
et al.82l, who proposed a homography mixture to achieve
joint RS removal and video stabilization. Geometric in-
formation in the scene, e.g., straightness of linesl29 and
orthogonal vanishing directionsB® in a Manhattan world
has been employed. Lao and Ait-Aider34 improved over
[20, 35] by fitting at least four image curves in a random
sample consensus (RANSAC) scheme. The pure rotation
model was also used in [20, 34]. Furthermore, some works
are dedicated to simultaneously removing RS distortion
and handling other image processing/computer vision
tasks, such as super-resolution8!: 83, motion deblurr-
ingl50, 84 differential SfMI!1, image stitching(38l, and video
stabilizationl™. Very recently, Vasu et al.[™3l proposed a
multi-layer 3D scene model for occlusion-aware correc-
tion from a set of RS images. Bai et al.’4 and Lao and
Ait-Aider developed a scanline-homography and an RS-
homography to remove RS effects, respectively. Recent
studies have also demonstrated that a distortion-free GS
image can be produced from an RS stereo rig with differ-
ent RS directionsP? or from a generalized/standard RS
stereo camerali0; 41],

Deep learning methods. Recently, the success of
deep learning in high-level vision tasks has been gradu-
ally extended to the RS image correction task, where a
deep neural network is trained end-to-end to warp the RS
image to its perspective GS counterpart. This essentially
becomes an image-to-image translation problem. Typic-
ally, these networks consist of two main components: a
pixel-wise motion estimation module and a GS frame syn-
thesis module, as illustrated in Fig.6. The pixel-wise mo-
tion estimation module is dedicated to estimating the
pixel-wise motion field, which is then used to warp the
appearance information of adjacent frames to the target
GS instance; the GS frame synthesis module aims to ag-
gregate the context information from coarse to fine and
eventually decode the desired GS frame.

For single-frame RS image correction, Rengarajan
et al.[49 proposed the first convolutional neural network
to mitigate RS artifacts by assuming a simple affine mod-
el with only 2 DoF: one is an in-plane rotation, and the
other is a horizontal translation. On this basis, the RS re-
generation scheme was exploited in [76]. Zhuang et al.l%]
extended [49] to learn the underlying scene structure and
camera motion from a single RS image, followed by a
post-processing step to generate a geometrically consist-
ent image. Mo et al.l’7 predicted the camera pose of the
anchor scanline and then used a cubic spline to approx-
imate the arbitrary-scanline camera pose, avoiding the re-
liance on a specific motion model.

Given two-frame RS images as input, Liu et al.["? pro-
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Fig. 6 Common framework for deep learning-based RS image correction methods

posed a deep shutter unrolling network (i.e., DeepUnroll-
Net) to recover the desired GS image from two consecut-
ive RS images. Despite the promising performance, Dee-
pUnrollNet solely uses the warped feature map corres-
ponding to the second RS image when decoding the tar-
get GS frame, which tends to lead to content missing in
the unseen regions of the recovered GS image. Very re-
cently, to overcome this drawback, Fan et al.['l designed
a symmetric undistortion architecture by exploiting the
temporal symmetry between two consecutive frames,
where the contextual information is efficiently aggreg-
ated in a coarse-to-fine manner. Subsequently, the spatio-
temporal consistency was essentially formulated by Fan
et al.[5>: 77, 78] to design a cascaded framework for simultan-
eous RS correction and temporal super-resolution.

With multi-frame RS images as input, Zhong et al.["]
implemented joint RS correction and image deblurring
using three consecutive frames of the input, where a de-
formation attention module is designed to self-adaptively
fuse deblurring and correction cues. Afterward, Zhong et
al.ll' developed an end-to-end network for dual RS im-
ages with reversed RS directions, which is beneficial to re-
move the dependence of continuous RS frame input on
the readout time ratio. Very recently, Cao et all™
presented an RS image correction method with adaptive
warping to remove RS artifacts in real scenarios, where
multiple displacement fields were estimated from three
consecutive RS images for coarse-to-fine refinement.

Tables 4 and 5 uniformly summarize the quantitative
performance of the classic methods for RS effect removal.
The evaluation is conducted as follows: the Carla-RS

@ Springer

datasetl’™ with occlusion mask (CRM), the Carla-RS
dataset without occlusion mask (CR), and the Fastec-RS
dataset (FR)[™l. The average peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM), and learned
perceptual image patch similarity (LPIPS)®7 are adop-
ted for evaluation. A higher PSNR/SSIM or lower LPIPS
score indicates better performance. We also report com-
parative results with the two-stage approaches. The two-
stage methods indicate that the RS image correction
methods (e.g., DeepUnrollNet["2, SUNet[6l) are per-
formed first and then the video frame interpolation meth-
ods (e.g., BMBCBS DAIN[BS) are adopted to generate
the intermediate distortion-free frames. However, due to
error accumulation, the two-stage methods tend to have
blurring artifacts and local errors, as demonstrated in
[5, 77, 78].

4.2 RS temporal super-resolution

A rolling shutter image may be viewed as a row-wise
combination of a sequence of global shutter images cap-
tured by a (virtual) moving global shutter camera within
the exposure duration. By exploiting the hidden-and-pre-
viously overlooked temporal-dynamic information, one
could possibly invert the RS imaging mechanism to bring
RS images alive. For example, a smooth high framerate
GS video can be generated from two consecutive RS
frames (figuratively, producing 1440 GS video frames
from two 720-height RS images), which is termed RS
temporal super-resolution (RSSR), as shown in Fig.7. In
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Table 4 Quantitative comparisons on recovering GS images corresponding to the first scanline of the second RS frame (i.e., the
exposure time t = 0.5). The four blocks from top to bottom are the traditional and learning-based RS correction methods, the
two-stage method, and the RSSR method. We use gray backgrounds to mark the methods that can only produce one GS
image at a specific exposure time (i.e., the RS image correction method). The average runtime for recovering a 640 x 480
GS image and the number of model parameters for each method are also reported. The runtime of the
learning-based method is tested on an NVIDIA RTX 2 080 GPU.

PSNR 7 (dB) SSIM LPIPS |

Methods Runtime (Second) Params (Million)
CRM CR FR CR FR CR FR
DiffSfm1] 467.3 - 24.20 21.28 20.14 0.775 0.701 0.1322 0.1789
DeepUnrollNet[72l 0.343 3.91 26.90 26.46 26.52 0.807 0.792 0.0703 0.1222
SUNet!16] 0.212 12.0 29.28 29.18 28.34 0.850 0.837 0.0658 0.1205
DeepUnrollNet(72 + BMBC(#5] 2.250 14.9 27.29 27.58 24.95 0.829 0.787 0.0980 0.2024
DeepUnrollNet([72] + DAINI86] 0.657 27.9 27.48 27.88 26.19 0.874 0.807 0.0821 0.1453
RSSRI 0.124 26.0 30.17 24.78 21.23 0.867 0.776 0.0695 0.1659
CVRI™ 0.141 42.6 32.02 31.74 28.72 0.929 0.847 0.0368 0.1107

Table 5 Quantitative comparisons on recovering GS images corres-

ponding to the middle scanline of the second RS frame (i.e., the ex-
posure time ¢t = 1.0). The experiments are carried out on the Fas-
tec-RS dataset™]. The three blocks from top to bottom are the
learning-based RS correction methods, the two-stage method,

and the RSSR method.

Method PSNR 1 (dB) SSIM +
DeepUnrollNet(72] 27.02 0.828
SUNetl[16] 27.06 0.825
JCDI™] 26.48 0.821
AWNet[™] 28.56 0.855
SUNet[16l + BMBCI®3] 25.49 0.796
SUNetl16l + DAINI86] 27.12 0.823
RSSRDI 24.89 0.824
CVRI™ 26.67 0.838

particular, for two rolling shutter frames Iy and I7 at ad-
jacent times 0 and 1, the goal is to synthesize an interme-
diate GS frame I7, t € [0, 1].

As a joint interpolation and correction task, it is ex-
tremely challenging. One needs not only to eliminate geo-
metric RS distortion but also to generate a set of high
framerate GS images in chronological order. Meanwhile,
it opens up opportunities for many practical applications
such as computational photography, visual tracking,
scene understanding, video editing and compression. Re-
tracing the developments in recent years, flow-based deep
learning solutions have received attention, as illustrated
in Fig.8. Note that the RS undistortion flow, including
forward warping based U, 4 from the RS image to the
GS image and backward warping based U,—,, from the
GS image to the RS image, is defined and leveraged in
these works. Fig.9 shows the scanline-dependent proper-
ties of RS undistortion flows.

