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Abstract: Automatic segmentation and classification of brain tumors are of great importance to clinical treatment. However, they are
challenging due to the varied and small morphology of the tumors. In this paper, we propose a multitask multiscale residual attention
network (MMRAN) to simultaneously solve the problem of accurately segmenting and classifying brain tumors. The proposed MMRAN
is based on U-Net, and a parallel branch is added at the end of the encoder as the classification network. First, we propose a novel
multiscale residual attention module (MRAM) that can aggregate contextual features and combine channel attention and spatial atten-
tion better and add it to the shared parameter layer of MMRAN. Second, we propose a method of dynamic weight training that can im-
prove model performance while minimizing the need for multiple experiments to determine the optimal weights for each task. Finally,
prior knowledge of brain tumors is added to the postprocessing of segmented images to further improve the segmentation accuracy. We
evaluated MMRAN on a brain tumor data set containing meningioma, glioma, and pituitary tumors. In terms of segmentation perform-
ance, our method achieves Dice, Hausdorff distance (HD), mean intersection over union (MIoU), and mean pixel accuracy (MPA) val-
ues of 80.03%, 6.649 mm, 84.38%, and 89.41%, respectively. In terms of classification performance, our method achieves accuracy, recall,
precision, and F1-score of 89.87%, 90.44%, 88.56%, and 89.49%, respectively. Compared with other networks, MMRAN performs better
in segmentation and classification, which significantly aids medical professionals in brain tumor management. The code and data set are
available at https://github.com/linkenfaqiu/MMRAN.
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1 Introduction

Brain tumors are characterized by a high risk and in-
cidence, such as meningioma, glioma and pituitary tu-
mors, which are among the major diseases threatening
human health[ll. Meningiomas and pituitary tumors are
usually benign, while gliomas are common malignant tu-
mors. If the diagnosis is incorrect, it will delay patient
treatment?l. Currently, medical imaging diagnosis mainly
requires doctors to determine the lesion region by ob-
serving magnetic resonance imaging (MRI) continuously
and outlining the lesion manually. Manual outlining is a
tedious and subjective task, and the accuracy of tumor
contouring is mainly dependent on the doctor's experi-
ence. The long time spent processing MRI also tires the
doctor and leads to an increased rate of misdiagnosis.
With the rapid development of deep learning in recent
years, a new path has been opened for medical image pro-
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cessing based on deep learning. Tumor segmentation and
classification is one of the applications of deep learning in
the medical field. An accurate diagnostic model helps in
the surgical planning and postoperative observation of
patients and even helps to improve their survival ratell.
Therefore, the automatic segmentation and classification
of brain tumors are essential for the future development
of clinical treatment.

Convolutional neural networks (CNNs) have shown
compelling results in the processing of natural and medic-
al images due to their powerful feature extractionl, in-
cluding residual networks (ResNet)l®l, DenseNetl0, fully
convolutional neural networks (FCN)[, U-Netl], and
generative adversarial networks (GANs)l¥. Many studies
perform segmentation and classification as two separate
tasks. This separation often leads to ignoring the informa-
tion associated with each task when acquiring features,
making it difficult to obtain a more accurate model per-
formance. Compared to single-task learning networks
(STLs), multitask learning (MTL) is a general approach
to improving generalization by learning tasks in parallel
and is mainly divided into hard parameter sharing meth-
ods and soft parameter sharing methods(l%. Hard para-
meter sharing learns multiple tasks by sharing network
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layers and task-specific layers. In soft parameter sharing,
each task learns a corresponding network and shares in-
formation such as gradients. Since soft parameter sharing
assigns a corresponding network to each task, it requires
many additional parameters. In contrast, the multitask
learning network reduces the training time by using hard
parameter sharing, achieves better accuracy than single-
task learning models, and significantly reduces the risk of
overfitting.

Compared with natural images, brain tumor lesion re-
gions often occupy only a tiny area in brain MRI, mak-
ing it difficult for neural networks to extract effective fea-
tures of the tumor. The attention mechanism, as an ef-
fective means of feature screening and enhancement, has
been widely applied in many fields of deep learning. At-
tention-based network models enhance key information
and suppress useless information by establishing dynamic
weight parameters on information features(lll. Therefore,
it is a good way to add an attention mechanism into the
multitask learning network to make the network more fo-
cused on the tumor regions.

