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1 Introduction

Machine translation (MT) aims at automatically
translating natural language sentences using computers
from one language into another. Since the first MT sys-
tem was proposed, it has become one of the most import-
ant and challenging tasks in natural language processing
(NLP) or even in the artificial intelligence community.
With the effort of many researchers, MT has achieved re-
markable progress in both methodology and applications.

With the rapid development of machine learning and
the availability of large-scale parallel corpora, statistical
machine translation (SMT) approachesl: 2 appeared in
the 1990s and have drawn much attention. Instead of
designing the translation rules manually, SMT learns the
language model and word or phrase mappings automatic-
ally from the parallel corpora. However, SMT represents
the source and target sentences as symbolic and discrete
tokens. Thus, the performance of SMT is far from satis-
factory.

With the breakthrough of deep learning, many stud-
ies have incorporated deep neural networks into MT.
Early studies are still based on the SMT framework,
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where deep neural networks are utilized to design new
features or extract more accurate semantic representa-
tionsBl. In 2013 and 2014, end-to-end neural machine
translation (NMT)[“6 has emerged as a new paradigm
and quickly replaced SMT as the mainstream approach.
NMT adopts the distributed representation of sentences
and utilizes a whole neural network to learn the map-
pings from source sentences to target sentences. In only a
few years of development, the translation quality of NMT
has significantly improved and exceeded that of SMT. In
practice, many companies (such as Google, Microsoft and
Baidu) have deployed their own online translation sys-
tems and provide users with increasingly high-quality
translation servicesl” 8.

From the perspective of NMT architectures, the early
architectures are recurrent neural network (RNN) based
NMTI*+6 and convolutional neural network (CNN)PI
based NMT models, which utilize the RNN and CNN to
calculate the representation of source sentences and pre-
dict the target sentence. In 2017, a new framework, self-
attention based NMT (Transformer), was proposed and
sharply advanced the field of NMT0, At present, Trans-
former has become the dominant architecture for ma-
chine translation, surpassing convolutional and recurrent
neural network based NMT in terms of both translation
quality and training speed. Meanwhile, Transformer goes
far beyond NMT and extends to other tasks, such as oth-
er natural language processing tasks, computer vision
tasks, audio tasks and multimodal tasks.

In this article, we attempt to give a survey of Trans-
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former-based NMT, including the frameworks, the main
challenges, the representative methods for each challenge
and the available data and toolkits in NMT. We also
briefly present the extensions of Transformer in other
NLP tasks, including pre-training language models, text
summarization, dialogue and knowledge graphs. Finally,
possible future research directions are discussed.

The remainder of this survey is organized as follows.
Section 2 introduces the encoder-decoder framework and
Transformer. Section 3 lists the main challenges of NMT.
Section 4 represents the representative approaches for
each challenge. Section 5 shows the resources and toolkits
in NMT. Section 6 briefly presents the applications of
Transformer in other tasks. Section 7 introduces the cur-
rent status of NMT. Section 8 suggests some potential re-
search directions.

2 Neural machine translation

Since 2013, there have been various model architec-
tures for NMT, such as recurrent neural network-based
NMT (RNMT)B: 6: 11| convolutional neural network-based
model (ConS28)¥ 12| and a self-attention neural network-
based model (Transformer)!0l. At present, self-attention
neural networks are the state-of-the-art and have been
widely used. In this section, we mainly introduce the en-
coder-decoder framework and Transformer.

2.1 Encoder-decoder framework

Sequence-to-sequence learning with an encoder-de-
coder framework was first proposed by Sutskever et al.[s]
and Bahdanau et al.[fl. The current NMT models still fol-
low this encoder-decoder framework[%. Fig.1 shows the
encoder-decoder framework. As the name suggests, the
encoder transforms the source sentence X = {z1,z2, -,
Zm} into hidden states H = (hi,---,hi,--- ,hy). The
decoder generates the target translation Y = {y1,y2, -,
yn} from the hidden states H. Generally, the current en-
coder-decoder framework consists of four basic compon-
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ents: the embedding layer, the encoder network, the de-
coder network, and the softmax layer.

Embedding layer. The embedding layer maps a dis-
crete source sentence X = (1, -, %4, ,Tm) iNto con-
tinuous embeddings X = (z1, -+ , T4, -+ ,Tm), Where x;
is embedding for the i-th token. Then, embeddings are
fed into the encoder network.

Encoder network. It maps the source embeddings
X =(x1, -+, @4, - ,&m) into source hidden states
H=(hy, - ,h;,---
implemented by a recurrent neural network® 6, convolu-

,hn). The encoder network can be

tional neural network® 121 or self-attention-based neural
network[19, The encoder procedure can be represented by

H = Encoder(X). (1)

Decoder network. The decoder network generates
,yn } word by word. Gi-
ven already produced tokens y<; = {y1,y2, - ,yj—1} at
the j-th time step and the hidden states H, the decoder
obtains the target hidden states Z = (z1,--- , zj—1) by

the target sentence Y = {y1,y2," -

Z = Decoder(y<;, H). (2)

Similar to the encoder, the decoder network can also
be implemented by a recurrent neural network, convolu-
tional neural network or self-attention-based neural net-
work.

Softmax layer. Finally the hidden states Z = (21, -,
zj—1) of the decoder network are fed into a softmax lay-
er to predict each token at the j-th time step. More spe-
cifically, a liner layer is first utilized to transform the hid-
den states Z = (z1,---,2z;j—1) into the score for each tar-
get token. Then, a softmax layer is utilized to obtain the
predicted probability of the j-th token p(y;|y<;, X).

Given the parallel training dataset D = {(X,Y)},
where X denotes the source sentence and Y denotes the
target sentence, the network parameters of the NMT 6
can be optimized by maximizing the following log-likeli-
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Fig.1 Encoder-decoder framework, where encoder transforms the source sentence into hidden states and decoder generates target

translation from the hidden states
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hood objective function:

J(D,0)= > log P(Y | X;0)=

(X,Y)eD

> D log P(y; |y<;, X30).  (3)

(X,Y)eD j=1

2.2 Transformer

Self-attention. Self-attention is the core component
of Transformer, which can be seen as a mapping from
queries @, keys K and values V' to an output. The out-
put could attend to the information of different tokens
and is computed as a weighted sum of the values V', in
which the weight is determined by the queries ) and the
keys K. More specifically, there are two important atten-
tion mechanisms in Transformer, i.e., scaled dot-product
attention and multi-head attention. Fig.2 shows the
framework of these two attention mechanisms.

) Multi-head attention
Scaled dot-product attention

Scaled dot-product attention J

L

T i
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Fig. 2 The attention mechanisms in Transformer. Scaled dot-
product attention (left) and multi-head attention (right) in
Transformer![10],

1) Scaled dot-product attention: Given the queries @,
keys K (whose dimension is denoted by di) and values
V', it first computes the dot products of the queries @
with all keys K, and divides the results by v/dx. Then a
softmax function is utilized to obtain the weights. Fi-
nally, the attention output is calculated by multiplying
the weights and the values. Formally, the procedure can
be depicted as follows:

T
Attention(Q, K, V) = softmax (?/lc% ) V. (4)

2) Multi-head attention: Multi-head attention could
make the model attend to the information from different
representation subspaces of different tokens.

MultiHead(Q, K, V') = Concat(heads, - - - ,headh)WO,
head; = Attention(QW2, KW, viw}) (5)
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where WiQ, WH, WY and WO are learnable parameters.
Given queries @, keys K and values V, multi-head
attention first projects @, K and V for different heads
with different linear projections W, W, W) . At each
head, scaled dot-product attention is performed to obtain
the attention output. Finally, the attention outputs of all
heads are concatenated and then projected with WP to
the final outputs.

Model structure. As shown in Fig.3, Transformer
also consists of four basic components: the embedding
layer, the encoder network, the decoder network, and the
softmax layer.

1) Embedding layer: Similar to other NMT models,
the embedding layer in Transformer also converts a
source sentence X = (xo,-- ,%s, - ,Tm) into continuous
,m ). After that, Trans-
former adds the positional embeddings to the input em-

embeddings X = (@0, -, @i, -

beddings. They use sine and cosine functions to obtain
the positional embeddings, which are then fed into the
encoder layers.