We report the quantitative results of GS video restor-
ation for time steps ¢ = 0.5 and ¢ = 1.0 in Tables 4 and 5,

respectively. Note that although [16, 72] can also recover
GS images corresponding to different time steps, this re-
quires training separate models based on the available su-
pervised signals. Namely, they are far from the ability to
generate smooth GS videos.

Fan and Dail5l proposed the first learning-based RSSR
solution for latent GS video extraction from two consec-
utive RS images. Under the assumption of a constant ve-
locity of camera motion and a static scene, they demon-
strated that interconversion between RS undistortion
flows and regular optical flows, as well as between differ-
ent RS undistortion flows corresponding to different tar-
get-scanlines, can be performed by scaling operations.
Specifically, to transform each RS pixel x exposed at time
Ti, © € {0,1} indicating the image index, to the GS can-
vas at time ¢ € [0, 1], the forward warping based RS un-
distortion flow can be defined as

Uo—i(x) = Cost(x) © Fos1(x)
Ul—»t(w) = Cl—)t(m) O] Fl—)O(m) (11)

which can be used directly to forward warp the RS image
to the destination GS image. Here, © indicates an
element-wise multiplier, and

(t —70)(h = y7)

Cot (w) = A
cHdmzﬁliﬁ%ilﬂl (12)

denote the correction maps. h represents the number of
image scanlines. 7, and 7, encapsulate the underlying RS
geometryll, which can be implicitly modeled by an
encoder-decoder network (see Fig.8(a)). Moreover, the
conversion scheme between varying RS undistortion flows

at times t; and t2 can be obtained as

to — T
Ui—)tz (:1:) = t? —

X Uiy, (), i=0,1. (13)

@ Springer



792

Machine Intelligence Research 20(6), December 2023

Rolling shutter imaging mechanism

RS temporal
super-resolution

Fig. 7 Illustration of the RS temporal super-resolution task. This figure is from [5]. The RS image can be interpreted as the result of
sequentially picking a row of pixels from the latent GS video frames during the exposure of the RS camera. By reversing the progressive
imaging mechanism of the RS camera, RS temporal super-resolution can recover a smooth and coherent GS video sequence, making

rolling shutter images vivid.

I U, I;
(@) — —

I U,

Optical flow Undistortion flow  Frame synthesis
estimation estimation

I; U_, I
b) — — —

I U,

1—1

Undistortion flow
estimation

Frame synthesis

Fig. 8 Different flow-based RSSR paradigms. We roughly
classify existing flow-based RSSR methods based on encoder-
decoders with specific functions. In (a)l® 77 78] the optical flow
network estimates regular optical flows Fy_,1, F1_,0, the middle
part generates RS undistortion flows Ug_,+, U1+ via (11). Note
that [5, 78] requires a specialized deep network (i.e., (12)), while
[77] does not (i.e., (14)). In (b)[7), the backward warping-based
RS undistortion flows U;_s0, Ut—1 are directly estimated by the
network. A frame synthesis network is concatenated at the end
of (a) and (b) for target GS image generation.

It is worth mentioning that the interconversion
scheme under the constant acceleration motion assump-
tion is extended in [78] and is not introduced here. Sub-
sequently, Fan et al.l’”) went further and proposed an ap-
proximate version of (12) by neglecting the parallax ef-
fects, i.e.,

CO—>t(w) =t—"70
Cl_m(a!) =71 — t (14)

which are independent of image content and do not need
to rely on specific neural networks. Meanwhile, a
synthetic network is added at the end to aggregate
contextual complementary information and improve
robustness to occlusion and partially moving objects.
Concurrently, as shown in Fig.8(b), Zhong et al.l?
proposed directly learning the RS undistortion flow for
backward warping, and then an encoder-decoder network
was exploited to learn a synthetic mask for inferring the
underlying GS image sequence. Note that instead of two
consecutive RS frames as in [5, 77], Zhong et al.lll
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(b) RS undistortion flow
(first scanline)

(¢) RS undistortion flow
(middle scanline)

(d) RS undistortion flow
(last scanline)

Fig. 9 Regular optical flow VS. RS undistortion flow. This
figure is from [5], where the color indicates the direction of the
flow, and the brightness indicates the magnitude of the flow.
Unlike the isotropic smooth optical flow map, the RS
undistorted flow map exhibits a more pronounced scanline
dependence. The distribution of the magnitude and direction of
the RS undistortion flow is related to the target scanline.

explored a pair of images captured by dual RS cameras
with reversed RS directions. The setup is the same as in
[30].

4.3 Public RS-based datasets

We classify publicly available RS-based datasets into
three categories: RS correction datasets (which can be
used for end-to-end training), cross-validation datasets
(which can be used for performance evaluation), and
datasets containing other degradations or data types
(e.g., with motion blur, event/IMU data that can be used
for multi-task processing).

4.3.1 RS correction datasets

Carla-RS.[™ It is generated from a virtual 3D envir-
onment using the Carla simulator®l, involving general 6-
DoF camera motions. There are a training set of 210 se-
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quences and a test set of 40 sequences, and each se-
quence consists of 10 consecutive frames. A total of 2 500
RS images with a resolution of 640 x 448 pixels are in-
cluded.

Fastec-RS.[" Tt uses a high-speed GS camera moun-
ted on the ground vehicle to collect high-FPS GS video
sequences at 2 400 Hz. Then, the RS image is synthesized
by extracting pixels from consecutive GS images row-by-
row and merging them. The training set has 56 se-
quences and the test set has 20 sequences, each of which
contains 34 consecutive frames. There are 2584 RS im-
age pairs with a resolution of 640 x 480 pixels.

BS-RSC.[M It is a realistic benchmark dataset, col-
lected by a well-designed beam-splitter acquisition sys-
tem in a dynamic urban environment. There are 50, 16,
and 15 sequences for training (2 500 image pairs), valida-
tion (800 image pairs), and testing (750 image pairs), re-
spectively. The image resolution is 1 024 x 768 pixels.
4.3.2 Cross-validation datasets

Rolling shutter rectification dataset.!l!9 It has a
small data scale with 6 evaluation sequences. Each se-
quence has 12 sets of data, each consisting of one RS
frame and three ground truth GS frames. The camera
motion contains pure rotation, pure translation, and
varying readout time ratios (1.00, 0.96 and 0.92). Addi-
tionally, an RS video taken by an iPhone 3GS camera
during fast motion is included. The image resolution is
640 x 480 pixels. This dataset can be used to evaluate the
RS correction algorithm.

Rolling shutter bundle adjustment odometry
dataset.2l4 36 video sequences are captured by an
iPhone 4 camera at 1280 x 720 resolution. The frame rate
is 30Hz with a readout time of 32.37 microseconds.
However, there is no corresponding accurate GS ground
truth, so it can exclusively be used for qualitative assess-
ment[1,

4.3.3 Datasets with other degradations or data types

BS-RSCD.[" As a real dataset with ego-motion and
object-motion, it is collected using a well-designed beam-
splitter acquisition system. It can be used for simultan-
eous RS effect removal and deblurring tasks. The camera
frame rate is 15Hz. There are 50 sequences for training,
15 sequences for validation, and 15 sequences for testing.
Each sequence has 50 video frames, i.e., 4 000 image pairs
are recorded in total. The image resolution is 640 x 480
pixels.

RSGR-GS.B Tt is acquired using a well-designed
beam-splitter acquisition system in real-world scenarios.
Note that the RS camera employs a global reset mode for
exposure. It contains 79 video sequences (27 for training,
3 for validation, and 49 for testing) with a resolution of
640 x 640 pixels.

Gev-RS.[% This dataset records high-FPS GS video
using a high-speed GS camera with a framerate of

L https://www.cvl.isy.liu.se/research/datasets/rs-dataset

2 https://www.cvl.isy.liu.se/research/datasets/rsba-dataset

5700Hz. Then, RS frames are synthesized similar to the
Fastec-RS dataset and the corresponding event streams
are simulated using V2EP. Finally, 3 700 “GS-event-RS”
triplets containing 29 sequences are generated. The im-
age resolution is 640 x 360 pixels.