The loss function of a multitask learning network con-
sists of the loss function of each task. During network
training, the loss of each task may not be on the same or-
der of magnitude. As training proceeds, the loss reduc-
tion rate of each task can also be inconsistent. This in-
consistency makes the model focus on training tasks with
fast loss reduction and underlearning tasks with slow loss
reduction, which ultimately results in the model having
better accuracy only for tasks with faster learning and
underperformance for other tasks with insufficient learn-
ingl2. Thus, reasonably setting the weights of the loss
function for each task for a multitask learning network
can enable each task to be adequately trained.

Previous studies usually added the doctor's prior
knowledge of the tumor to the network’s loss function to
enhance the model’s effectiveness. As a traditional image
segmentation algorithm, the active contour model con-
strains the curve near the tumor region by establishing an
energy equation. Chen et al.l!3] added the active contour
model as prior knowledge to the loss function of the net-
work, making the network more focused on the shape of
the tumor. However, adding overly complex prior know-
ledge tends to make the model difficult to converge and
affects the model's accuracy. Therefore, it can improve
the accuracy of the segmentation task by adding prior
knowledge of brain tumors to the postprocessing of seg-
mented images without affecting the training.

In this paper, we propose a multitask multiscale resid-
ual attention network (MMRAN) to simultaneously solve
the problem of accurately segmenting and classifying
brain tumors. The contributions of this paper are as fol-
lows:

1) We propose a novel multiscale residual attention
module (MRAM), which can effectively extract multiscale
information at a more granular level. We add it to the
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shared parameter layer of MMRAN to simultaneously im-
prove the segmentation and classification performance.

2) The effect of different training methods on the
model accuracy is investigated by changing the weights of
the loss function of each task during training. The res-
ults show that the training method that dynamically ad-
justs the weights of each task can achieve better accur-
acy while avoiding extensive experimentation to determ-
ine the optimal weight for each task.

3) Prior knowledge of brain tumors is added to the
postprocessing of segmented images to improve the final
segmentation accuracy of the model through a fast and
efficient traditional image processing method. By filling
holes inside specific segmented images, the processed im-
ages are made complete and closer to the ground truth.

The remaining sections of this paper are as follows.
Section 2 presents the work related to attention mechan-
isms and multitask learning algorithms. Section 3 intro-
duces the proposed MMRAN model in detail. Section 4
analyses MMRAN's performance and compares it with
other methods. Finally, we conclude our work in Section 5.

2 Related work

2.1 Attention mechanism

Attention mechanisms have been widely used in deep
learning tasks such as natural language processing, speech
recognition, and computer vision, with remarkable
results!4],

The squeeze-and-excitation (SE) module proposed by
Hu and Sunl!%] enhances the expression of the neural net-
work by explicitly modelling the correlation between fea-
ture channels and filtering out channel-specific attention.
Roy et al.lll proposed a spatial and channel SE (scSE)
module consisting of channelwise attention and spatial-
wise attention. After computing channel attention and
spatial attention in parallel, both calculations are
summed up as input data for the next level. Woo et al.l!”]
showed experimentally that channel attention modules
and spatial attention modules can be combined in paral-
lel or sequential arrangement and that better results can
be achieved by the sequential arrangement of channel at-
tention modules first. Meanwhile, global max pooling
(GMP) can collect a different target feature representa-
tion from global average pooling (GAP). The combined
use of both can result in a more refined attention chan-
nel. Although the attention module can improve the mod-
el's accuracy, simply overlaying the attention module will
degrade the model’s performance. This is mainly because
the dot product degrades the value of the deep feature
map, and the output feature map corrupts the perform-
ance of the main branchl!8],

Based on the above research, we improve the scSE
module and add the multiscale module and residual con-
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nection to it to enhance the effectiveness of the attention
module.

2.2 Medical image processing

Wu et al.[l¥ proposed a U-shaped network with a pyr-
amidal self-attentive module to capture long-range de-
pendencies and achieved better performance on the retin-
al vessel segmentation task. To fully utilize the correla-
tion information among tasks, the Y-Net proposed by
Mehta et al.l20] takes a two-stage structure to output seg-
mentation and classification results. Chen et al.2!] used a
multitask U-Net model, which added two classification
modules in the middle and last layers of the U-Net net-
work. Based on FCN, He et al.22l added a fully connec-
ted layer at the end of U-Net to output segmentation and
classification results.