2) Encoder network: The Transformer encoder con-
sists of N identical layers. Each layer has two sub-layers.
The first is a multi-head self-attention sub-layer, and the
second is a feed-forward sub-layer. Then, residual connec-
tion and layer normalization are adopted to produce the
final outputs. In the bottom multi-head self-attention
sub-layer, the keys, values, and queries come from the po-
sitional embeddings. In the other multi-head self-atten-
tion sub-layers, all the keys, values, and queries come
from the outputs of the previous layer of the encoder.

3) Decoder network: The decoder also consists of N
identical layers. Different from the encoder layer, the de-
coder contains three sub-layers: The first is a masked
multi-head self-attention sub-layer, and the second is a
feed-forward sub-layer, and the third is encoder and de-
coder multi-head attention. Similar to the encoder, resid-
ual connections and layer normalization are also used to
produce the outputs.

In the masked multi-head self-attention sub-layer,
Transformer masks the subsequent embeddings to pre-
vent the model from attending to subsequent tokens and
ensures that at position j, the model can only utilize the
information of the already produced outputs at positions
less than j. In the encoder and decoder multi-head atten-
tion sub-layer, the queries are the output of previous de-
coder layer, and the memory keys and values come from
the encoder. This allows the decoder to utilize the inform-
ation from the source side.

4) Softmax layer: Similar to other NMT models, the
outputs of the decoder are fed into a softmax layer to
predict each token of the target sentence.

3 Main challenges and topics of NMT

NMT has made significant progress recently and has
been widely utilized in many online MT systemsl” &,
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while the current NMT model still faces many challenges.
In this section, we briefly introduce these challenges and
topics of NMT.

Low-resource NMT. Current NMT models are
data-driven methods and heavily rely on the quantity and
quality of parallel training data. Only when the parallel
training sentence pairs are frequent, can NMT learn the
word and phrase translation pairs. Unfortunately, paral-
lel training sentence pairs for NMT are expensive and
hard to acquire in low-resource language pairs. Even in
resource-rich language pairs, the training data are still in-
adequate in many domains, such as the medical domain,
agricultural domain, and chemical domain. Therefore, im-
proving the translation performance of low-resource NMT
is a major challenge.

Document NMT. The current NMT usually takes
sentences as the basic translation units. When fed an en-
tire document, the current NMT models first split the
document into sentences and then translate sentences in
isolation without considering the cross-sentence depend-
encies. However, the absence of document context makes
the model unable to deal with the document phenomena,
such as deixis, lexical consistency, inflection, and omis-

517

Output
probabilities

Softmax
Linear

S

| Add & Norm

‘ FeedForward

attention

=

| Add & Norm |<\

| Add & Norm |<\

‘ Multi-head

Masked multi-head
attention

x N

——— Positional
encoding

Output
embedding

T

Outputs

Model structure of Transformer![10]

sions. Consequently, it is a major challenge for the NMT
model to utilize document-level contextual information to
improve translation quality over sentences in a document.
Multimodal NMT. Traditional NMT is a system
whose input and output are both texts. However, human
languages are not only about texts. Recently, there has
been growing interest in multimodal machine translation,
where the input contains other modalities, such as speech,
image and video. Specifically, a typical MMT task is im-
age-text translation, where the meaning of text may be
ambiguous, and the help of images may be needed to de-
termine the correct translation. Another major challenge
is speech translation, which translates source language
speech into target language text and has attracted much
attention in recent years. The traditional speech transla-
tion system follows a pipeline framework, which contains
an automatic speech recognition (ASR) module and a
text machine translation module, leading to the problem
of parameter redundancy, time delay, and error propaga-
tion. Thus it is a major challenge to build new neural ar-
chitectures that can deal with multimodal inputs.
Beyond autoregressive decoding. The existing
NMT model generates the target sentence token by token
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from left to right, which is referred to left to right (L2R)
autoregressive decoding. Although L2R autoregressive de-
coding is easy for the neural model to train and decode, it
still contains the following two drawbacks: 1) Low paral-
lelizability: It generates the i-th target token y; only after
all the previous target tokens (y<;) have been predicted.
2) Limited context: The autoregressive manner predicts
each output word only using previously generated out-
puts but cannot utilize the target-side future contexts
y>i. Thus it remains a challenge to build neural architec-
tures that are beyond the current autoregressive decod-
ing.

Prior knowledge integration. As we mentioned be-
fore, NMT is a data-driven method and it needs ad-
equate parallel sentence pairs. In addition to the parallel
sentence pairs, various prior knowledge (e.g., syntactic
structure, bilingual lexicon and phrase, knowledge
graphs) is also important for NMT. For example, incor-
porating an external bilingual lexicon could help the
NMT model translate the low-frequency word. However,
the current NMT network follows the encoder-decoder
framework, which represents the tokens and semantics in
distributed vectors. Prior knowledge is always represen-
ted by the discrete symbols, making it difficult to integ-
rate prior knowledge into the current NMT framework.
Accordingly, it remains a major challenge to integrate
discrete symbol based knowledge into the distributed rep-
resentation based NMT framework.

4 Representative approaches for each
challenge

In this section, we mainly introduce the approaches
for each challenge on the basis of Transformer. Mean-
while, we also represent the approaches on the basis of
RNMT or ConS2S if these methods are very representat-
ive or model-agnostic.

4.1 Low-resource NMT

To improve the translation performance of low-re-
source NMT, there are several directions: 1) semi-super-
vised NMT, 2) unsupervised NMT, 3) multilingual NMT,
and 4) pre-trained language models for NMT.

4.1.1 Semi-supervised NMT

Although parallel training data are difficult to ac-
quire and expensive, monolingual training data are usu-
ally abundant and easy to obtain. As a result, it is im-
portant to boost the NMT models with monolingual data.
Thus semi-supervised NMT methods have been proposed
to incorporate the source and target monolingual data in-
to NMT.

Incorporating target monolingual data. For tar-
get monolingual data, Sennrich et al.[13] proposed a back-
translation (BT) method for NMT. They first trained a
target-to-source NMT model using parallel training data
and utilized this target-to-source NMT model to trans-
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late monolingual sentences and obtain synthetic parallel
data. Then, they mixed the synthetic parallel data and
original parallel data to learn the source-to-target NMT
model. Due to its model agnostic and good performance,
BT has been widely used, especially when only a small
amount of parallel data is availablel!4. Edunov et al.ll3]
investigated the BT method at a large scale, and their
analysis results showed that sampling based data and
noise beam search based synthetic data could produce
better translation performance than argmax inference
based synthetic data.

Incorporating source monolingual data. There
are also some studies that explore source monolingual
data to improve the translation quality of NMT. Zhang
and Zong(l%l proposed two different strategies to make full
use of source monolingual data. The first is self-training,
which is similar to the BT method and builds synthetic
parallel data with a source-to-target translation model.
The second is multi-task learning with a translation task
and a source-side reordering task.

Incorporating both source and target monolin-
gual data. Many researchers have tried to make full use
of both source- and target-side monolingual data in NMT.
Cheng et al.ll7l presented a semi-supervised approach for
NMT, whose main idea is to reconstruct the source and
target monolingual corpora using an auto-encoder. He et
al.l8] proposed a dual-learning approach for NMT. Their
idea is inspired by the observation that machine transla-
tion tasks have a dual task, i.e., a primal task from
source to target translation and a dual task from target
to source translation. These two tasks could form a closed
loop and help each other. Thus they propose a dual-learn-
ing algorithm to teach each other through a reinforce-
ment learning process.

4.1.2 Unsupervised NMT

Unsupervised neural machine translation (UNMT)[19; 20]
considers a more challenging scenario in which parallel
sentence pairs are unavailable, and there are only massive
source-side monolingual data and target-side monolin-
gual data.