TUM-RSVLI0 As a rolling shutter visual-inertial
odometry dataset3, 10 sequences are collected by a multi-
sensor setup, where time-synchronized RS and GS im-
ages (20Hz), IMU data (200Hz) and ground truth 6-DoF
poses (120Hz) are contained. The image resolution is
1280 x 1 024 pixels. This dataset can be used for visual
odometry, SLAM, etc.

5 Challenges and new trends

Despite the success of deep learning in RS correction
and RS temporal super-resolution tasks, there are vari-
ous open research questions regarding the network model
design as discussed below:

1) Lighter and more efficient models. Existing net-
work architectures stack a large number of 2D convolu-
tional modules to essentially achieve image-to-image
translation, and thus are not yet capable of real-time GS
image recovery (cf. Table 4), especially on low-power mo-
bile devices. In addition, limited by the low resolution of
the current training dataset, it will be a challenge to
design lighter network models for high-resolution images
(e.g., 4K video). As a result, designing more efficient net-
work models to accelerate the inference will be crucial for
real-time computer vision applications, such as visual
SLAMI9, 92, 93]

2) Improve the generalization ability of the model.
Since the RS image in the current dataset has a fixed
readout time ratio, this may lead to poor generalization
of the trained model to third-party RS cameras with sig-
nificantly different readout time ratios. A straightfor-
ward approach is to enhance the diversity of the training
data. However, there is little research on this topic and
further research is needed.

3) Implement RS image correction together with oth-
er data/tasks. Currently, the performance of RS image
correction is improved by combining it with event
datal®l, global reset8%, deblurringl™!, etc. A future trend
of data-driven models will be to associate other data
types (e.g., IMUD depth camerall, etc.) or other low-
level image processing tasks (e.g., spatial super-resolution,
spatio-temporal super-resolution, image denoising, radial
distortion removal, etc.).

4) Generate more realistic and multi-instant training
datasets. Training learning-based RS temporal super-res-
olution methods demands a significant number of RS and
GS image pairs. The current datasets either use a beam-
splitter acquisition system to obtain ground truth GS im-
ages of real scenes, e.g., [75, 79], or simulate RS images
by stitching row-by-row with high framerate GS videos,

3 https://vision.in.tum.de/data/datasets/rolling-shutter-dataset
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e.g., [7, 72]. However, the former only can capture one GS
image corresponding to a single instant, which is severely
insufficient for the RS temporal super-resolution task; the
latter tends to produce striping artifacts as discussed in
[75, 79], making the synthesized RS image insufficient to
represent the real environment. To unleash the potential
of deep learning methods, it is necessary to generate
large-scale realistic RS training datasets with more expos-
ure instants, more diverse scenes, and more dynamic ob-
jects.

6 Conclusions

This paper has provided a comprehensive survey of
RS cameras. The geometric modeling and nonlinear op-
timization of RS motion have been provided mathematic-
ally, based on which three typical geometric applications
have been pointed out to recover more accurate multi-
view geometry. The taxonomy is carried out by consider-
ing RS model types and application types, where existing
related work is further classified and presented. Further-
more, advances in deep learning techniques for RS image
correction and RS temporal super-resolution are compre-
hensively summarized. This systematic taxonomy allows
a better understanding of the principles and characterist-
ics of RS models and provides a comprehensive guide for
beginners to use RS cameras more efficiently. Finally,
based on a review of the existing work, possible direc-
tions and open problems for RS cameras have also been
discussed, with the aim of providing insight into the on-
going development of RS-related research. We hope that
this survey will help systematize the existing work and
spark a new wave of research in this long-standing field.

Acknowledgements

This work was supported in part by National Natural
Science Foundation of China (Nos.62271410, 61901387
and 62001394), the Fundamental Research Funds for the
Central Universities, China, and the Innovation Founda-
tion for Doctor Dissertation of Northwestern Polytechnic-
al University, China (No.(CX2022046).

Declarations of conflict of interest

The authors declared that they have no conflicts of in-
terest to this work.

References

[1] R. Hartley, A. Zisserman. Multiple View Geometry in
Computer Vision, 2nd ed., Cambridge, UK: Cambridge
University Press, 2003.

[2] Y.C.Dai, H. D. Li, L. Kneip. Rolling shutter camera relat-
ive pose: Generalized epipolar geometry. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recog-
nition, Las Vegas, USA, pp.4132-4140, 2016. DOI: 10.
1109/CVPR.2016.448.

@ Springer

3]

[10]

(12]

13]

[14]

[15]

Machine Intelligence Research 20(6), December 2023

C. Albl, Z. Kukelova, T. Pajdla. R6P-rolling shutter abso-
lute pose problem. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, Boston, USA,
pp-2292-2300, 2015. DOI: 10.1109/CVPR.2015.7298842.

Y. Z. Lao, O. Ait-Aider. Rolling shutter homography and
its applications. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol.43, no.8, pp.2780-2793,
2021. DOI: 10.1109/TPAMI.2020.2977644.

B. Fan, Y. C. Dai. Inverting a rolling shutter camera:
Bring rolling shutter images to high framerate global shut-
ter video. In Proceedings of IEEE/CVF International Con-
ference on Computer Vision, IEEE, Montreal, Canada,
pp-4208-4217, 2021. DOI: 10.1109/ICCV48922.2021.
00419.

B. B. Zhuang, Q. H. Tran, P. Ji, L. F. Cheong, M.
Chandraker. Learning structure-and-motion-aware rolling
shutter correction. In Proceedings of IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, IEEE,
Long Beach, USA, pp.4546-4555, 2019. DOI: 10.1109/CV-
PR.2019.00468.

Z. H. Zhong, M. D. Cao, X. Sun, Z. R. Wu, Z. Y. Zhou, Y.
Q. Zheng, S. Lin, I. Sato. Bringing rolling shutter images
alive with dual reversed distortion. In Proceedings of the
17th European Conference on Computer Vision, Springer,
Tel Aviv, Israel, pp.233-249, 2022. DOI: 10.1007/978-3-
031-20071-7_14.

Y. Z. Lao, O. Ait-Aider, A. Bartoli. Solving rolling shutter
3D vision problems using analogies with non-rigidity. In-
ternational Journal of Computer Vision, vol.129, no.1,
pp-100-122, 2021. DOI: 10.1007/s11263-020-01368-1.

J. H. Kim, C. Cadena, I. Reid. Direct semi-dense SLAM
for rolling shutter cameras. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation, Stock-
holm, Sweden, pp.1308-1315, 2016. DOI: 10.1109/ICRA.
2016.7487263.

D. Schubert, N. Demmel, L. von Stumberg, V. Usenko, D.
Cremers. Rolling-shutter modelling for direct visual-iner-
tial odometry. In Proceedings of IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, Ma-
cau, China, pp.2462-2469, 2019. DOI: 10.1109/
TR0OS40897.2019.8968539.

B. B. Zhuang, L. F. Cheong, G. H. Lee. Rolling-shutter-
aware differential SfM and image rectification. In Proceed-
ings of IEEE International Conference on Computer Vis-
ion, Venice, Italy, pp.948-956, 2017. DOI: 10.1109/ICCV.
2017.108.

O. Saurer, M. Pollefeys, G. H. Lee. Sparse to dense 3D re-
construction from rolling shutter images. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recog-
nition, Las Vegas, USA, pp.3337-3345, 2016. DOI: 10.
1109/CVPR.2016.363.

S. Im, H. Ha, G. Choe, H. G. Jeon, K. Joo, I. S. Kweon.
Accurate 3D reconstruction from small motion clip for
rolling shutter cameras. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol.41, no.4,
pp. 775-787,2019. DOI: 10.1109/TPAMI.2018.2819679.

J. Hedborg, P. E. Forssen, M. Felsberg, E. Ringaby.
Rolling shutter bundle adjustment. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recog-
nition, Providence, USA, pp.1434-1441, 2012. DOI: 10.
1109/CVPR.2012.6247831.