At present, few studies apply the attention mechan-
ism to multitask learning networks. To improve the at-
tention of the network to the lesion region, we add the
attention mechanism to our network.

3 Proposed method

3.1 Network structure of MMRAN

MMRAN adopts the hard parameter sharing method,
and its structure is shown in Fig.1. The network consists
of a shared encoder, a segmentation task network, and a
classification task network. The convolutional module in
the network consists of a 3x3 convolutional layer, a
batch normalization (BN) layer, and a rectified linear
unit (ReLU) activation layer, sequentially. The maxim-
um pooling operation is used for downsampling, while the
transposed convolution operation is used for upsampling
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with one-half of the original number of channels. The seg-
mentation and classification tasks share the same en-
coder structures, and attention modules are added to the
shared encoder. Since the fully connected layer requires
parameters to be determined in advance, it is generally
necessary to meet this requirement by scaling the image
to a fixed size. However, scaling the image can lead to the
loss of key texture information, affecting the segmenta-
tion and classification results of the lesion area. There-
fore, a spatial pyramid pooling (SPP) layer23 is added
before the fully connected layer for the classification task,
enabling the network to handle images of arbitrary resol-
ution size.

3.2 Multiscale residual attention module
(MRAM)

As shown in Fig.2, the MRAM consists of three main
components: a multiscale module, channel attention mod-
ule, and spatial attention module. The MRAM makes the
following four changes to the scSE module. First, the
multiscale feature map is obtained by implementing the
multiscale module on the input features. Second, the
GMP branch is added to the channel attention module,
which is computed in parallel with the GAP branch to
obtain the channel attention weight map. Third, the
channel attention module and the spatial attention mod-
ule are executed sequentially, and the channel attention
module is executed first. Finally, the residual (RES) con-
nection is added to the MRAM.

3.2.1 Multiscale module (MSM)

Given a feature map F € RE*F*W a5 input, the
MRAM constructs the multiscale module to aggregate the
multiscale features. As shown in Fig. 3, the features of the
network go through four convolutional layers with differ-
ent convolutional kernel sizes to obtain features of differ-
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Fig. 1 Structure of the proposed network
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Fig.3 Structure of the multiscale module, where k is the kernel
size, s is the stride, ¢ is the number of channels.

Q

ent scales.
The multiscale feature map generation function is giv-
en by the following equation:

F¢:Conv(k,~><ki)(F), 1 =0,1,2,3 (1)

where the i-th kernel size k; =2x (i+1)+1 and F;
denotes the feature map with different scales. The whole
preprocessed multiscale feature map can be obtained by
concatenating these feature maps as

F':COncat([Fo,F1,F2,F3]). (2)

After obtaining multiscale features, the MRAM se-
quentially executes the channel attention module and the
spatial attention module to successively obtain a one-di-

RC><1><1 and a

RIXHXW.

mensional channel attention map M. €
two-dimensional spatial attention map M, €
The following describes the channel attention module and
the spatial attention module.
3.2.2 Channel attention module

For the input feature mapping F’, two different con-
text descriptions are generated by GAP and GMP for the
GAP feature F¢, € RO*'™! and the GMP feature
FC.n € RO The process of GAP is described as fol-
lows:

1 H W
Yc—avg = m Z Z Tec (27]) (3)

i=1 j=1
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Structure of multiscale residual attention module

where yc—qvg denotes the output value of the c-th channel
after GAP, z.(i,7) denotes the element located at (i, )
on the c-th channel F. of the feature mapping, and H
and W denote the height and width of the channel,
respectively.

The process of GMP is described as follows:

Ye—max = (Zgl)aé);},mC(l7j) (4)

where Yc—mas denotes the output value of the c-th
channel after GMP and z.(i,j) denotes the element
located at (i,7) on the c-th channel F. of the feature
mapping.

