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Abstract: Brain-inspired computer vision aims to learn from biological systems to develop advanced image processing techniques.
However, its progress so far is not impressing. We recognize that a main obstacle comes from that the current paradigm for brain-in-
spired computer vision has not captured the fundamental nature of biological vision, i.e., the biological vision is targeted for processing
spatio-temporal patterns. Recently, a new paradigm for developing brain-inspired computer vision is emerging, which emphasizes on the
spatio-temporal nature of visual signals and the brain-inspired models for processing this type of data. In this paper, we review some re-
cent primary works towards this new paradigm, including the development of spike cameras which acquire spiking signals directly from
visual scenes, and the development of computational models learned from neural systems that are specialized to process spatio-temporal
patterns, including models for object detection, tracking, and recognition. We also discuss about the future directions to improve the

paradigm.
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1 Introduction

Nowadays, computer vision or machine vision, repres-
ented especially by deep convolutional neural networks
(DCNNs), has achieved great success in many vision
tasks(l: 2. Compared to biological vision, however, com-
puter vision is still lagging far behind in both perform-
ances and variety of capabilities3 3. For instance,
DCNNSs, which mainly mimic the feedforward and hier-
archical structure of the ventral pathway of biological vis-
ion, has achieved an extremely high accuracy in image
classificationl!s 2 6], but in other tasks, such as video ana-
lysis and imaging understanding, they are still far from
satisfactoryl’l. Thus, learning from biological vision, the
so-called brain-inspired computer vision, is still a prom-
ising and efficient way to speed up the development of
computer vision 8, 9,

Although the importance of developing brain-inspired
computer vision has been widely recognized® 10, up to
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now, we have not achieved any really breakthrough in the
field that can match the achievement of AlphaGo to GO
gamellll or AlphaFold to protein prediction!2l. So, what is
the obstacle in the development? We identify that an im-
portant issue that is missed in the current practice of
brain-inspired computer vision is the ignorance of a key
nature of biological vision, i.e., biological vision is tar-
geted on processing spatio-temporal patterns(l? 13, This is
fundamentally different from static images which DCNNs
are good at. Shortly speaking, the characteristic of hav-
ing both spatial and temporal structures is the nature of
neural signals in every part of the brainll4 15, At the be-
ginning stage of acquiring visual information from the ex-
ternal world, the signals received by retina are in the
form of continuous optical flow; these signals are conver-
ted into spike trains by retinal ganglion cells, which are
subsequently transmitted layer by layer to the visual cor-
tex, where the visual input is integrated with spikes from
other cortical regions conveying the prior knowledge or
memoryl!6; eventually, the visual information is extrac-
ted in the form of continuous neuronal responses (see il-
lustration in Fig.1). The whole process is very complic-
ated with many fine details remaining unknown, never-

theless, the fact that the visual system computes spatio-
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A schematic of the hierarchical processing of spatio-temporal patterns in the visual system in the form of spike trains. The visual

information (in the form of optical flow) of the external world is received by the retina, converted into spike trains by retinal ganglion
cells (RGCs), and then processed layer by layer through lateral geniculate nucleus (LGN), V1, V2, V4, IT, etc. There are rich feedback
and recurrent interactions within and between visual cortical areas, and interactions with other cortical regions.

temporal patterns in the form of spike trains is fully val-
idated by experiments/'7).

In recognition of the
between machine vision and biological vision, a new
paradigm which captures this fundamental difference is
emerging for developing brain-inspired computer vision.
Specifically, in such a paradigm, from beginning the visu-
al information in the external world is expressed in the
form of spike trains, which is subsequently processed by
computation models inspired by the biological system.
Notably, the current popular spiking neural networks
(SNNs) in the field do not fulfill this goal’8], and they
normally miss many features in biological systems that
are crucial for processing spatio-temporal patterns effi-
ciently, such as the differentiation of excitatory and in-
hibitory neurons, the stochastic neuronal firing/!%, the re-
current and feedback interactions between neurons!!%, the

aforementioned difference

short-term plasticity of synapses/2), etc.

The organization of the paper is as follows. In Section 2,
we will first review the recent develop of spike cameras(2!: 22,
in particular Vidar(23], which provides a way to represent
visual inputs by spike trains. In Section 3, we will review
three brain-inspired computational models, which can im-
plement rapid signal detection[?4, anticipative object
tracking?’l, and spatio-temporal pattern recognitionl26],
respectively based on spike trains. Finally, in Section 4,
we will discuss about the future development of brain-in-
spired computer vision.