M. Meingast, C. Geyer, S. Sastry. Geometric models of
rolling-shutter cameras, [Online], Available: https://arxiv.
org/abs/0503076, 2005.


http://dx.doi.org/10.1109/CVPR.2016.448
http://dx.doi.org/10.1109/CVPR.2016.448
http://dx.doi.org/10.1109/CVPR.2015.7298842
http://dx.doi.org/10.1109/TPAMI.2020.2977644
http://dx.doi.org/10.1109/ICCV48922.2021.00419
http://dx.doi.org/10.1109/ICCV48922.2021.00419
http://dx.doi.org/10.1109/CVPR.2019.00468
http://dx.doi.org/10.1109/CVPR.2019.00468
http://dx.doi.org/10.1109/CVPR.2019.00468
http://dx.doi.org/10.1007/978-3-031-20071-7_14
http://dx.doi.org/10.1007/978-3-031-20071-7_14
http://dx.doi.org/10.1007/978-3-031-20071-7_14
http://dx.doi.org/10.1007/s11263-020-01368-1
http://dx.doi.org/10.1109/ICRA.2016.7487263
http://dx.doi.org/10.1109/ICRA.2016.7487263
http://dx.doi.org/10.1109/IROS40897.2019.8968539
http://dx.doi.org/10.1109/IROS40897.2019.8968539
http://dx.doi.org/10.1109/ICCV.2017.108
http://dx.doi.org/10.1109/ICCV.2017.108
http://dx.doi.org/10.1109/CVPR.2016.363
http://dx.doi.org/10.1109/CVPR.2016.363
http://dx.doi.org/10.1109/TPAMI.2018.2819679
http://dx.doi.org/10.1109/CVPR.2012.6247831
http://dx.doi.org/10.1109/CVPR.2012.6247831
https://arxiv.org/abs/0503076
https://arxiv.org/abs/0503076

B. Fan et al. / Rolling Shutter Camera: Modeling, Optimization and Learning

[16]

(17]

(18]

(19]

20]

[21]

22]

23]

[24]

[25]

(26]

27]

(28]

B. Fan, Y. C. Dai, M. Y. He. SUNet: Symmetric undistor-
tion network for rolling shutter correction. In Proceedings
of IEEE/CVF International Conference on Computer Vis-
ion, IEEE, Montreal, Canada, pp.4521-4530, 2021. DOI:
10.1109/ICCV48922.2021.00450.

O. Saurer, K. Késer, J. Y. Bouguet, M. Pollefeys. Rolling
shutter stereo. In Proceedings of IEEFE International Con-
ference on Computer Vision, Sydney, Australia,
pp.465-472, 2013. DOI: 10.1109/ICCV.2013.64.

O. Saurer, M. Pollefeys, G. H. Lee. A minimal solution to
the rolling shutter pose estimation problem. In Proceed-
ings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, Hamburg, Germany,
pp. 1328-1334, 2015. DOI: 10.1109/TR0OS.2015.7353540.

P. E. Forssén, E. Ringaby. Rectifying rolling shutter video
from hand-held devices. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition, San
Francisco, USA, pp.507-514, 2010. DOI: 10.1109/CVPR.
2010.5540173.

V. Rengarajan, A. N. Rajagopalan, R. Aravind. From
bows to arrows: Rolling shutter rectification of urban
scenes. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, USA,
pp.2773-2781, 2016. DOI: 10.1109/CVPR.2016.303.

L. Magerand, A. Bartoli, O. Ait-Aider, D. Pizarro. Global
optimization of object pose and motion from a single
rolling shutter image with automatic 2D-3D matching. In
Proceedings of the 12th European Conference on Com-
puter Vision, Springer, Florence, Italy, pp.456-469, 2012.
DOI: 10.1007/978-3-642-33718-5_33.

K. Wang, B. Fan, Y. C. Dai. Relative pose estimation for
stereo rolling shutter cameras. In Proceedings of IEEE In-
ternational Conference on Image Processing, Abu Dhabi,
UAE, pp.463-467, 2020. DOI: 10.1109/ICIP40778.2020.
9191254.

O. Ait-Aider, N. Andreff, J. M. Lavest, P. Martinet. Sim-
ultaneous object pose and velocity computation using a
single view from a rolling shutter camera. In Proceedings
of the 9th European Conference on Computer Vision,
Springer, Graz, Austria, pp.56-68, 2006. DOI: 10.1007/
11744047 5.

O. Ait-Aider, F. Berry. Structure and kinematics triangu-
lation with a rolling shutter stereo rig. In Proceedings of
the 12th International Conference on Computer Vision,
IEEE, Kyoto, Japan, pp.1835-1840, 2009. DOI: 10.1109/
ICCV.2009.5459408.

C. Albl, Z. Kukelova, T. Pajdla. Rolling shutter absolute
pose problem with known vertical direction. In Proceed-
ings of IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, USA, pp.3355-3363, 2016. DOI:
10.1109/CVPR.2016.365.

C. Albl, A. Sugimoto, T. Pajdla. Degeneracies in rolling
shutter SfM. In Proceedings of the 14th European Confer-
ence on Computer Vision, Springer, Amsterdam, The
Netherlands, pp.36-51, 2016. DOI: 10.1007/978-3-319-
46454-1 3.

Z. Kukelova, C. Albl, A. Sugimoto, T. Pajdla. Linear solu-
tion to the minimal absolute pose rolling shutter problem.
In Proceedings of the 14th Asian Conference on Computer
Vision, Springer, Perth, Australia, pp.265-280, 2019. DOI:
10.1007/978-3-030-20893-6_17.

C. Albl, Z. Kukelova, V. Larsson, T. Pajdla. Rolling shut-
ter camera absolute pose. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol.42, no.6,

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

37]

(38]

39]

[40]

[41]

795

pp. 1439-1452, 2020. DOI: 10.1109/TPAMI.2019.2894395.

Z. Kukelova, C. Albl, A. Sugimoto, K. Schindler, T. Pa-
jdla. Minimal rolling shutter absolute pose with unknown
focal length and radial distortion. In Proceedings of the
16th European Conference on Computer Vision, Springer,
Glasgow, UK, pp.698-714, 2020. DOI: 10.1007/978-3-030-
58558-7_41.

C. Albl, Z. Kukelova, V. Larsson, M. Polic, T. Pajdla, K.
Schindler. From two rolling shutters to one global shutter.
In Proceedings of IEEE/CVF Conference on Computer
Vision and Pattern Recognition, IEEE, Seattle, USA,
pp.2502-2510, 2020. DOI: 10.1109/CVPR42600.2020.
00258.

K. Wang, C. H. Liu, K. X. Wang, S. J. Shen. Depth estim-
ation under motion with single pair rolling shutter stereo
images. IEEE Robotics and Automation Letters, vol.6,
no.2, pp.3160-3167, 2021. DOI: 10.1109/LRA.2021.
3063695.

E. Ringaby, P. E. Forssén. Efficient video rectification and
stabilisation for cell-phones. International Journal of Com-
puter Vision, vol.96, no.3, pp.335-352, 2012. DOI: 10.
1007/s11263-011-0465-8.

E. Ito, T. Okatani. Self-calibration-based approach to crit-
ical motion sequences of rolling-shutter structure from mo-
tion. In Proceedings of IEEE Conference on Computer Vis-
ion and Pattern Recognition, Honolulu, USA, pp.4512-
4520, 2017. DOI: 10.1109/CVPR.2017.480.

Y. Z. Lao, O. Ait-Aider. A robust method for strong rolling
shutter effects correction using lines with automatic fea-
ture selection. In Proceedings of IEEE/CVF Conference
on Computer Vision and Pattern Recognition, IEEE, Salt
Lake City, USA, pp.4795-4803, 2018. DOI: 10.1109/CV-
PR.2018.00504.

P. Purkait, C. Zach. Minimal solvers for monocular rolling
shutter compensation under ackermann motion. In Pro-
ceedings of IEEE Winter Conference on Applications of
Computer Vision, Lake Tahoe, USA, pp.903-911, 2018.
DOI: 10.1109/WACV.2018.00104.

C. R. Lee, J. H. Yoon, M. G. Park, K. J. Yoon. Gyroscope-
aided relative pose estimation for rolling shutter cameras,
[Online], Available: https://arxiv.org/abs/1904.06770,
2019.