Early studies focused on the bilingual lexicon induc-
tion (BLI) task, which is a word-level translation task in
unsupervised scenarios. BLI aims at inducing word trans-
lations with only monolingual corpora of two languages.
At present BLI has become an important component for
UNMT. Mikolov et al.2ll proposed a method to extend
bilingual dictionaries based on large monolingual data. It
learns a linear mapping to transform the source embed-
dings to target embeddings by minimizing the distance
between the bilingual seeds. Subsequent studies totally
eliminate the bilingual seed dictionary and learn the map-
ping function in a purely unsupervised way22-24],

Motivated by BLI, various UNMT methods[1 20l have
been proposed to achieve the sentence-level translation.
Artetxe et al.l' proposed a UNMT with denoising and
back-translation. Fig.4 shows its architecture. For a sen-
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Fig.4 Model structure of the UNMT in [19] with two steps:
The denoising step reconstructs the sentence z from its noised
version. The back-translation step translates the sentence 1 to
another language xr2, and then inputs xro with the shared
encoder and decoder for L1 to recover the original sentence x 1.

tence xr1 in language L1, the proposed method contains
two-steps to train the model:

1) Denoising step, which reconstructs the sentence
from its noised version 7, with a shared encoder and de-
coder of language L1. The produce can be illustrated as
follows:

!
Tr1 — Encshare — DecLl — TL1 (6)

where Encgna.e is the shared encoder for L1 and L2.
Decy,; is the decoder for [,1.

2) Back-translation step, which translates the sen-
tence xr1 to another language zr2, and then input xro
with the shared encoder and decoder for L1 to recover
the original sentence z11 as follows:

L1 — El’lehare — DeCLQ — TL2 —

Encghare — Decpi — 1. (7)

For a sentence xr2 in language [2, the same two steps
are conducted. By iterating above two-steps for L1 and
L2, a UNMT model could be learned with only monolin-
gual data.

In parallel, Lample et al.20 also proposed a UNMT
model, where the model starts with an unsupervised ini-
tial translation model via a word-by-word translation
learned in an unsupervised way. Then, the model is
trained by a reconstruction task and a back-translation
task. Meanwhile, they also proposed a discriminator to
improve the alignment of sentences in the source and the
target languages.

Furthermore, Artetxe et al.2l and Lample et al.l20] fo-
cused on the traditional SMT and proposed an unsuper-
vised statistical machine translation (USMT), whose per-
formance is comparable with that of UNMT. Since US-
MT and UNMT were proposed, several studies(2”> 28 have
tried to combine UNMT and USMT to improve unsuper-
vised machine translation performance.

Recently, various methods have addressed the multi-
lingual UNMT scenario, where there are some language
pairs for auxiliary languages and monolingual for unsu-
pervised languages, its goal is to learn the translation
model for unsupervised languages with auxiliary parallel
datal29-32],

4.1.3 Multilingual NMT

Standard NMT can only translate a source sentence
into another target sentence. Although achieving prom-
ising results, it is inconvenient to train each separate
NMT model for each language pair, especially when there
is a demand to translate between hundreds of languages.
Multilingual neural machine translation (MNMT)[33: 34
aim to build a unified NMT model to translate multiple
languages. MNMT can not only improve the translation
performance through knowledge transfer, but also facilit-
ate model deployment. Fig.5 shows the comparison of
NMT (Fig.5(a)), a completely shared MNMTB4
(Fig.5(b)) and MNMT with language-independent and
language-specific parameters (Fig.5(c)).

Johnson et al.34 proposed a simple but effective uni-
versal MNMT method. In this method, there is no need
to change the network architecture. The only modifica-
tion is that they introduce a special indicator at the be-
ginning of the source sentence to indicate source and tar-
get language. For example, consider the following Eng-
lish-to-Italy sentence pair:

you probably saw it on the news. — forse lo avete
visto sui notiziari.

It will be modified to:

(2it) you probably saw it on the news. — forse lo
avete visto sui notiziari.

Where (2it) is an indicator to show that the target is
Italy. After adding the tokens to multilingual training
data, they train the MNMT model with all multilingual
language pairs, where all source languages share the same
encoder and all the target languages share the same de-
coder.

Due to its simplicity and low-resource language im-
provement, the universal MNMT has drawn much atten-
tion. Massively multilingual experimental results show
that the completely shared model faces capacity bottle-
necks for retaining the translation performance of each
languagel®. Thus, various researchers have tried to bal-
ance the language-independent and the language-specific
parameters in a whole model36-38. Bapna and Firat38l
proposed an adaptation approach for MNMT, which in-
jects language specific adapter layers into a pre-trained
MNMT model. These adapters could adapt the model to
multiple individual language pairs simultaneously.
Eriguchi et al.B9 proposed a two-stage training for MN-
MT that serves an arbitrary task-specific translation dir-
ection, which first pre-trains an MNMT model and then
fine-tunes the model to the task-specific MNMT model.

Instead of designing language-specific parameters
manually, some subsequent studies have attempted to

@ Springer



520

Machine Intelligence Research 20(4), August 2023

St Encoder Decoder
(1) (T1) =Tl S1 — =TI
0 Encoder Decoder T 9 Shared Shared - T2
(S2) (T2) ’ encoder decoder
S3 Encoder Decoder ™ S3 — — T3
(83) (T3)
(a) NMT (b) A completely shared MNMT
Encoder Decoder
S1——=| Specific parameters Specific parameters |—= T
for S1 for T1
S2 —»| Specific parameters Shared Shared Specific parameters | » T2
for S2 parameters parameters for T2
3 Specific parameters Specific parameters 3
for S3 for T3

(c) MNMT with the language-independent and the language-specific parameters

Fig. 5 Ilustration of MNMT, where S1, S2 and S3 denote the three different source languages. Similarly, T1, T2 and T3 denote three
different target languages. In standard NMT (a), we need to train each separate neural model for each language pair. In universal
MNMT (b), all parameters are shared by all language pairs. In MNMT with language-independent and language-specific parameters (c),
all parameters are divided into two parts: i) language-independent parameters to model the shared knowledge of all languages; ii)
language-specific parameters to model the specific knowledge for each language.

search for a language-specific subspace of the whole mod-
ell4042], Lin et al.[4! proposed a method that dynamically
learns language specific sub-network (LaSS) for MNMT,
in which each sub-network shares partial parameters with
some other languages while also retaining its language-
specific parameters. Wang and Zhangl42 proposed a para-
meter differentiation based MNMT to make the model
decide which parameters should be language-specific and
which ones should be shared. Their model is initially com-
pletely shared by all languages, and then the model de-
tects shared parameters that should be language-specific.
4.1.4 Pre-trained language models for NMT

Pre-trained language models (PTMs) are alternative
ways to improve the translation performance of low-re-
source NMT. Recently, pre-training techniques have at-
tracted much attention in natural language processing
communities. The pre-trained models first learn the uni-
versal language representations through various pre-train-
ing tasks, and then fine-tuning methods are utilized to
transfer the knowledge in pre-trained models to the
downstream tasks. Qiu et al.[3] conducted a comprehens-
ive overview of pre-trained language model for natural
language processing.

Most of the early PTMs, such as ELMol*4 and
BERTI#, achieve state-of-the-art performance in various
language understanding tasks such as sentiment classifica-
tion, natural language inference, and named entity recog-
nition. Inspired by their success, many methods intro-
duce these PTMs to NMT. Edunov et al.[46] incorporated
the ELMol* into the NMT model by 1) inputting ELMo
embeddings into the encoder and the decoder, and 2)
finetuning the ELMo parameters with parallel sentence
pairs. After that, the researchers attempted to enhance
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the NMT with BERT. Zhu et al.4” proposed a BERT-
fused translation model, in which it first utilizes the
BERT to extract representations for a source sequence.
Then, the representations are fused with each layer of the
encoder and decoder in NMT via attention mechanisms.
Similarly, Yang et al.48 proposed three techniques
(asymptotic distillation, dynamic switching, and rate-
scheduled learning) to integrate BERT and NMT.

Considering that directly applying these BERT like
pre-training methods on the natural language generation
tasks, including machine translation tasks, is still incon-
venient, thus some sequence-to-sequence pre-training
methods have been proposed, such as MASSH9, T5[50 and
BARTBbY.