Next, Fg,. and F},,, are fed into their respective cor-
responding networks, each consisting of a multilayer per-
ceptron (MLP) and a hidden layer. After the two fea-
tures pass through their respective networks, the output
of features from the two branches are combined using ele-
mentwise multiplication. Compared with the scSE mod-
ule using elementwise summation, elementwise multiplica-
tion makes the position of the channel with high atten-
tion weight in both branches relatively more prominent.
In contrast, the position of the channel with only one at-
tention weight high or both weights low is further sup-
pressed. In short, the channel attention is computed as
follows:

M. (F') =0 (MLP (AP (F'))) @0 (MLP (MP (F'))) =
o (WiL (Wo (Fipe))) © o (WiL (W (F;az)))(5

~~

where o(-) denotes the sigmoid function, ® denotes
AP denotes the average
pooling layer, M P denotes the max pooling layer, Wy and
Wi denote the weights of the MLPs of the GAP branch,
W¢ and W{ denote the weights of the MLPs of GMP, and
L(-) denotes the ReLU activation function.

The calculated channel attention M. (F') is multi-
plied by the input feature map F' to obtain the channel

elementwise multiplication,

attention weight map.
Fuse = M. (F) 0 F' ©)

where F.sg denotes the attention weight map obtained
from the channel attention calculation and ® denotes the
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elementwise multiplication.
3.2.3 Spatial attention module

For the result F.sg calculated by the channel atten-
tion module, the spatial attention is obtained by a 1x1
convolution layer, and the spatial attention map is ob-
tained after activation using the sigmoid function. The
spatial attention is computed as follows:

Ms (FCSE) :U(fIXI(FCSE)) (7)

where o(-) denotes the sigmoid function and f'*! denotes
the convolution operation with a convolution kernel size
of 1x1.

Multiply the spatial attention Mg (Fesg) with Fesp as
follows:

F =M, (Fesp)® Fesp (8)

where F denotes the attention weight map combining
channel attention and spatial attention, and ® denotes
the elementwise multiplication.

The calculated F is summed with the feature map-
ping F input to the attention module, as follows:

Fuy=F +F 9)

where F, indicates the output of the MRAM.

To save the number of parameters, we add the
MRAM to the residual module of the shared parameter
layer of MMRAN, as shown in Fig.4.

Conv Conv | Attention @
block block block P P
Res Fros
block
Res | | Conv Conv | _ | Conv
blockl_l e I block | = | 3x3 | BN [RelU

Fig.4 Structure of the residual module

The output of the residual module is given by the fol-
lowing equation:

Fout = Fatt + Fres (10)

where Fi.s denotes the output of the residual connection
and F,;¢ denotes the output of the MRAM.

3.3 Compound loss function

Dice loss is used as the loss function for the segmenta-
tion task, which is formulated as follows:

‘VsﬂVG|+E

Losspice (G,P) =1—2x —5 Gl TE
085Dice ( ) Vs|+ |Vl +e

(11)

where Vs denotes the set of real segmented images and
Vi denotes the set of predicted segmented images. The
constant ¢ is set to 1 to prevent the denominator from
appearing equal to 0 during the calculation.

Since the incidence of each tumor is different2, there
may be differences in the size of the data for each type of
tumor. The focal loss proposed by Lin et al.24 makes the
model more focused on hard-to-classify samples during
training by reducing the weight of easy-to-classify
samples. Therefore, focal loss is used as the loss function
for the classification task, which is formulated as follows:

Lossrr (pt) = —au(1 — pi)"log (pe) (12)

where p; denotes the probability that the sample belongs
to the positive class, v > 0 is the moderation factor, a; is
the category weight, and (1 —p,)” is the modulation
factor. In this paper, we take a; = 0.25, v = 2.

3.4 Network training methods

The weighted sum of Dice loss and focal loss is used as
the loss function of MMRAN with the following equation:

Lossyrr = (1 — a) X Loss$pice + @ X Lossrr (13)

where « is the coefficient that adjusts the loss weights of
the segmentation task and the classification task. The
loss weights of each task are adjusted by « to optimize
the training effect of both tasks.

This paper uses the following three network training
methods for training.

1) Fixed weight training: Set fixed weights for each
task before training starts. The parameter « is a con-
stant and will not be changed during training.