J. Hedborg, E. Ringaby, P. E. Forssén, M. Felsberg. Struc-
ture and motion estimation from rolling shutter video. In
Proceedings of IEEE International Conference on Com-
puter Vision Workshops, Barcelona, Spain, pp.17-23,
2011. DOI: 10.1109/ICCVW.2011.6130217.

B. B. Zhuang, Q. H. Tran. Image stitching and rectifica-
tion for hand-held cameras. In Proceedings of the 16th
European Conference on Computer Vision, Springer, Glas-
gow, UK, pp.243-260, 2020. DOI: 10.1007/978-3-030-
58571-6_15.

S. Im, H. Ha, G. Choe, H. G. Jeon, K. Joo, I. S. Kweon.
High quality structure from small motion for rolling shut-
ter cameras. In Proceedings of IEEFE International Confer-
ence on Computer Vision, Santiago, Chile, pp.837-845,
2015. DOI: 10.1109/ICCV.2015.102.

B. Fan, Y. C. Dai, K. Wang. Rolling-shutter-stereo-aware
motion estimation and image correction. Computer Vision
and Image Understanding, vol.213, Article number
103296, 2021. DOI: 10.1016/j.cviu.2021.103296.

B. Fan, Y. C. Dai, Z. Y. Zhang, K. Wang. Differential SfM
and image correction for a rolling shutter stereo rig. Image

@ Springer


http://dx.doi.org/10.1109/ICCV48922.2021.00450
http://dx.doi.org/10.1109/ICCV.2013.64
http://dx.doi.org/10.1109/IROS.2015.7353540
http://dx.doi.org/10.1109/CVPR.2010.5540173
http://dx.doi.org/10.1109/CVPR.2010.5540173
http://dx.doi.org/10.1109/CVPR.2016.303
http://dx.doi.org/10.1007/978-3-642-33718-5_33
http://dx.doi.org/10.1007/978-3-642-33718-5_33
http://dx.doi.org/10.1109/ICIP40778.2020.9191254
http://dx.doi.org/10.1109/ICIP40778.2020.9191254
http://dx.doi.org/10.1007/11744047_5
http://dx.doi.org/10.1007/11744047_5
http://dx.doi.org/10.1007/11744047_5
http://dx.doi.org/10.1109/ICCV.2009.5459408
http://dx.doi.org/10.1109/ICCV.2009.5459408
http://dx.doi.org/10.1109/CVPR.2016.365
http://dx.doi.org/10.1007/978-3-319-46454-1_3
http://dx.doi.org/10.1007/978-3-319-46454-1_3
http://dx.doi.org/10.1007/978-3-319-46454-1_3
http://dx.doi.org/10.1007/978-3-030-20893-6_17
http://dx.doi.org/10.1007/978-3-030-20893-6_17
http://dx.doi.org/10.1109/TPAMI.2019.2894395
http://dx.doi.org/10.1007/978-3-030-58558-7_41
http://dx.doi.org/10.1007/978-3-030-58558-7_41
http://dx.doi.org/10.1007/978-3-030-58558-7_41
http://dx.doi.org/10.1109/CVPR42600.2020.00258
http://dx.doi.org/10.1109/CVPR42600.2020.00258
http://dx.doi.org/10.1109/LRA.2021.3063695
http://dx.doi.org/10.1109/LRA.2021.3063695
http://dx.doi.org/10.1007/s11263-011-0465-8
http://dx.doi.org/10.1007/s11263-011-0465-8
http://dx.doi.org/10.1109/CVPR.2017.480
http://dx.doi.org/10.1109/CVPR.2018.00504
http://dx.doi.org/10.1109/CVPR.2018.00504
http://dx.doi.org/10.1109/CVPR.2018.00504
http://dx.doi.org/10.1109/WACV.2018.00104
https://arxiv.org/abs/1904.06770
http://dx.doi.org/10.1109/ICCVW.2011.6130217
http://dx.doi.org/10.1007/978-3-030-58571-6_15
http://dx.doi.org/10.1007/978-3-030-58571-6_15
http://dx.doi.org/10.1007/978-3-030-58571-6_15
http://dx.doi.org/10.1109/ICCV.2015.102
http://dx.doi.org/10.1016/j.cviu.2021.103296

796

(42]

(43]

(44]

[45]

(46]

(47]

(48]

[49]

(50]

[51]

(52]

(53]

(54]

[55]

and Vision Computing, vol.124, Article number 104492,
2022. DOI: 10.1016/j.imavis.2022.104492.

Y. Z. Lao, O. Ait-Aider, H. Araujo. Robustified structure
from Motion with rolling-shutter camera using straight-
ness constraint. Pattern Recognition Letters, vol.111,
pp-1-8, 2018. DOI: 10.1016/j.patrec.2018.04.004.

B. Triggs, P. F. McLauchlan, R. I. Hartley, A. W. Fitzgib-
bon. Bundle adjustment — A modern synthesis. In Proce-
edings of the International Workshop on Vision Al-
gorithms, Springer, Corfu, Greece, pp.298-372, 2000. DOI:
10.1007/3-540-44480-7_21.

L. Oth, P. Furgale, L. Kneip, R. Siegwart. Rolling shutter
camera calibration. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, Portland,
USA, pp. 1360-1367, 2013. DOI: 10.1109/CVPR.2013.179.

B. Y. Liao, D. L. Qu, Y. F. Xue, H. Q. Zhang, Y. Z. Lao.
Revisiting rolling shutter bundle adjustment: Toward ac-
curate and fast solution, [Online|, Available: https://arx-
iv.org/abs/2209.08503, 2022.

S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black,
R. Szeliski. A database and evaluation methodology for
optical flow. International Journal of Computer Vision,
vol.92, no.1, pp.1-31, 2011. DOI: 10.1007/s11263-010-
0390-2.

H. C. Longuet-Higgins, K. Prazdny. The interpretation of
a moving retinal image. Proceedings of the Royal Society
B: Biological Sciences, vol.208, no.1173, pp.385-397,
1980. DOI: 10.1098 /rspb.1980.0057.

B. Fan, Y. C. Dai, Z. Y. Zhang, M. Y. He. Fast and robust
differential relative pose estimation with radial distortion.
IEEE Signal Processing Letters, vol.29, pp.294-298, 2022.
DOI: 10.1109/LSP.2021.3134593.

V. Rengarajan, Y. Balaji, A. N. Rajagopalan. Unrolling
the shutter: CNN to correct motion distortions. In Pro-
ceedings of IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, USA, pp.2345-2353, 2017.
DOI: 10.1109/CVPR.2017.252.

S. C. Su, W. Heidrich. Rolling shutter motion deblurring.
In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, Boston, USA, pp.1529-1537,
2015. DOI: 10.1109/CVPR.2015.7298760.

P. Purkait, C. Zach, A. Leonardis. Rolling shutter correc-
tion in Manhattan world. In Proceedings of IEEE Interna-
tional Conference on Computer Vision, Venice, Italy,
pp- 882-890, 2017. DOI: 10.1109/ICCV.2017.101.

A. Patron-Perez, S. Lovegrove, G. Sibley. A spline-based
trajectory representation for sensor fusion and rolling
shutter cameras. International Journal of Computer Vis-
ion, vol.113, no.3, pp.208-219, 2015. DOI: 10.1007/
$11263-015-0811-3.

C. Kerl, J. Stiickler, D. Cremers. Dense continuous-time
tracking and mapping with rolling shutter RGB-D camer-
as. In Proceedings of IEEE International Conference on
Computer Vision, Santiago, Chile, pp.2264-2272, 2015.
DOI: 10.1109/ICCV.2015.261.

F. Bai, A. Sengupta, A. Bartoli. Scanline homographies for
rolling-shutter plane absolute pose. In Proceedings of
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE, New Orleans, USA, pp.8983-8992,
2022. DOI: 10.1109/CVPR52688.2022.00879.

B. Vandeportaele, P. A. Gohard, M. Devy, B. Coudrin.
Pose interpolation for rolling shutter cameras using non

@ Springer

[56]

[57]

(58]

[59]

[60]

[61]

(62]

(63]

[64]

(65]

[66]

[67]

Machine Intelligence Research 20(6), December 2023

uniformly time-sampled B-splines. In Proceedings of the
12th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applica-
tions, SciTePress, Porto, Portugal, pp.286-293, 2017.
DOI: 10.5220/0006171802860293.