2 Brain-inspired cameras for sensing
visual information

As described above, to develop brain-inspired com-
puter vision, it is critical to represent visual inputs start-
ing from the sensory level to draw analogies with biologic-

al systems. In recent years, brain-like sensing devices
have been developed rapidly, which are able to sense
visual scenes with high temporal and spatial resolutions,
and they convert light signals directly into spike trains.
Here, we introduce two of them: one is dynamical vision
sensor (DVS)[2% 28] and the other is spike cameral2 22,
e.g., Vidar[23l. Both of them were inspired by the retina
system of the biological brain.

DVS is a retina-like sensing device. A traditional cam-
era perceives image information frame by frame at a fixed
temporal frequency, such as 20fs, and each frame con-
tains the integrated luminance information of the image
over the frame interval, while the variance of image lu-
minance between frames is ignored. DVS works in a dif-
ferent way. It asynchronously senses the luminance
change at each pixel in the image and outputs a stream
of spike events. The output spikes are represented in an
address-event manner. Each spike signal contains four
elements (z,y,t,p), which are the horizontal position z,
the vertical position y, the spiking moment ¢, and a vari-
able p of binary values indicating the direction of lumin-
ance change. In other words, (z,y,t) describe the spatio-
temporal position of a spike event, and p describes the
way of luminance change. For DVS, a spike is triggered
only when the luminance change at the corresponding
pixel exceeds a defined threshold, and DVS typically out-
puts spikes in a spatially sparse and temporally discrete
manner. Since DVS only records the relative change of lu-
minance, it is more suitable to sense the motion informa-
tion in a visual scene, while the detailed texture informa-
tion of the image is largely ignored. Compared with tradi-
tional cameras, DVS has the advantages of broader dy-
namical range, higher temporal resolution, lower energy
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consumption, higher pixel band, etc.?8l As a brain-in-
spired method, DVS has been used recently to simulate a
three-layer retina system and implemented a simplified
photo receptor-bipolar cell-ganglion cell pathway(29.

If we roughly regard that DVS is mimicking the peri-
pheral region of the retina, then Vidar is mimicking the
fovea of the retinal?3l. Vidar builds a pixel processing ar-
ray, which contains an analog-to-digital converter (ADC)
and an accumulator at each pixel position. ADC con-
verts light intensity into voltage, and this voltage signal
is sent to the corresponding accumulator, as shown in
Fig.2. The accumulator integrates the input signal and
outputs a spike when the accumulated voltage exceeds a
defined threshold, and then resets. The whole process can
be regarded as a simplified modeling of photo receptor-bi-
polar cell-ganglion cell pathway. An ADC simulates a
photoreceptor, and an accumulator simulates an integ-
rate-and-fire neuron. Vidar perceives the light intensity
information, rather than the change of luminance as done
by DVS. The larger the light intensity at a pixel position
is, the larger the output of the corresponding ADC gener-
ates; consequently, the corresponding accumulator can
reach the threshold more rapidly, and generate spikes
more frequently. In other words, the light intensity at
each pixel is represented by the firing frequency of the
corresponding neuron. In Vidar, each accumulator out-
puts spikes and resets in an asynchronous manner. The
spike trains generated by Vidar can then be used to re-
construct the texture features in the visual scene. Vidar is
designed to sample data in a temporal resolution as high
as millisecond®l. In theory, we can obtain the light in-
tensity information of the image at any time from the re-
corded spike trains.

3 Computational models for brain-ins-
pired computer vision

In the above, we have introduced brain-inspired sens-
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ing devices which transform visual inputs directly into
spike trains. In this section, we further discuss models for
extracting information efficiently from these spike trains.
In AI, many image processing algorithms have been pro-
posed, however, these algorithms mainly focus on pro-
cessing static images, rather than spatio-temporal pat-
terns. Simply transforming artificial neurons in a neural
network into spiking neurons does not help much. To de-
velop efficient computational models for processing spa-
tio-temporal patterns, we should learn from biological vis-
ion, as the latter is evolved over millions of years to per-
form this task efficiently[30l.

In essence, computer vision needs to perform three
fundamental functions: object detection, object tracking,
and object recognition. In the below, we will review three
type of models inspired by neural systems that are able to
perform these three tasks, respectively.