2) Freeze training: Only one task is trained every N
epochs, and the gradient backpropagation of other tasks
is frozen. The parameter N is calculated by the following
formula:

epoch,y

N=="" (14)
where epoch,,;; is the total number of epochs and c is the
total number of tasks in the network. There are two tasks
in MMRAN: segmentation and classification. Thus, we
take ¢ = 2. The loss weight of the frozen task is 0, and
the loss weight of the training task is 1. This process is
performed once for each task. In the last N epochs, all
tasks are trained together, at which time a = 0.5.

3) Dynamic weight training: At the beginning of train-
ing, the loss of the overall network consists of the loss of
the segmentation network only. As training proceeds, the
weight of the loss function of the segmentation network is
gradually reduced, while the weight of the loss function of
the classification network is increased. At this point, «
changes continuously with the number of training rounds,
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and its formula is as follows:

o= epochnow (15)
epochai
where epochnow is the current epoch and epoch, is the
total number of epochs.

In the initial stage of training, the segmentation net-
work has not yet produced meaningful outputs, indicat-
ing that a negative impact exists in the gradient back-
propagation(?’, Therefore, we use the strategy of training
the segmentation network first and then the classifica-
tion network for freeze training and dynamic weight

training.

3.5 Prior knowledge-based postprocessing
(PKP)

Brain tumors are usually solid structures with irregu-
lar marginsl?6l. Large diameter tumors with high malig-
nancy can develop internal necrosis and lead to the ap-
pearance of cavitiesl?”). However, the cavities caused by
necrosis are no longer normal brain areas and should be
excised. Since the segmentation algorithm is a pixel-level
image annotation, each pixel is categorized as a tumor re-
gion or a normal region, so that not all pixels inside the
segmented tumor region are necessarily labelled as the tu-
mor. There may be holes inside the region that are classi-
fied as normal. Therefore, the output segmented images
should be postprocessed based on prior knowledge.

The flood fill algorithm (FFA), a traditional image
processing method, is used to fill the interior of the seg-
mentation map. The segmentation results in a solid struc-
ture by filling the interior of the segmented connected re-
gion. Beginning from a random point in the connected
domain, all the remaining points in the connected do-
main are found by searching for other points connected to
each point in four directions: up, down, left, and right.
The steps of the postprocessing method for segmented im-
ages are as follows:

1) The segmentation map output from the network is
processed with FFA to obtain the connected region of the
segmented tumor.

2) The pixel intensity values of the connected region
are inverted.

3) The inverted image is merged with the segmenta-
tion map to obtain the complete solid segmentation map.

4 Model validation and analysis

4.1 Data set and data preprocessing

The images in our data set (T1l-weighted contrast-en-
hanced MRIs) were acquired at Nanfang Hospital,
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Guangzhou, China, and General Hospital, Tianjin Medic-
al University, China, from 2005 to 2010 using spin—echo-
weighted images with a 512x512 matrix[28l. The pixel di-
mensions of the images were 0.49%x0.49mm?, the slice
thickness was 6 mm, the slice gap was 1mm and the dose
of Gd-DTPA was 0.1mmol/kg at a rate of 2ml/s. The
data set contains information on 3 064 slices from 233 pa-
tients with brain tumors, wherein three types of brain tu-
mors are meningiomas (708 slices), gliomas (1426 slices)
and pituitary tumors (930 slices). A single sample in the
data set corresponds to one slice of a patient, while a pa-
tient has multiple slices. In addition, all tumors in the
images were manually outlined by three experienced radi-
ologists, who processed all images independently. Sub-
sequently, the radiologists discussed together and reached
a consensus on the segmentation of each tumor in each
image. Every MRI has only one brain tumor.

The data preprocessing stage performs data enhance-
ment on the data set, including horizontal flipping, ver-
tical flipping, random angular rotation, random Gaussian
noise, and random elastic deformation. All the above op-
erations are performed with a 50% probability.

4.2 Experimental details

All networks are implemented using PyTorch 1.8.2
and Python 3.7.2 on the Ubuntu 18.04 system with a
Tesla v100 GPU and 32GB RAM. The adaptive moment
estimation (Adam) algorithm is used as the optimizer,
and the learning rate is set to 0.001. The training epochs
for each experiment are set to 240, and the batch size is
10. The average training time for each network is nearly
28 hours. We divide the data set into train, validation,
and test sets according to the ratio of 8:1:1. To facilitate
the replication of the experimental results, we fixed the
seeds as 1 029.