S. Lovegrove, A. Patron-Perez, G. Sibley. Spline fusion: A
continuous-time representation for visual-inertial fusion
with application to rolling shutter cameras. In Proceed-
ings of the British Machine Vision Conference, BMVA
Press, Bristol, UK, pp.93.1-93.12, 2013. DOI: 10.5244/C.
27.93.

J. Mo, J. Islam, J. Sattar. Learning rolling shutter correc-
tion from real data without camera motion assumption,
[Online], Available: https://arxiv.org/abs/2011.03106,
2020.

J. Z. Huai, Y. K. Zhuang, Y. Lin, G. Jozkow, Q. C. Yuan,
D. Chen. Continuous-time spatiotemporal calibration of a
rolling shutter camera-IMU system. IEEE Sensors Journ-
al, vol.22, no.8, pp.7920-7930, 2022. DOI: 10.1109/JSEN.
2022.3152572.

X. L. Lang, J. J. Lv, J. X. Huang, Y. K. Ma, Y. Liu, X. X.
Zuo. Ctrl-VIO: Continuous-time visual-inertial odometry
for rolling shutter cameras. IEEE Robotics and Automa-
tion Letters, vol.7, no.4, pp.11537-11544, 2022. DOI: 10.
1109/LRA.2022.3202349.

E. B. Dam, M. Koch, M. Lillholm. Quaternions, Interpola-
tion and Animation, Technical Report DIKU-TR-98/5,
Department of Computer Science, University of Copenha-
gen, Copenhagen, Denmark, 1998.

C. H. Zhao, B. Fan, J. W. Hu, Q. Pan, Z. Xu. Homo-
graphy-based camera pose estimation with known gravity
direction for UAV navigation. Science China Information
Sciences, vol. 64, no.1, Article number 112204, 2021. DOI:
10.1007/s11432-019-2690-0.

C. H. Zhao, B. Fan, J. W. Hu, L. M. Tian, Z. Y. Zhang, S.
J. Li, Q. Pan. Pose estimation for multi-camera systems.
In Proceedings of IEEE International Conference on Un-
manned Systems, Beijing, China, pp.533-538, 2017. DOI:
10.1109/ICUS.2017.8278403.

S. C. Zhou, R. Yan, J. X. Li, Y. K. Chen, H. J. Tang. A
brain-inspired SLAM system based on orb features. Inter-
national Journal of Automation and Computing, vol.14,
no. 5, pp.564-575, 2017. DOI: 10.1007/s11633-017-1090-y.

C. L. Wang, T. M. Wang, J. H. Liang, Y. C. Zhang, Y.
Zhou. Bearing-only visual SLAM for small unmanned aeri-
al vehicles in GPS-denied environments. International
Journal of Automation and Computing, vol.10, no.5,
pp- 387-396, 2013. DOI: 10.1007/s11633-013-0735-8.

Y. Z. Lao, O. Ait-Aider, A. Bartoli. Rolling shutter pose
and ego-motion estimation using shape-from-template. In
Proceedings of the 15th European Conference on Com-
puter Vision, Springer, Munich, Germany, pp.477-492,
2018. DOI: 10.1007/978-3-030-01216-8_29.

O. Ait-Aider, A. Bartoli, N. Andreff. Kinematics from
lines in a single rolling shutter image. In Proceedings of
IEEE Conference on Computer Vision and Pattern Recog-
nition, Minneapolis, USA, 2007. DOI: 10.1109/CVPR.
2007.383119.

R. M. Haralick, D. Lee, K. Ottenburg, M. Nolle. Analysis
and solutions of the three point perspective pose estima-
tion problem. In Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition, Maui, USA,
pp-592-598, 1991. DOI: 10.1109/CVPR.1991.139759.


http://dx.doi.org/10.1016/j.imavis.2022.104492
http://dx.doi.org/10.1016/j.patrec.2018.04.004
http://dx.doi.org/10.1007/3-540-44480-7_21
http://dx.doi.org/10.1007/3-540-44480-7_21
http://dx.doi.org/10.1109/CVPR.2013.179
https://arxiv.org/abs/2209.08503
https://arxiv.org/abs/2209.08503
https://arxiv.org/abs/2209.08503
http://dx.doi.org/10.1007/s11263-010-0390-2
http://dx.doi.org/10.1007/s11263-010-0390-2
http://dx.doi.org/10.1098/rspb.1980.0057
http://dx.doi.org/10.1109/LSP.2021.3134593
http://dx.doi.org/10.1109/CVPR.2017.252
http://dx.doi.org/10.1109/CVPR.2015.7298760
http://dx.doi.org/10.1109/ICCV.2017.101
http://dx.doi.org/10.1007/s11263-015-0811-3
http://dx.doi.org/10.1007/s11263-015-0811-3
http://dx.doi.org/10.1109/ICCV.2015.261
http://dx.doi.org/10.1109/CVPR52688.2022.00879
http://dx.doi.org/10.5220/0006171802860293
http://dx.doi.org/10.5244/C.27.93
http://dx.doi.org/10.5244/C.27.93
https://arxiv.org/abs/2011.03106
http://dx.doi.org/10.1109/JSEN.2022.3152572
http://dx.doi.org/10.1109/JSEN.2022.3152572
http://dx.doi.org/10.1109/LRA.2022.3202349
http://dx.doi.org/10.1109/LRA.2022.3202349
http://dx.doi.org/10.1007/s11432-019-2690-0
http://dx.doi.org/10.1109/ICUS.2017.8278403
http://dx.doi.org/10.1007/s11633-017-1090-y
http://dx.doi.org/10.1007/s11633-013-0735-8
http://dx.doi.org/10.1007/978-3-030-01216-8_29
http://dx.doi.org/10.1007/978-3-030-01216-8_29
http://dx.doi.org/10.1109/CVPR.2007.383119
http://dx.doi.org/10.1109/CVPR.2007.383119
http://dx.doi.org/10.1109/CVPR.1991.139759

B. Fan et al. / Rolling Shutter Camera: Modeling, Optimization and Learning 797

[68]

(69]

[70]

(71]

(72]

(73]

[75]

[76]

[77]

(78]

(79]

(80]

(81]

M. Panda, B. Das, B. Subudhi, B. B. Pati. A comprehens-
ive review of path planning algorithms for autonomous un-
derwater vehicles. International Journal of Automation
and Computing, vol.17, no.3, pp.321-352, 2020. DOI: 10.
1007/s11633-019-1204-9.

Y. Yang, F. Qiu, H. Li, L. Zhang, M. L. Wang, M. Y. Fu.
Large-scale 3D semantic mapping using stereo vision. In-
ternational Journal of Automation and Computing,
vol.15, no.2, pp.194-206, 2018. DOI: 10.1007/s11633-018-
1118-y.

Q. Qi, Q. D. Li, Y. Q. Cheng, Q. Q. Hong. Skeleton march-
ing-based parallel vascular geometry reconstruction using
implicit functions. International Journal of Automation
and Computing, vol.17, no.1, pp.30-43, 2020. DOI: 10.
1007/s11633-019-1189-4.

B. Fan, K. Wang, Y. C. Dai, M. Y. He. RS-DPSNet: Deep
plane sweep network for rolling shutter stereo images.
IEEE Signal Processing Letters, vol.28, pp.1550-1554,
2021. DOI: 10.1109/L.SP.2021.3099350.

P. D. Liu, Z. P. Cui, V. Larsson, M. Pollefeys. Deep shut-
ter unrolling network. In Proceedings of IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
IEEE, Seattle, USA, pp.5940-5948, 2020. DOI: 10.1109/
CVPR42600.2020.00598.

S. Vasu, M. R. M. Mohan, A. N. Rajagopalan. Occlusion-
aware rolling shutter rectification of 3D scenes. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition, IEEE, Salt Lake City, USA,
pp. 636-645, 2018. DOI: 10.1109/CVPR.2018.00073.

H. C. Wu, L. Xiao, Z. H. Wei. Simultaneous video stabiliz-
ation and rolling shutter removal. IEEE Transactions on
Image Processing, vol.30, pp.4637-4652, 2021. DOI: 10.
1109/TIP.2021.3073865.