MASS™) (Fig.6) adopts the encoder-decoder frame-
work, where the encoder takes a sentence with a masked
fragment as an input, and the decoder recovers the
masked fragment. MASS can be utilized in various natur-
al language generation tasks, such as NMT and text sum-
marization. BARTPY, a pre-trained model combining bid-
irectional and auto-regressive Transformers, is a denois-
ing auto-encoder with sequence-to-sequence models. Spe-
cifically, BART is pre-trained in two stages: 1) corrupt-
ing the original text with a noise function, and 2) learn-
ing a reconstruction model to reconstruct the original
text. Wang et al.[52] studied the impact of the jointly pre-
trained decoder, and proposed an in-domain pre-training
and input adaptation strategy to overcome the domain
and objective discrepancies.

Different from the above pre-trained language models
in a single language, the recent work attempts to build
many cross-lingual or multilingual pre-trained models to
make the model learn the cross-lingual or multilingual
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Fig. 6 Framework for MASS[#9, which adopts the encoder-decoder framework, where the encoder takes a sentence with a masked
fragment as input, and the decoder recovers the masked fragment. The token “ ” denotes the mask symbol.

knowledge during the pre-training phase, such as
mBERTB3, XLMsB4, mRASPBY, mT666, mBARTH
and CeMATD8., Take the mBART as an example.
mBARTP7 is a multilingual sequence-to-sequence denois-
ing auto-encoder pre-training model, which extends
BART0Y to many languages. The encoder takes the in-
put texts with various noises, and the decoder recovers
the original text. mBART is first pre-trained once for all
available languages, then it can be fine-tuned by parallel

sentence pairs for the NMT tasks.
4.2 Document NMT

Standard NMT methods usually focus on sentence-
level translation. However, this sentence-level translation
cannot address document-level translation. To utilize the
cross-sentence context, many researchers propose docu-
ment-level neural machine translation (DocNMT), which
could improve the translation quality with the help of the
context information in the document. As shown in Fig.7,
the current DocNMT can be roughly divided into two
categories: DocNMT with source-side context®?62 and
DocNMT with target-side context[63-65],

DocNMT with source-side context. As the name
suggests, given a source sentence, DocNMT with source-
side context methods could utilize more source-side con-
text to improve the translation quality. These methods
can be divided into two kinds: 1) single encoder models

. Context
. encoder !

. Source-side
‘
. doc-context

+ Source-side -
. doc-context

Source
sentence

'
'
)
)

(a) Single encoder model (b) Multi-encoder model

DocNMT with source-side context

(¢) Context-cache model

and 2) multi-encoder models.

The representative single encoder model was pro-
posed by Bawden et al.’9, where they first concatenated
a source sentence with its source-side context and then
input this long sequence into the neural model. Based on a
single encoder model, Zhang et al.l%2] studied the transfer
of contextual information via multilingual transfer from
document-rich languages to document-poor languages.

Different from the single encoder model, multi-en-
coder modell6% 61 encodes a source sentence and its con-
texts with different encoders. Voita et al.lf0 proposed a
context-aware DocNMT on the basis of Transformer. In
the model, a source sentence and its contexts are first en-
coded independently. Then, an attention layer is used to
obtain a context-aware semantic representation, which is
utilized to produce the target sentence. Zhang et al.[6l ex-
tend the Transformer with a new context encoder and
proposed a two-step training strategy to fully utilize doc-
ument-level and sentence-level parallel training data.
Lupo et al.l[66] proposed a divide and rule pre-training ap-
proach to enhance the contextual training signal.

DocNMT with target-side context. In addition to
the source-side context, researchers also utilize the target-
side context to improve the DocNMT. These methods
contain two different kinds of methods: 1) the context-
cache model(83: 67 and 2) the two-pass decoder modell64: 63,

The context-cache modell63. 67 utilizes a cache to store
the translation history, which is then used to improve the

Target
sentence

Second-pass
decoder

cache t
4‘ . First-pass | _
Sommbeo-os . decoder !
. Target-side | .
context . ————1 oo Leoo-

(d) Two-pass decoder model

DocNMT with target-side context

DocNMT
Fig. 7 Two categories of DocNMT: 1) DocNMT with source-side context and 2) DocNMT with target-side context.
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translation performance. For example, Tu et al.[3 pro-
posed an approach to augment NMT with a cache-like
memory, which stores the target-side translation history.

Another line of DocNMT with target-side context is
the two-pass decoder model. Voita et al.l[4 introduced a
two-pass DocNMT framework, where a source sentence is
first translated with a context-agnostic model (first-pass),
and the translation is then refined with the context of
several previous sentences (second-pass). Furthermore,
Voita et al.[65] proposed a repair approach for DocNMT,
which could reduce the inconsistencies between sentence-
level translations with only monolingual document-level
data. Meanwhile, dynamic context methods®8! are pro-
posed to select the useful document context for different
DocNMT models.

4.3 Multimodal machine translation

The current NMT models mainly focus on the text
translation scenario where both input and output are text
sentences. However, in practice, there has been growing
interest in multimodal machine translation (MMT),
where the input contains other modalities, such as speech,
images and videos. Here we mainly introduce the two
tasks in MMT: 1) image-text translation and 2) speech
translation.

4.3.1 Image-text translation

The setting of image-text translation (also named as
image caption translation) is that the inputs of the trans-
lation model contain two modals: an image and its text
description in source language. It needs to translate the
description in the source language with the help of an im-
age into the target language. Depending on the utiliza-
tion of visual information, the current image-text transla-
tion methods can be categorized as 1) coarse-grained util-
ization and 2) fine-grained utilization.

Coarse-grained utilization methods[®® 71 represent the
image in the global semantics and then incorporate it by
inputting it as an auxiliary or attending to relevant local
regions. Huang et al.09 enhanced the attention-based
RNMT model by incorporating information in multiple
modalities (image and text). They transform the visual
features as one of the steps in the encoder, and then at-
tend to both the text and the image during decoding.
Calixto et al.l"% proposed a latent variable model to mod-
el the visual and textual features for image-text transla-
tion. Their model could utilize the visual and textual in-
puts during training but does not require images during
testing. Ive et al.l™ll proposed a translate-and-refine ap-
proach, where they generate the first draft only by the
source text, and then improve the first draft with the tar-
get language and visual context.

Fine-grained utilization methods["> 7 aim at incorpor-
ating the entity-level or object-level visual context to im-
prove the translation. Huang et al.[™l proposed an expli-
cit entity-level cross-modal learning method to augment
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the entity representation, where a multi-task method is
utilized to enhance entity representation and improve
text translation. Wang and Xiong[™! presented an object-
level visual context framework, that models the interac-
tion between the visual and text modality by using the
object-text similarity and object-source attention. Li et
al.l" proposed a selective attention multimodal Trans-
former and utilize vision Transformer to extract vision
features.

4.3.2 Speech translation

Speech translation aim to translate a speech in the
source language into text in the target language, which
could facilitate the communication between two speakers
of different languages. The traditional speech translation
system follows a pipeline framework, which is composed
of an ASR module and a text MT module. In the pipeline
system, two modules are learned independently, leading
to the problem of time delay and parameter redundancy.
To overcome these problems, end-to-end speech transla-
tion[™ 78] which directly translates from source language
speech to target language texts, has attracted much at-
tention in recent years. Thus here we focus on the end-to-
end speech translation methods.

Generally, the current speech translation methods can
be divided into the following two types: 1) incorporating
the data of ASR and text translation, and 2) bringing the
feature gap.

Incorporating the data of ASR and NMT. To
train an end-to-end speech translation model, we need
parallel data with audio signals and their corresponding
target translations. Considering the low resources of
training data for speech translation, many researchers
have tried to incorporate the training data of ASR and
NMT into speech translation tasks to improve the per-
formance. Multi-task learning and data augmenta-
tion(?™ 76, ] pre-training8083 and knowledge distill-
ation®487 are the three main directions.

Multi-task learning for speech translation could bet-
ter optimize the parameters of end-to-end model with the
auxiliary tasks, i.e., ASR tasks or NMT tasks(™ 76, Data
augmentation(™ tends to generate synthetic data for
speech translation.