For the segmentation task, the Dice coefficient (Dice),
95% Hausdorff distance (HD95), mean intersection over
union (MIoU), and mean pixel accuracy (MPA) are used
as segmentation evaluation metrics. The formulas are as
follows:

‘VpﬂVG|

Dice =2 X —
Ve + |Va|

% 100% (16)

HDos — —_— R
95 = max (gé@ﬁylglvréllw Ylly, max min ||z yllz)
(17)

where Vi denotes the set of real segmented images and
Vp denotes the set of predicted segmented images.
||z —y ||, denotes the Euclidean distance.

k
1 Dii
mPA = E (18)
k+1 i=0 Z?:O Pij
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k

1 Pii
mloU = Z = m
k+1 i=0 Zj:o pij + Zj:() Pji — Pii

(19)

where the notations are p;; = true positive, p;; = false
positive, and pj; = false negative.

For the classification task, accuracy (Acc), precision
(Pre), recall (Rec), and Fl-score (F1) are used as classi-
fication evaluation metrics. The formulas are as follows:

" TP
_ i=1 ¢
Acc = —Z?:l TP+ FP, (20)
TP
Pre = TP+ FP (21)
TP
= 22
Ree= 7P F 7N (22)

where the notations are T'P = true positive, I'P = false
positive, TN = true negative, and FFN = false negative.

The network requires classifying three types of tu-
mors. Therefore, after calculating the Pre and Rec for
each category of tumors, the average value of each indic-
ator is calculated as the corresponding indicator value of
the model. F1 is calculated as follows:

2 X Pregye X Recgye
F1l= 23
Pregve + Recave (23)

where Preqg,e denotes the average Pre and Recgue
denotes the average Rec.

During the training and ablation experimental phases,
we use only two metrics: Dice as the segmentation met-
ric and Acc as the classification metric. All the above
metrics are calculated when the models are evaluated in
the comparison experiments.

4.3 Network training method experiments

To explore the effect of different training methods on
the performance of each task in the multitask learning
network, experiments are conducted on the three train-
ing methods in this paper. The « in the fixed weight
training takes values in the range of [0.2, 0.8] with a step
size of 0.1. The results are shown in Table 1.

Table 1 shows that setting different task weights for
each task of MMRAN during training has a certain de-
gree of influence on the final model accuracy. In the
fixed-weight training, the greater the weight of the loss
function for a task, the greater its contribution of the
overall loss function, and the better the model tends to
perform for that task. However, the accuracy of other
tasks is diminished. This may be because during the
training process, the model focuses more on tasks with
large weights, while the impact from tasks with small

Table 1 Results of the network training method experiment

Training method Dice (%) Acc (%)
Set a = 0.2 77.51 85.29
Set a = 0.3 77.45 86.60
Set a = 0.4 77.01 86.27
Set « = 0.5 76.32 86.60
Set a = 0.6 76.14 86.93
Set o = 0.7 75.28 87.58
Set a = 0.8 72.57 87.58
Freeze training 77.42 86.27
Dynamic weight training 77.58 86.93

weights is ignored. The dynamic weight training method
obtains the best Dice and the second highest Acc while
avoiding multiple experiments to determine the best
weights for each task, effectively saving the time for tun-
ing parameters.

4.4 Ablation experiments

To evaluate the contribution of each module in the
network to the performance of the model, we analyse the
results of the ablation experiments. We use the U-Net
model with the classification branch added as the
baseline, which uses Dice loss and focal loss and is trained
by dynamic weight training. The results of the ablation
experiments are shown in Table 2.