Z.H. Zhong, Y. Q. Zheng, 1. Sato. Towards rolling shutter
correction and deblurring in dynamic scenes. In Proceed-
ings of IEEE/CVF Conference on Computer Vision and
Pattern Recognition, IEEE, Nashville, USA, pp.9215-
9224, 2021. DOI: 10.1109/CVPR46437.2021.00910.

K. Praveen, T Lokesh Kumar, A. N. Rajagopalan. Deep
network for rolling shutter rectification, [Online], Avail-
able: https://arxiv.org/abs/2112.06170, 2021.

B. Fan, Y. C. Dai, Z. Y. Zhang, Q. Liu, M. Y. He. Context-
aware video reconstruction for rolling shutter cameras. In
Proceedings of IEEE/CVF Conference on Computer Vis-
ion and Pattern Recognition, IEEE, New Orleans, USA,
pp.17551-17561, 2022. DOI: 10.1109/CVPR52688.2022.
01705.

B. Fan, Y. C. Dai, H. D. Li. Rolling shutter inversion:
Bring rolling shutter images to high framerate global shut-
ter video. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, to be published. DOI: 10.1109/TPAMI.
2022.3212912.

M. D. Cao, Z. H. Zhong, J. H. Wang, Y. Q. Zheng, Y. J.
Yang. Learning adaptive warping for real world rolling
shutter correction. In Proceedings of IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, IEEE,
New Orleans, USA, pp.17764-17772, 2022. DOI: 10.1109/
CVPR52688.2022.01726.

C. K. Liang, L. W. Chang, H. H. Chen. Analysis and com-
pensation of rolling shutter effect. IEEE Transactions on
Image Processing, vol.17, no.8, pp.1323-1330, 2008. DOI:
10.1109/TIP.2008.925384.

S. Baker, E. Bennett, S. B. Kang, R. Szeliski. Removing

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

(90]

[91]

[92]

(93]

rolling shutter wobble. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition, San
Francisco, USA, pp.2392-2399, 2010. DOI: 10.1109/CV-
PR.2010.5539932.

M. Grundmann, V. Kwatra, D. Castro, I. Essa. Calibra-
tion-free rolling shutter removal. In Proceedings of IEEE
International Conference on Computational Photography,
Seattle, USA, pp.1-8, 2012. DOI: 10.1109/ICCPhot.2012.
6215213.

A. Punnappurath, V. Rengarajan, A. N. Rajagopalan.
Rolling shutter super-resolution. In Proceedings of IEEE
International Conference on Computer Vision, Santiago,
Chile, pp. 558-566, 2015. DOI: 10.1109/ICCV.2015.71.

M. Meilland, T. Drummond, A. I. Comport. A unified
rolling shutter and motion blur model for 3D visual regis-
tration. In Proceedings of IEEFE International Conference
on Computer Vision, Sydney, Australia, pp.2016-2023,
2013. DOI: 10.1109/ICCV.2013.252.

J. Park, K. Ko, C. Lee, C. S. Kim. BMBC: Bilateral mo-
tion estimation with bilateral cost volume for video inter-
polation. In Proceedings of the 16th European Conference
on Computer Vision, Springer, Glasgow, UK, pp.109-125,
2020. DOI: 10.1007/978-3-030-58568-6 7.

W. B. Bao, W. S. Lai, C. Ma, X. Y. Zhang, Z. Y. Gao, M.
H. Yang. Depth-aware video frame interpolation. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition, IEEE, Long Beach, USA,
pp-3698-3707, 2019. DOI: 10.1109/CVPR.2019.00382.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, O. Wang.
The unreasonable effectiveness of deep features as a per-
ceptual metric. In Proceedings of IEEE/CVF Conference
on Computer Vision and Pattern Recognition, IEEE, Salt
Lake City, USA, pp.586-595, 2018. DOI: 10.1109/CVPR.
2018.00068.

A. Dosovitskiy, G. Ros, F. Codevilla, A. M. Loépez, V.
Koltun. CARLA: An open urban driving simulator. In
Proceedings of the 1st Annual Conference on Robot Learn-
ing, Mountain View, USA, vol. 78, pp. 1-16, 2017.

Z. X. Wang, X. Ji, J. B. Huang, S. Satoh, X. Zhou, Y. Q.
Zheng. Neural global shutter: Learn to restore video from a
rolling shutter camera with global reset feature. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition, IEEE, New Orleans, USA,
pp.17773-17782, 2022. DOI: 10.1109/CVPR52688.2022.
01727.

X.Y. Zhou, P. Q. Duan, Y. Ma, B. X. Shi. EvUnroll: Neur-
omorphic events based rolling shutter image correction. In
Proceedings of IEEE/CVEF' conference on Computer Vis-
ion and Pattern Recognition, New Orleans, USA,
pp.17754-17763, 2022. DOI: 10.1109/CVPR52688.2022.
01725.

Y. H. Hu, S. C. Liu, T. Delbruck. V2E: From video frames
to realistic DVS events. In Proceedings of IEEE/CVF con-
ference on Computer Vision and Pattern Recognition
Workshops, IEEE, Nashville, USA, pp.1312-1321, 2021.
DOI: 10.1109/CVPRW53098.2021.00144.

J. H. Kim, Y. Latif, I. Reid. RRD-SLAM: Radial-distorted
rolling-shutter direct SLAM. In Proceedings of IEEE In-
ternational Conference on Robotics and Automation,
Singapore, pp.5148-5154, 2017. DOI: 10.1109/ICRA.2017.
7989602.

D. Schubert, N. Demmel, V. Usenko, J. Stiickler, D. Cre-
mers. Direct sparse odometry with rolling shutter. In Pro-
ceedings of the 15th European Conference on Computer

@ Springer


http://dx.doi.org/10.1007/s11633-019-1204-9
http://dx.doi.org/10.1007/s11633-019-1204-9
http://dx.doi.org/10.1007/s11633-018-1118-y
http://dx.doi.org/10.1007/s11633-018-1118-y
http://dx.doi.org/10.1007/s11633-019-1189-4
http://dx.doi.org/10.1007/s11633-019-1189-4
http://dx.doi.org/10.1109/LSP.2021.3099350
http://dx.doi.org/10.1109/CVPR42600.2020.00598
http://dx.doi.org/10.1109/CVPR42600.2020.00598
http://dx.doi.org/10.1109/CVPR.2018.00073
http://dx.doi.org/10.1109/TIP.2021.3073865
http://dx.doi.org/10.1109/TIP.2021.3073865
http://dx.doi.org/10.1109/CVPR46437.2021.00910
https://arxiv.org/abs/2112.06170
http://dx.doi.org/10.1109/CVPR52688.2022.01705
http://dx.doi.org/10.1109/CVPR52688.2022.01705
http://dx.doi.org/10.1109/TPAMI.2022.3212912
http://dx.doi.org/10.1109/TPAMI.2022.3212912
http://dx.doi.org/10.1109/CVPR52688.2022.01726
http://dx.doi.org/10.1109/CVPR52688.2022.01726
http://dx.doi.org/10.1109/TIP.2008.925384
http://dx.doi.org/10.1109/CVPR.2010.5539932
http://dx.doi.org/10.1109/CVPR.2010.5539932
http://dx.doi.org/10.1109/CVPR.2010.5539932
http://dx.doi.org/10.1109/ICCPhot.2012.6215213
http://dx.doi.org/10.1109/ICCPhot.2012.6215213
http://dx.doi.org/10.1109/ICCV.2015.71
http://dx.doi.org/10.1109/ICCV.2013.252
http://dx.doi.org/10.1007/978-3-030-58568-6_7
http://dx.doi.org/10.1007/978-3-030-58568-6_7
http://dx.doi.org/10.1109/CVPR.2019.00382
http://dx.doi.org/10.1109/CVPR.2018.00068
http://dx.doi.org/10.1109/CVPR.2018.00068
http://dx.doi.org/10.1109/CVPR52688.2022.01727
http://dx.doi.org/10.1109/CVPR52688.2022.01727
http://dx.doi.org/10.1109/CVPR52688.2022.01725
http://dx.doi.org/10.1109/CVPR52688.2022.01725
http://dx.doi.org/10.1109/CVPRW53098.2021.00144
http://dx.doi.org/10.1109/ICRA.2017.7989602
http://dx.doi.org/10.1109/ICRA.2017.7989602

798

Vision, Springer, Munich, Germany, pp.699-714, 2018.
DOI: 10.1007/978-3-030-01237-3_42.