In the pre-training framework, the parameters are first
pre-trained by the ASR training data or MT training
data, and then the pre-trained parameters are utilized as
a parameter initialization of the speech translation
modell8-83], Bansal et al.8 proposed a pre-training meth-
od with ASR training data, which first pre-trains the
parameters on a high-resource ASR task, and then fine-
tunes the parameters with speech translation dataset.
Wang et al.8ll proposed a tandem connectionist encoding
network to reuse all subnets in pre-training, keep the
roles of subnets in consistent, and pre-train the attention
module. WavLM in [82] first learns universal speech rep-
resentations using large-scale unlabelled speech data, and
then adapts the representations to various speech pro-
cessing tasks. Tang et al.33 proposed a speech and text
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joint pre-training to combine the pre-training method and
multi-task method.

The third direction is knowledge distillation based
methods8487, Liu et al.84 proposed a knowledge distilla-
tion based speech translation, where the speech transla-
tion is a student model, whose input is a speech. The ma-
chine translation model is a teacher model, whose input is
a source text. By utilizing a knowledge distillation meth-
od, the speech translation model learns by not only the
correct target texts, but also the output probabilities pro-
duced by the machine translation model. Inaguma et
al.B% proposed a bidirectional knowledge distillation
method, in which they combine a source-to-target NMT
model and a target-to-source NMT model to distill the
knowledge from both forward and backward NMT mod-
els to the end-to-end speech translation model. Ren et
al.B7 introduced two different knowledge distillation
methods for speech translation: attention-level know-
ledge distillation and data-level knowledge distillation.

Bringing the feature gap. The traditional speech
translation model utilizes the frame-level features as
speech representations. The frame-level features create
longer, sparser input sequences than their text equival-
entsl?7 8 89 This increases the memory usage and model
parameters, and thereby impacts the translation quality.
Accordingly, some studies have been proposed to bridge
the gap between frame-level speech features and word-
level text features. Salesky et al.[8 explored the phon-
eme-level speech representations for speech translation.
They first utilized the alignment methods to generate
phoneme labels, and then created phoneme-level feature
representations from variable numbers of frames. Ye et
al.l'"l designed a contrastive learning method for speech
translation to reduce the gap between the representa-
tions of speech and the corresponding transcription.

4.4 Beyond autoregressive decoding

As we introduce in Section 3, the existing NMT mod-
el generates the target sentence token by token from left-
to-right in an autoregressive manner, which contains two
drawbacks, i.e., low parallelizability and limited context.
In recent years, many methods beyond autoregressive de-
coding have been proposed to overcome the drawbacks of
autoregressive decoding. Generally, non-autoregressive
Transformer (NAT)! and bidirectional decoding1-93] are
two main research lines, where NAT can generate all tar-
get words in parallel, and bidirectional decoding can sim-
ultaneously predict the target sentences from both left-to-
right and right-to-left directions.

4.4.1 Non-autoregressive decoding

To speed up the generation and improve the parallel-
izability, Gu et al.[%l first proposed a NAT model to de-
code target tokens in parallel. Given a source sentence x
and target sentence y, NAT calculates the probability
p(y | z;0) as follows:

ply | 2;60) = pu(T | 2;0) [ [ p(ys | 2;6) (8)

i=1

where p;(T | z;0) determines the length of target sentence
T given x. To achieve this, NAT proposes a fertility
predictor, where it first predicts the fertility ©(z;) (the
number of target words that should be translated) for
each source word z; Then the total length is calculated
by T =3 O(x;). Finally, NAT copies the source tokens
based on predicted fertilities and generates the target
sentence in parallel. Meanwhile Gu et al.[%l also proposed
a knowledge distillation method to transfer the knowledge
from autoregressive Transformer (AT) models to NAT
models. The idea of knowledge distillation has been
widely adopted in many studiesl® 9l Ding et al.l%
proposed a monolingual knowledge distillation model,
that leverages monolingual data to perform knowledge
distillation, and trains the NAT model with distilled
monolingual data. Shao et al.’” proposed a diverse
distillation with reference selection for NAT.

Although the remarkable efficiency has been achieved
by NAT, it still suffers from quality degradation com-
pared to the AT models. Thus, many methods have been
proposed to improve the translation of NATO8-101] Wang
et al.l% proposed a semi-autoregressive Transformer-
model (SAT), which keeps the AT global while conducts
NAT locally. Gu et al.[1%] proposed a Levenshtein Trans-
former, which is a partially autoregressive model with the
insertion and deletion operations.

There are also some studies to improve NAT with
multi-pass iterative refinement. Lee et al.}02] proposed a
conditional NAT with iterative refinement, which is de-
signed based on latent variable models and denoising au-
toencoders. Zeng et al.l!03] proposed a plugin algorithm,
called as aligned constrained training, to handle low-fre-
quency constraints in NAT.

4.4.2 Bidirectional decoding

Some methods are proposed to combine the merits of
L2R decoding and R2L decoding. As shown in Fig.§,
these methods can be divided into four categories: 1)
reranking, 2) enhancing agreement between L2R and
R2L, 3) asynchronous bidirectional decoding, and 4) syn-
chronous bidirectional decoding.

The first common studies to combine L2R and R2L
models are rerankingl!04 105 Reranking techniques have
been widely applied in SMT systems. In regard to NMT,
the L2R model first generates n-best target candidates.
Then, the R2L score is utilized to select the best candid-
ate as the final translation.

Another branch of bidirectional decoding is enhancing
agreement between L2R and R2L[: 106, 107 Intuitively,
the translation results from L2R and R2L decoding
should be the same. Thus, agreement information is util-
ized to encourage the neural model to produce better
translations.

Subsequent studiesl®: 108 proposed an asynchronous
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Fig. 8 Four different kinds of methods to achieve bidirectional decoding

bidirectional decoding to combine the L2R and R2L mod-
els. Specifically, Zhang et al.’l added an R2L (or back-
wards) decoder into the standard NMT model. Fig.8(c)
shows the framework, which mainly contains three com-
ponents: 1) an encoder, which encodes the source sen-
tence into the hidden states; 2) an R2L decoder, which
translates target translation in the R2L manner; and 3)
an L2R decoder, which produces the final translation us-
ing L2R decoding with source-side hidden states and R2L
hidden states.

Different from asynchronous bidirectional decoding,
Zhou et al.%2l proposed a synchronous bidirectional de-
coding for NMT, which could predict final outputs using
L2R and R2L decoding simultaneously and interactively.
Fig.8(d) shows the framework, where the L2R decoding
could generate each token y; not only depends on previ-
ously generated tokens (i.e., y1, y2,- -+, yi—1), but also re-
lies on previously predetermined target tokens (i.e., yn,
Yn—1,° ", Yn—i+1) of R2L decoding. Meanwhile, R2L de-
coding also generates each target token in the same way.
Furthermore, Zhou et al.l'09 extended synchronous bid-
irectional decoding by producing target sentences from
both sides (L2R and R2L) to the middle, which signific-
antly speeds up decoding time and also improves the gen-
eration quality.

4.5 Prior knowledge integration

In addition to parallel sentence pairs, prior knowledge
is also an important resource for NMT. According to the
different types of knowledge, these studies can be divided
into three types: 1) bilingual lexicons, 2) phrase tables
and terminologies, and 3) knowledge graphs.

@ Springer

Bilingual lexicons in NMT. Some experimental
results!10, 111 show that the current NMT model has
problems in handling low-frequency words. To improve
the translation accuracy of low-frequency words, many re-
searchers tend to incorporate bilingual lexicons into
NMTI110-113]1 Zhang et al.[!2] proposed to a posterior reg-
ularization method to integrate prior knowledge into
NMT. They represented the prior knowledge, including
bilingual dictionary, phrase table, coverage penalty and
length ratio, in a log-linear model to guide the learning of
NMT model. Arthur et al.['’0 focused on low-frequency
words and proposed a method to incorporate discrete bi-
lingual lexicons into NMT. Feng et al.l!lll proposed a
memory-enhanced NMT, where each memory element
stores a source-target pair, and memory is utilized by the
attention layer to improve the neural model.