Table 2 Results of ablation experiments

Model Dice (%) Acc (%)
Baseline 77.58 86.93
Baseline + SE 78.95 88.24
Baseline + scSE 79.01 88.89
Baseline + scSE + MSM 79.69 89.22
Baseline + scSE + MSM + GMP 79.80 89.54
Baseline + scSE + MSM + GMP + RES 79.83 89.54
Baseline + MRAM 79.87 89.87
Baseline + MRAM + PKP 80.03 89.87

Compared to not using the attention module, Dice is
improved by 2.29% from 77.58% to 79.87%, and Acc is
improved by 2.94% from 86.93% to 89.87% after adding
the MRAM. After adding MSM to scSE, the segmenta-
tion performance and classification performance of the
network are improved, which indicates that aggregating
multiscale information can help the network extract fea-
tures better. Adding the GMP branch to the channel at-
tention module can collect information different from that
obtained by the GAP branch, improving the perform-
ance of the network. The RES module has little impact
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on the performance. This may be because the number of
network layers in this paper is not deep, and only four at-
tention modules are used, making it difficult to show the
role of residual connections. As a plug-and-play attention
module, we still retain the residual connection in MRAM
so that it can be applied to networks of different depths.
The MRAM achieves better model accuracy than the SE
and scSE modules in both segmentation and classifica-
tion performance. Since we only add the prior knowledge
of brain tumors into the image postprocessing of the seg-
mented map, the inclusion of prior knowledge will not af-
fect the classification accuracy.

In the segmentation maps in Fig. 5, some parts are not
segmented. According to prior knowledge of the tumor,
the internal void of the output map tumor should be
filled. After image postprocessing, the Dice of Fig.5(a) is
improved by 1.83%, and the Dice of Fig.5(b) is im-
proved by 5.14%. Using prior knowledge-based postpro-
cessing, the processed images are closer to the ground
truth than the unprocessed segmentation result map.

Image merging  Ground truth

Segmentation
results

Fig. 5 Post-processing of segmented images. (a) MRI image
with small holes after segmentation; (b) MRI image with large
holes after segmentation.

The addition of prior knowledge slightly improves the
overall segmentation performance because most images
from the network segmentation are already complete sol-
id structures, and only a few have holes inside. Neverthe-
less, this method results in more complete segmented im-
ages with less time (average processing time of 0.016
seconds per image) and more accuracy for single image
segmentation.

4.5 Comparative experiments

To verify the effectiveness of MMRAN, a comparat-
ive analysis of performance is performed between MM-
RAN and other models. The parameters for networks are
shown in Table 3.

4.5.1 Comparison of segmentation performance

The results of the segmentation performance evalu-
ation are shown in Table 4.

From the results in Table 4, it can be obtained that
Y-Net achieves good results with its smaller number of
parameters. Our model achieves better results than other
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Table 3 Parameters of the networks

Net Type Parameters (X 109)

Res U-Net[29] STL 31.48
RV-GAN[0 STL 21.93
ResNet-50[5] STL 23.53
Datta et al.l31] STL 23.91
Y-Net/20] MTL 9.11
Chen et al.[21] MTL 40.03
He et al.[22] MTL 23.43
MB-DCNNI32] MTL 26.72
MMRAN MTL 42.73

Table 4 Results of the segmentation performance

Net Dice (%) HD95 (mm) MIloU (%) MPA (%)

Res U-Net[29] 75.01 9.012 80.49 84.97
RV-GANB] 79.46 6.832 84.26 88.39
Y-Net/20] 76.13 7.852 81.65 86.48
Chen et al.[2l] 78.65 6.957 83.12 87.36
He et al.[22] 78.38 8.556 83.96 87.54
MB-DCNN(32] 78.92 6.964 84.03 88.26
MMRAN 80.03 6.649 84.38 89.41

models in all four segmentation evaluation metrics, Dice,
HD, MIoU, and MPA, reaching 80.03%, 6.649mm,
84.38%, and 89.41%, respectively.

The segmentation results of the method in this paper
compared with other methods are shown in Fig.6. For
better observation, the box shows the enlarged lesion
area. From the results in Fig.6(a), the segmentation
edges of the lesion region are poorly handled by Res U-
Net, and there are discontinuous segmented regions. Oth-
er models also suffer from oversegmentation or underseg-
mentation of tumor edges. Compared with other models,
the segmentation results of MMRAN match the doctor
annotation better with more smooth segmentation edges.
From the results in Fig.6(b), MMRAN handles small tu-
mor regions more accurately than others. Overall, the
segmentation results of MMRAN are more accurate.

4.5.2 Comparison of classification performance

The results of the segmentation performance evalu-
ation are shown in Table 5.