[94] J. Mo, J. Islam, J. Sattar. IMU-assisted learning of single-
view rolling shutter correction. In Proceedings of the Con-
ference on Robot Learning, London, UK, wvol.164,
pp.861-870, 2021.

[95] S. Tourani, S. Mittal, A. Nagariya, V. Chari, M. Krishna.
Rolling shutter and motion blur removal for depth camer-
as. In Proceedings of IEEE International Conference on
Robotics and Automation, Stockholm, Sweden, pp.
5098-5105, 2016. DOI: 10.1109/ICRA.2016.7487715.

Bin Fan received the B.Sc. degree in stat-
istics and the M. Eng. degree in control sci-
ence and engineering from Northwestern
Polytechnical University, China in 2016
and 2019, respectively. He is currently a
Ph.D. degree candiclate in information
and communication engineering with
School of Electronics and Information,
Northwestern Polytechnical University
(NPU), China. He was selected to the CVPR 2022 Doctoral Con-
sortium (the only one among Chinese universities). He co-organ-
ized the ACCV 2022 tutorial on the topic of rolling shutter cam-
eras. He has published some papers in TPAMI, CVPR, ICCV,
TCSVT, CVIU, IVC, etc.

His research interests include computer vision, image pro-

cessing, 3D reconstruction, and deep learning, especially regard-
ing the rolling shutter camera.

E-mail: binfan@mail.nwpu.edu.cn

ORCID iD: 0000-0002-8028-0166

Yuchao Dai received the B. Eng., M. Eeg.
and Ph.D. degrees all in signal and inform-
ation processing from Northwestern Poly-
technical University, China in 2005, 2008
and 2012, respectively. He is currently a
professor with School of Electronics and
Information, Northwestern Polytechnical
University (NPU), China. He was an ARC
) DECRA fellow with the research school of
engineering at Australian National University, Australia. He
won the Best Paper Award in IEEE CVPR 2012, the Best Paper
Award Nominee at IEEE CVPR 2020, the DSTO Best Funda-
mental Contribution to Image Processing Paper Prize at DICTA

@ Springer

Machine Intelligence Research 20(6), December 2023

2014, the Best Algorithm Prize in NRSFM Challenge at CVPR
2017, the Best Student Paper Prize at DICTA 2017, the Best
Deep/Machine Learning Paper Prize at APSIPA ASC 2017. He
served as Area Chair in CVPR, ICCV, ACM MM, ACCV, etc.
He serves as Publicity Chair in ACCV 2022.

His research interests include structure from motion, multi-
view geometry, low-level computer vision, deep learning, com-
pressive sensing, and optimization.

E-mail: daiyuchao@nwpu.edu.cn (Corresponding author)

ORCID iD: 0000-0002-4432-7406

Mingyi He received the B.Eng. degree in
electronic engineering and the M. Eng. de-
gree in signal and systems from Northwest-
ern Polytechnical University (NPU),
China in 1982 and 1985, respectively, and
the Ph.D. degree in signal and informa-
tion processing from Xidian University,
China in 1994. Since 1985, he has been
with School of Electronics and Informa-
tion, NPU, where he has been a full professor since 1996 and ap-
pointed as a chief professor of SIP in 1998. He was the (co)recipi-
ent of the 2012 CVPR Best Paper Award, the 2017 APSIPA
ASC Best Deep/Machine Learning Paper Award, and the 2017
DICTA Best Student Paper Award. He was a recipient of the
Government Lifelong Subsidy from the State Council of China
and the Baosteel Outstanding Teacher Award in 2017. He re-
ceived awards from the IEEE Signal Processing Society in 2014,
APSIPA in 2019, China Remote Sensing Committee in 2023,
Journal of Image and Graphs in 2022, Signal Processing in 2023,
the Chinese Institute of Electronics in 2018 and 2020, and the
Shaanxi Institute of Electronics in 2020. He has acted as the gen-
eral chair or the TPC (co)chair and the area chair for over 30 na-
tional and international conferences. He was also an Associate
Editor of the IEEE Transactions on Geoscience and Remote
Sensing and APSIPA SIP and a Guest Editor of the IEEE Journ-
al of Selected Topics in Applied Earth Observations and Re-
mote Sensing. He is Fellow of CIE and Vice President of AP-
SIPA (2021-2024).

His research interests focus on advanced machine vision and
intelligent processing, including signal and image processing,
computer vision, hyper-spectral remote sensing, 3D information
acquisition and processing, and neural network artificial intelli-
gence.

E-mail: myhe@nwpu.edu.cn

ORCID iD: 0000-0003-2051-6955


http://dx.doi.org/10.1007/978-3-030-01237-3_42
http://dx.doi.org/10.1007/978-3-030-01237-3_42
http://dx.doi.org/10.1109/ICRA.2016.7487715

Machine Intelligence
Research

VIR

Citation: B. Fan, Y. Dai, M. He. Rolling shutter camera: modeling, optimization and learning. Machine Inteligence Research,
vol.20, no.6, pp.783-798, 2023. https://doi.org/10.1007/s11633-022-1399—

Articles may interest you

Improved network for face recognition based on feature super resolution method. Machine Intelligence Research, vol.18, no.6,
pp-915-925, 2021.

DOI: 10.1007/s11633-021-1309-9

Advances in deep learning methods for visual tracking: literature review and fundamentals. Machine Intelligence Research, vol.18,
no.3, pp.311-333, 2021.

DOI: 10.1007/s11633-020-1274-8

A regularized Istm method for predicting remaining useful life of rolling bearings. Machine Intelligence Research, vol.18, no.4,
pp.581-593, 2021.

DOI: 10.1007/s11633-020-1276-6

Knowing your dog breed: identifying a dog breed with deep learning. Machine Intelligence Research, vol.18, no.1, pp.45-54, 2021.
DOI: 10.1007/s11633-020-1261-0

Machine learning for cataract classification/grading on ophthalmic imaging modalities: a survey. Machine Intelligence Research,
vol.19, no.3, pp.184-208, 2022.

DOI: 10.1007/s11633-022-1329-0

Learning deep rgbt representations for robust person re-identification. Machine Intelligence Research, vol.18, no.3, pp.443-456,
2021.

DOI: 10.1007/s11633-020-1262-z

A review of predictive and contrastive self-supervised learning for medical images. Machine Intelligence Research, vol.20, no.4,
pp-483-513, 2023.

DOI: 10.1007/s11633-022-1406-4

@

WeChat: MIR Twitter: MIR_Journal


https://doi.org/10.1007/s11633-022-1399-z
http://www.mi-research.net/en/article/doi/10.1007/s11633-021-1309-9
https://doi.org/10.1007/s11633-021-1309-9
http://www.mi-research.net/en/article/doi/10.1007/s11633-020-1274-8
https://doi.org/10.1007/s11633-020-1274-8
http://www.mi-research.net/en/article/doi/10.1007/s11633-020-1276-6
https://doi.org/10.1007/s11633-020-1276-6
http://www.mi-research.net/en/article/doi/10.1007/s11633-020-1261-0
https://doi.org/10.1007/s11633-020-1261-0
http://www.mi-research.net/en/article/doi/10.1007/s11633-022-1329-0
https://doi.org/10.1007/s11633-022-1329-0
http://www.mi-research.net/en/article/doi/10.1007/s11633-020-1262-z
https://doi.org/10.1007/s11633-020-1262-z
http://www.mi-research.net/en/article/doi/10.1007/s11633-022-1406-4
https://doi.org/10.1007/s11633-022-1406-4

	1 Introduction
	2 Geometric modeling and non-linear optimization of RS motion
	2.1 Discrete motion
	2.2 Continuous motion
	2.3 Special motion

	3 Geometric problems with RS models
	3.1 Relative pose estimation
	3.2 Absolute pose estimation
	3.3 3D reconstruction

	4 RS image processing
	4.1 RS image correction
	4.2 RS temporal super-resolution
	4.3 Public RS-based datasets
	4.3.1 RS correction datasets
	4.3.2 Cross-validation datasets
	4.3.3 Datasets with other degradations or data types


	5 Challenges and new trends
	6 Conclusions
	Acknowledgements
	Declarations of conflict of interest
	References