Phrase table and terminologies in NMT. The
current NMT generates the target sentence word-by-
word, making it difficult for the neural model to trans-
late phrases or terminologies with multi-words. To better
deal with phrases or terminologies, some researchers tend
to utilize the phrase table[!16-119] and terminologies[120, 121]
in NMT. Wang et al.['’6] proposed a method to integrate
a phrase memory from the SM'T model into the NMT model.
Specifically, the SMT model dynamically generates phrase
memory. Then, the decoder selects a phrase from the
memory or a word from the neural model with a balan-

1 Another solution to overcome the problem of low-frequency
and out-of-vocabulary words is to decompose these words into
smaller granularities, such as hybrid word-character(!14, sub-
word(115] or word piecel”. At present, sub-word methods/!5] have
been widely used to address the low-frequency words and open

vocabulary problem.
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cer. Dahlmann et al.l''7l proposed a hybrid search that
extends NMT beam search with phrase-based models.
During the beam search, their method inserts phrasal
translations into NMT, and then the various scores from
the SMT and NMT are utilized in a log-linear model to
decide the final translation. Xu et al.[l19 proposed attent-
ive phrase representations for NMT, where it first gener-
ates phrase representations from the corresponding token
representations, and then incorporates the phrase repres-
entations into Transformer to capture long-distance rela-
tionships.

Knowledge graphs in NMT. Knowledge graphs
(KGs) contains lots of structured facts on entities. The
current KG is always organized with triples (h, 7, t),
where h and t indicate head and tail entities, and r de-
notes their relation. To utilize these KGs and enhance the
entity translation in KGs, many studies incorporate KGs
into NMT[I22-124] Zhao et al.l'22 proposed a KG en-
hanced NMT method. It first induces the translation res-
ults of new entities via entity alignment. Then, it gener-
ates pseudo parallel sentence pairs with the induced en-
tity pairs. Finally, the NMT model is jointly learned with
the original and pseudo parallel sentence pairs. DEEP(124]
is a denoising entity pretraining method to leverage
monolingual data and a knowledge base to improve
named entity translation accuracy. Meanwhile, to further
improve the translation quality of entities, it also utilizes
the multi-task learning to fine-tune a pre-trained NMT
model on both entity-augmented monolingual data and
parallel data.

Table 1 summarizes the mentioned challenges in NMT
and the corresponding partial representative methods.
There are still many topics which are involved in NMT
while not mentioned in this article, such as robustness,
interpretability, and enhancing the current training ob-
jectives.

5 Resources and tools

Thanks to the open research environment in the NMT
community, there are many open resources and toolkits,
which significantly improve development. Table 2 lists
the available and useful corpora for different machine
translation tasks.

Text parallel data. There are several widely used
text parallel data for machine translation tasks. The Con-
ference on Machine Translation (WMT)? conducts differ-
ent shared translation tasks and releases the correspond-
ing parallel data in each year. In addition, the Interna-
tional Conference on Spoken Language Translation
(IWSLT)3 is also an annual scientific conference, that or-

2 WMT was held 10 times as a workshop from 2006 to 2015.
Since 2016, it is was held as a conference in Berlin, Germany.
The latest WMT 2022 can be found in https://www.statmt.org/
wmt22/index.html.

ganized many evaluation campaigns and published a large
amount of parallel data. The China Conference on Ma-
chine Translation (CCMT)4, organized by the Chinese In-
formation Processing Society of China, also conducts ma-
chine translation evaluations each year. The evaluations
in CCMT mainly focus on Chinese-centric translation
tasks (such as Chinese-to-English, Mongolian-to-Chinese,
Tibetan-to-Chinese, etc.) in different domains (such as
daily conversation translation, government document
translation, news translation, etc.). All evaluation parti-
cipants in CCMT could acquire the corresponding paral-
lel data for free.

We can also find the parallel data from the LDC? and
Europarl®. Meanwhile, a widely used project is OPUS?,
which is a growing collection of parallel texts from the
web.

Image-text translation data. Compared to text
parallel data, the image-text translation data are quite
rare. The most widely used is the Multi30k dataset[l27],
which extends the Flickr30K dataset (the original de-
scriptions are English) with German translations and
German descriptions.

Speech translation data. The widely used end-to-
end datasets for speech translation are Fisher and Call-
homel!3l], TED®48  Augmented LibriSpeech!28] and
MuST-C[29].

Document translation data. The parallel docu-
ment-level data mainly include TED[30] News-Comment-
ary? and Europarl(126],

There are also many open-source toolkits for the re-
search and development of NMT systems. Table 3
provides some broadly used toolkits, including the pro-
gramming language and the framework. In addition, there
are some other survey papers on NMTI[!32-134],

6 Extensions to other tasks

Although Transformer was originally proposed for
NMT, it now goes far beyond MT and extends to more
tasks. Many studies apply Transformer to different tasks
and achieve state-of-the-art performance. In this section,
we briefly introduce the application of Transformer in
other tasks, including NLP tasks (such as pre-trained lan-
guage models, summarization, knowledge graphs, dia-
logue), the computer vision tasks (image classification,
image generation), audio tasks (automatic speech recogni-
tion and speech synthesis) and multi-modal tasks.

3 https://iwslt.org/

4 The latest CCMT 2022 can be found in http://sc.cipsc.org.cn/
mt/conference/2022/

5 https://www.ldc.upenn.edu/

6 https://www.statmt.org/europarl/

7 https://opus.nlpl.eu/

8 http://www.nlpr.ia.ac.cn/cip/dataset.htm.

9 https://www.casmacat.eu/corpus/news-commentary.html
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Table 1 Challenges in NMT and partial representative methods

Challenges

Main directions

Description

Methods

Semi-supervised
NMT

Improving NMT with source and target

monolingual data

Using source datall6]
Using target datalt3]

Using both source and target datall7, 18]

Unsupervised
NMT

Low-resource NMT

Building a NMT model with only massive source
and target monolingual data

Unsupervised NMT19, 20]
Unsupervised SMT25, 26]
Combining UNMT and USMT27, 28]

Multilingual UNMTI29, 30]

Multilingual NMT multiple languages

Parameters completely shared[34

Building a unified NMT model to translate

Balance the language-independent and
language-specific model[40-42]

Pre-training for

Enhancing NMT with pre-trained language

Utilizing ELMol46l and BERT47: 48]

Sequence-to-sequence pre-trainingl49: 51]

NMT models
Multilingual and cross-lingual pre-
training(53-55]
DocNMT with source-side context[59-62]
Document NMT DocNMT Enhancing NMT with document context

DocNMT with target-side context[63, 64]

Image-text NMT the target

Multi-modal NMT

Translating a source sentence and an image into

Coarse-grained utilization(69-71]

Fine-grained utilization[72-74]

ht lati .
Speech translation text in target language

Translating a speech in source language into a

Incorporating the data of ASR and NMT80-85]

Bringing the feature gapl77: 88, 89]

Non-autoregressive

NATI90]

Semi-NAT8]

Generating all target words in parallel

decoding
NAT with multi-pass iterative refinement[®%:
102]
Beyond
autoregressive . 5
kingl104, 105]
decoding Reranking
i 8,106, 107]
Bidirectional Combining the left-to-right and right-to-left Enhancing agreement! ]
decoding decoding Asynchronous bidirectional decodingl®!]
Synchronous bidirectional decoding[92]
Bilingual lexiconsl[!10: 111]
Prior knowledge Knowledge Enhancing NMT with various symbolic

integration enhanced NMT knowledge

Phrase tables[116-119] and terminologies[20: 121]

Knowledge graphsl122-124]

6.1 Extensions to other NLP tasks

Transformer for pre-trained language models.
A recent huge breakthrough in NLP is pre-trained lan-
guage models, which are first pre-trained on a large cor-
pus and then utilized in different downstream NLP tasks
to avoid learning a model from scratchl!3%l. Currently,
Transformer has become the mainstream architecture for
pre-trained language models in three different ways:

1) Transformer encoder: Many pre-trained language
models for the natural language understanding tasks use
the Transformer encoder as their architectures. The most
repressive model is BERTM45, which utilizes masked lan-
guage modelling and next sentence prediction as the pre-
training objective. Furthermore, many BERT-like mod-
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els have been proposed on the basis of BERT, such as
RoBERTal'36] and SpanBERT!37],

2) Transformer decoder: Meanwhile, some studies util-
ize the Transformer decoder as the backbone architec-
tures. For example, the generative pre-trained Trans-
former (GPT)[38] and its subsequent versions (GPT-2[139
and GPT-3[10)) pre-trained the language models in a
zero-shot setting with the Transformer decoder.