From the results in Table 5, it can be obtained that
MMRAN achieved results over other models in Acc, Rec,
Pre, and F1, reaching 89.87%, 90.44%, 88.56%, and
89.49%, respectively. We present the confusion matrices
obtained by these models in Fig.7. The results show that
MMRAN correctly classifies most MRIs containing men-
ingioma and is effective in classifying the other types of
tumors. In the case of misclassification of glioma, each
model is more likely to classify glioma as meningioma.
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Yellow region: segmentation result

M Red region: ground truth

Res U-Net Y-Net

Chen et al.t!

He et al.??! MMRAN (Ours)
Res U-Net Y-Net Chen et al.l?!! He et al.??] MMRAN (Ours)

Fig. 6 Examples of the segmentation results produced by Res U-Net, Y-Net, Chen et al.’s model, He at el.’s model, and MTRAN: (a)
Comparison of large tumor segmentation; (b) Comparison of small tumor segmentation.

Table 5 Results of the classification performance

Net Acc (%) Rec (%) Pre (%) F1 (%)
ResNet-500] 85.29 85.59 83.42 84.49
Datta et al.[31] 89.22 89.66 88.16 88.90
Y-Net[20] 87.91 88.51 86.61 87.55
Chen et al.[21] 86.93 86.79 85.32 86.05
He et al.[22] 87.58 87.64 85.89 86.75
MB-DCNNI32 88.56 89.51 86.86 88.16
MMRAN 89.87 90.44 88.56 89.49

Meningioma and pituitary tumors are usually benign,
whereas glioma is commonly malignant. Therefore, it is
essential to detect glioma accurately. The area under the
curve (AUC) is calculated to further evaluate the model’s
performance. From Table 6, the AUC of MMRAN is the
highest for meningioma and glioma, reaching 99.01% and
97.04%, respectively. The AUC for pituitary tumors is
second to Chen's model, reaching 95.74%. Thus, MM-
RAN achieves better overall performance for detecting
brain tumors compared with other models.

The receiver operating characteristic (ROC) curves
are plotted to evaluate the models’ performance, as shown
in Fig.8.

5 Conclusions

A multitask learning network model based on a
multiscale residual attention mechanism called MMRAN
is proposed to improve the efficacy of segmentation and
classification in brain tumors. We propose an effective
plug-and-play attention module named the multiscale re-

sidual attention module (MRAM). Our proposed MRAM
can effectively integrate multiscale contextual features
and obtain better results than the SE module and scSE
module. Experiments show that the network training
methods that dynamically adjust the weights of the loss
function for each task can obtain better results while
avoiding multiple experiments to determine the optimal
weights for each task. Adding prior knowledge of brain
tumors in the postprocessing of segmented images makes
the segmented image more complete and further im-
proves the segmentation accuracy of the model. Com-
pared with some existing methods, MMRAN achieves
more accurate segmentation and classification ability on
brain tumor data sets containing meningioma, glioma,
and pituitary tumors.

MMRAN can also handle 3D data sets by processing
each 2D slice in the Z-axis direction of the 3D image in
turn. However, this approach may ignore the 3D spatial
information of the lesions. Meanwhile, the multiple down-
sampling of the network will lose some spatial informa-
tion. Avoiding the loss of tumor spatial information is the
direction of our subsequent research. Extracting charac-
teristics for small tumors is still challenging, leading to
inadequate segmentation of small tumors. How to effect-
ively extract the features of small targets is also a re-
search direction to improve model performance. The pro-
posed MMRAN is potentially applicable to other medical
image tasks, such as segmentation and classification of le-
sion regions in chest CT images of pneumonia patients
and choroidal vessels in the fundus. In the future, we will
gradually improve the performance of the network and
extend it to other image processing tasks.
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Fig. 7 Confusion matrices
Table 6 AUC results
Net Meningioma (%) Glioma (%) Pituitary tumor (%)
ResNet-50 96.04 92.28 89.85
Datta et al.[31] 98.54 96.62 93.10
Y-Net[20] 96.98 96.11 97.11
Chen et al.[21] 98.00 96.63 96.99
He et al.[22] 98.01 95.82 91.75
MB-DCNNI32] 98.26 95.23 94.00
MMRAN 99.01 97.04 95.74
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Fig.8 Comparison of ROC curves
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