3) Transformer encoder-decoder: There are also some
pre-trained language models with the standard Trans-
former encoder-decoder architecture, such as MASS[49,
T550 and BARTPY, which have been introduced in Sec-
tion 4.1.4.

Transformer for summarization. Text summariza-
tion is an important NLP task to generate natural lan-
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Table 2 Some available resources for NMT

Main language

Types Corpus name pairs
WMT *
IWSLT *
CCMT *
Text parallel data
LDC *
Europarl(125] *
OPUS!!26] *
Image-text translation MultizoK[127] En = De
data
Augmented
LibriSpeechl128]
y En =
TEDB4
Speech translation data De/Fr/Zh/Ja
MuST-Cl129] En= 14
languages!?
Fisher and callhome En = Es
TEDI[130] *
Document translation N *
ews-commentary
data
Europarl(129] *

guage summaries that compress the information in a
longer text. The current summarization also follows the
encoder-decoder framework. Different NMT, the encoder-
decoder framework in text summarization encodes a docu-
ment and then generates summary with the decoder. In-
spired by the remarkable progress of Transformers in
NMT, many methods also apply the Transformers to text
summarization tasks. Liu et al.l4l] considered Wikipedia
as a multi-document summarization where the inputs are
topics and documents, and the target is the Wikipedia
text. They utilize Transformer decoder to achieve this
goal. Recently, many approaches have applied the Trans-
former-based pre-trained language model to summariza-
tion, such as BARTG! and PRIMERA[42. PRIMERA[42]
uses the gap sentence generation objective with an entity
pyramid, in which the model masks salient sentences then
it generates these important sentences.

Transformer for knowledge graph learning.
Knowledge graphs contain much structured human know-
ledge and have drawn great research attention in NLP
and knowledge mining!43l. Transformer is also widely
utilized in recent advances of knowledge graph research.
Here, we introduce the application of Transformer in
knowledge representation learning. Knowledge representa-
tion learning (KRL) aims at mapping entities and rela-
tions into low-dimensional vectors while capturing their
semantic meanings. The Transformer in KRL is helpful in
compositional representation models or contextualized

10 Arabic, Chinese, Czech, Dutch, French, German, Italian, Persi-
an, Portuguese, Romanian, Russian, Spanish, Turkish, Vietn-

amese

representation model. In compositional representation
models, entity embeddings are composed of token embed-
dings. Saxena et al.l44] treated knowledge link prediction
as sequence-to-sequence tasks and then train a Trans-
former to learn the knowledge representation and com-
positional functions. Other models utilize the Trans-
former to get the contextualized knowledge representa-
tion. CoLAKE[4% dynamically represents an entity with
the knowledge context and language context and jointly
learns knowledge and language representation in a uni-
fied representation space.

Transformer for dialogue. Dialogue systems are a
popular topic in NLP and are widely used in daily life.
Dialogue systems contain two kinds of research lines:
task-oriented dialogue systems, which serve as assistants
to solve specific tasks, and open-domain dialogue systems,
which communicate with human without task restric-
tions. Transformers are widely utilized in both task-ori-
ented dialogue systems and open-domain dialogue sys-
tems. Henderson et al.[!46] proposed a response selection
model for task-oriented dialogue with the Transformer
framework, which first pretrains the response selection
model with general-domain corpora and then fine-tunes
the pretrained model with the target dialogue domain.
Zhang et al.ll4”) proposed a dialogue generative pre-
trained Transformer, which is trained on large-scale dia-
logue pairs and sessions from Reddit. Ma et al.l48] fo-
cused on the multimodal task-oriented dialog systems and
propose a unified Transformer semantic representation
framework, where a Transformer encoder is used to
project all the multimodal features into a unified semant-
ic space and a hierarchical Transformer response decoder
is utilized to generate target text responses.

Transformer for question answering. Textual
question answering (QA) aim to provide precise answers
to questions from users in natural language. Specifically,
textual QA is studied under two task settings based on
contextual information, i.e., machine reading comprehen-
sion (MRC) and open-domain QA (OpenQA). Specific-
ally, MRC tends to make machines answer a question
given specified context passages. In contrast, OpenQA
tries to answer a given question without any specified
context. It requires the model to first search for the relev-
ant documents as the context. Bao et al.l49 analysed
matching components and Transformer encoding for
MRC. Recently, Transformer-based pre-trained lan-
guages models have also been widely utilized in MRC and
have achieved remarkable progress/!5. For OpenQA task,
instead of extracting answer spans, researchers utilize
Transformer to generate the answers. Masquel!5!l utilizes
the Transformer and multi-source abstractive summariza-
tion to learn the multi-style answers for OpenQA. Trans-
former-XH[%2 boosts Transformer with structured text
data for complex reasoning OpenQA. Similar to the oth-
er tasks, some OpenQA systems[!53] also borrow Trans-
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Table 3 Some broadly used open-source NMT toolkits
Toolkits Language Framework URL
OpenNMT Python Pytorch https://opennmt.net/

Fairseq Python Pytorch https://github.com/facebookresearch/fairseq
Tensor2tensor Python Tensorflow https://github.com/tensorflow/tensor2tensor

Sockeye Python Pytorch/MXNet https://github.com/awslabs/sockeye

Marian C++ * https://marian-nmt.github.io/

THUMT Python PyTorch/TensorFlow https://github.com/THUNLP-MT/THUMT
Hugging face Python PyTorch/TensorFlow https://github.com/huggingface/transformers

former based pre-trained language models to generate

more natural and precise answers.

6.2 Extensions to computer vision

Inspired by the success of Transformer in the field of
NLP, researchers have applied Transformer to computer
vision (CV) tasks to replace traditional CNNs[54-156],
Here, we briefly introduce the application of Transformer
for image classification and image generation.

Transformer for image classification. Early stud-
ies incorporated the self-attention strategy on the basis of
CNN-based architectures.
(ViT)l%) a pure architecture Transformer-based archi-

Later, vision Transformer
tecture, was proposed for image classification task. ViT
first splits an image into a sequence of patches, which are
treated as tokens in NLP. Then, patch embeddings are
fed into a standard Transformer encoder and the hidden
states are calculated. Similar to BERT, a special token
“class” is added into the input sequence, and its corres-
ponding hidden states are utilized to perform image clas-
sification. Following the paradigm of ViT, many ViT
variants have been proposed, such as Transformer iN
Transformer (TNT)I57 Swin Transformer(!55], T2T-
ViTl5%8], and CSWin Transformer(159],

Transformer for image generation. Transformers
are also widely utilized in image generation task. Trans-
generative adversarial networks (TransGAN)[I60 presents
a pure Transformer-based GAN architecture, where a
memory-friendly Transformer-based generator with mul-
tiple stages could gradually increase the feature map res-
olution and a multi-scale Transformer-based discriminat-
or could capture the semantic contexts and low-level tex-
tures simultaneously. Esser et al.[l6l] proposed a taming
Transformer for image generation, where they use CNNs
to learn a codebook of context-rich visual parts and util-
ize Transformers to model their composition within high-
resolution images.

6.3 Extensions to audio tasks
Since Transformer has shown its great advantage in
NLP and CV tasks, now it has also been extended to

many audio-related tasks, such as audio classification[l62],

@ Springer

speech recognition[l63 164 and speech synthesis[l65-167],
Here, we briefly introduce the Transformer for speech re-
cognition and speech synthesis.

Transformer for speech recognition. Automatic
speech recognition (ASR) can also be treated as a se-
quence-to-sequence task where the input is a speech se-
quence, and the output is its transcribed text sequence.
Dong et al.[163] introduced the Transformer into speech re-
cognition and proposed a speech-Transformer model.
Tian et al.l'64 proposed a synchronous transformer (Sync-
Transformer) for online speech recognition. Sync-Trans-
former combines the Transformer and self-attention
transducer. The self-attention in the Sync-Transformer
encoder could make the node attend only its left context.
Then its decoder starts to predict tokens immediately
after a chunk of the state sequence is produced by the en-
coder.

Transformer for speech synthesis. Speech syn-
thesis, or text-to-speech, aims at synthesizing natural
speech given text and is a hot research topic. Li et al.[163]
proposed a Transformer-based speech synthesis model,
where the self-attention mechanism is introduced to re-
place the traditional RNNs in the encoder and decoder.
Some subsequent studies are proposed to enhance the ro-
bustness of the Transformer-based speech synthesis mod-
el. Meanwhile, the Transformer-based pre-trained lan-
guage model is also widely utilized in speech synthesis to
enhance text representation(166: 167,

6.4 Extensions to multi-modal tasks

Due to its flexible and expansible architecture, Trans-
former has also been applied in many multi-modal scen-
arios. Here, we briefly introduce the application of Trans-
former for visual question answering and multi-modal
pre-training.

Transformer for visual question answering.
Visual question answering (VQA) aims at generating an-
swers given a question in natural language and a corres-
ponding image. Recently, VQA has attracted much atten-
tion and Transformers also play an important role in this
task. Hu et al.168] proposed a multi-modal Transformer
for VQA, where they represent the semantic embeddings

of different modalities into a common space and self-at-
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tention is applied to model inter- and intra-modality con-
text. Meanwhile, LaTrl!69 is a layout-aware Transformer
for scene-text VQA and consists of three building blocks:
A Transformer-based language block which is pre-trained
on only text, a layout-aware denoising pre-training block,
and a ViT block to extract the visual features.

Transformer for multi-modal pre-training. In-
spired by success of Transformer-based pre-trained lan-
guage models (e.g., BERT), researchers have proposed
various Transformer-based multi-modal pre-training mod-
els, such as SpeechBERT[7 to model audio and text,
VisualBERTI7 and VL-BERTI[7 to model vision and
text, VideoBERT!I™] to model the video and text.
CLIPI'™ is a contrastive language-image pre-training
model, that takes natural language as a supervision to
learn image representations. CLIP jointly trains an im-
age encoder and a text encoder by utilizing a contrastive
objective to predict the correct pairings of (image, text)
in the training set. UniT'7 is a multi-modal multi-task
pre-training model across different domains via a unified
Transformer. UniT jointly learns 7 different visual and
textual tasks including object detection, visual entail-
ment, visual question answering, and natural language
understanding tasks. Experimental results show that
UniT could improve the performance of several multi-
modal tasks.

In conclusion, Transformer has demonstrated its ar-
chitectural superiority to model various NLP, CV and au-
dio tasks. Furthermore, Transformer has shown its poten-
tial for building a general-purpose model to handle a vast
number of multi-modal applications.

7 Current status and analysis

NMTs, especially the Transformer-based NMT, have
proven their power for MT tasks. However, we should be
soberly aware that NMT is still far from satisfactory. In
this section, we briefly introduce the current status of
NMT.

For formal texts in high-resource language
pairs, the current NMT can produce high-quality
translation results. It must be admitted that tremend-
ous progress has been made by the Transformer-based
NMT model. In the date-rich language pairs (such as
Chinese-English and German-English), the translation
quality of the formal written text (such as news, reports
or daily conversations) by NMT models is quite high.
Even the experimental results from Hassan et al.l8 in the
WMT 2017 news Translation task from Chinese to Eng-
lish show that “the Translation quality is at human par-
ity when compared to professional human translations”.
Due to its low cost, high efficiency, and high translation
quality, NMT could basically meet the translation de-
mands and has been widely used.

Low-resource translation is still far from satis-
factory. Although many methods have been proposed for

low-resource NMT, the quality of low-resource transla-
tion is still lower than that of high-resource translation.
As a data-driven method, Transformer still heavily relies
on parallel training data. For the low-resource transla-
tion, NMT is only helpful when the users just want to ac-
quire the topic or general gist of the input sentences or
documents.

Some language phenomena are still not well
addressed. It is an important issue for an NMT model
to deal with many special language phenomena, such as
unseen words, entities and terminologies, abbreviations,
idioms, omissions, and ambiguity. More seriously, lan-
guage is dynamic and new language phenomena appear
almost every day. However, the current NMT models still
learn the translation knowledge from parallel training
data and cannot handle these phenomena well. These
problems occur widely and severely harm the translation
quality of NMT.

The utilized information in multi-modal NMT
is limited. Take the speech translation as an example.
The current speech translation only incorporates speech
signals. In face-to-face communication scenarios, in addi-
tion to the speech signals, some paralinguistic features,
such as tone of voice, posture and gesture, are also im-
portant for the neural model to recognize the intention,
desire and mood of speakers, while such paralinguistic
features are not taken into consideration.

The improvement of pre-trained languages
model for the NMT task is not that significant.
Although many pre-training language models for NMT
have been proposed to improve the translation quality,
the improvement of the translation task is significantly
less than that of other NLP tasks, such as text classifica-
tions, question answering, and named entity recognition.
Potential evidence is that in the WMT 2021 Biomedical
Translation Shared Task(176, in all eight participating
teams, only two teams utilize the pre-trained language
models. In contrast, the leaderboards of the general lan-
guage understanding evaluation (GLUE) benchmark!!
and superGLUE!? are almost various pre-training lan-
guages models.

Overall, Transformer-based NMT has brought the
quality of NMT up to a new stage. For high-resource
NMT with formal texts, the translation quality of the
current NMT model can basically meet the translation
demands for daily use. While in many scenarios, such as
new language phenomena, multi-modal translation and
low-resource translation, current Transformer-based NMT
models still have a long way to go.

8 Future research directions

As we mentioned above, many NMT approaches have
been proposed and have achieved remarkable progress,

1 https://gluebenchmark.com/leaderboard
12 https:/ /super.gluebenchmark.com/leaderboard
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while many challenges remain. In this section, we list
some potential and important research directions.

Robust NMT. In addition to the formal written
texts (such as news and reports), in practice, the NMT
model faces various informal texts with different noises,
such as speech noises from the ASR model, noisy web-
crawled corpora or limited exposure to training data. Al-
though many methods have been proposed to improve the
robustness of NMT, there remains a huge gap between
the translation quality with clean input and the real noise
inputs. In addition, the current NMT models are also vul-
nerable to adversarial attacks, which are also a serious
problem in commercial systems. Therefore, it remains a
major challenge to design more robust NMT models to
deal with informal texts with real noise inputs and ad-
versarial attacks.

NMT with broader background knowledge. In
many cases, only source sentences or speech cannot sup-
port the NMT model to produce the desired translation
result. Meanwhile, some language phenomena, such as
terminologies, abbreviations, idioms, and omissions, are
still not well addressed. To overcome these problems, a
potential solution is to combine broader background
knowledge, which includes not only the mentioned syn-
tactic structures, bilingual lexicons, phrase tables and ter-
minologies, and knowledge graphs but also commonsense
knowledge, local culture, history, etc. The knowledge is
hard to learn from parallel sentence pairs. Accordingly, it
remains a major challenge to represent and incorporate
broader background knowledge into NMT.

Designing better pre-trained language models
for low-resource NMT. Recently, the emergence of
pre-trained language models has brought the NLP com-
munity to a new era. Although many methods are pro-
posed to utilize the pre-trained language models for
NMT, the improvement of the translation task is not as
great as that of other natural language understanding
tasks. Thus, designing better pre-trained language mod-
els or multilingual pre-trained language models for low-re-
source NMT's is an important future research direction.

Incorporating more information for multi-mod-
al NMT scenarios. For speech translation, despite of
large improvements, the end-to-end framework currently
cannot perform on par with the cascaded method in
many cases. Meanwhile, paralinguistic features, such as
tone of voice, posture and gesture, also need to be taken
into consideration. The current image-text translation
only addresses the translation of image captions. In addi-
tion, scene image text translation is another important
scenario, but it has attracted little attention. Scene im-
age text refers to text in natural scenes, captured in its
native environment, such as the scanned document, sign-
boards and product packaging. Thus scene image text
translation remains a major challenge due to complex
backgrounds, various fonts, and imperfect imaging condi-
tions.

@ Springer
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