3.1 A brain-inspired model for fast object
detection

3.1.1 Biology background

The ability to respond to external stimuli rapidly is
critical for animals to survive in natural environments,
e.g., to escape from predators. Over millions of years, the
biological brain has evolved to process visual information
extremely fast. For examples, the response delay of neur-
ons in macaques’ visual cortex is only about tens of milli-
secondsBl, and human brain can complete complex visu-
al scene analysis in around 150msB2l. Computational
neuroscience studies have revealed that the capability of
fast processing information in the brain is largely attrib-
uted to that neural circuits are excitation and inhibition
(E-I) balanced, i.e., neurons in a neural circuit on aver-
age receive E-I balanced currents. The idea of E-I bal-
anced network was originally proposed by Vreeswijk and
Sompolinsky to explain the irregular firings of cortical
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Workflow of the spike camera Vidar. It contains an analog-to-digital converter (ADC) converting light intensity into voltage, an

accumulator integrating inputs, and a comparator generating spike by comparing whether the accumulated voltage exceeds a defined
threshold. Because of resetting after spiking, Vidar senses the light intensity change of a visual scene. Vidar can be regarded as modeling
the photo receptor-bipolar cell-ganglion cell pathway in the fovea of retina, adapted from [23].
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neurons widely observed in the cortex[33 34. From the
computational point of view, they argued that the E-I
balanced network has the advantage of responding to ex-
ternal inputs extremely fast, since neuronal activities in
such a network are very noisy. The underlying mechan-
ism can be intuitively understood as follows. Without
noise, the reaction time of neurons is restricted by the
membrane time constant (see illustration in Fig.3(b)). In
an E-I balanced network, however, the system is at a
chaotic state with neurons’ membrane potentials widely
distributed (Fig.3(b)). As a result, no matter how small
the external input change is, there are always a number
of neurons responding fast to detect this signal. Thus, at
the neuron ensemble level, the network can detect extern-
al signals extremely fast. So far, a large amount of experi-
mental data has confirmed that E-I balance is a general
property of neural systems(35-38],
3.1.2 The computational model

Since E-I balanced neural circuits are the substrates of
the brain to realize fast computation, it is natural to ask
whether such type of model can be used in brain-inspired
computer vision. Recently, Tian et al.?4 explored this is-
sue and demonstrated the feasibility. In the below, we
briefly introduced their work.

Tian et al.24 firstly studied a recurrent network with
homogeneous connections, as shown in Fig.3(a). The net-
work has a large size N, with Ng = qgN and Ny = q; N
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being the numbers of excitatory and inhibitory neurons,
respectively. For simplicity of theoretical analysis, they
consider no-leaky integrate-and-fire neurons. Each neur-
on receives recurrent inputs from other neurons and an
external input, whose dynamics is written as

Z Zjab

b=E,I j

dvaz . o~ t=t5.) /o, + fau

(1)

a=FE1

where the subscript a denotes the neuron population,
with a = E or a = I representing neurons are excitatory
or inhibitory, respectively. 7, is the integration time
constant of neurons in population a. v,,; is the membrane
potential of neuron 7 in population a. JZ ’jb denotes the
connection between neuron j in population b and neuron ¢
in population a. If a connection exists between them, the
connection strength is set to be Jicf f = Jab/ VN ; otherwise
JZ f = 0. 7p,s is the synaptic time constant of population
b, and t; is the moment of the kth spike of neuron j.
The probability that neuron j in population b connects to
neuron ¢ in population a is p,p for all i,j. u(t) denotes
the external forward input, i.e., the signal, whose strength
is controlled by f,. When v,,; reaches a threshold 6, the
neuron generates a spike and Va,i is reset to vg.

By using the mean-field approximation, Tian et al.[24
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Fig. 3 An E-I balanced neural network for rapid object detection: (a) An example of E-I balanced neural network, in which a neuron
receives balanced excitatory and inhibitory recurrent inputs. (b) Illustrating the working mechanism. Upper panel: the reaction time of a
non-leaky integrate-and-fire neuron is restricted, which takes time T'= (6 — vo)7/I to reach the threshold 6 starting from the resting
state vg, where 7 is the membrane time constant and I the input current. Lower panel: in an E-I balanced network, the membrane
potentials of neurons are widely distributed, such that neurons whose potentials are close to the firing threshold (red dots) can always
respond rapidly to input changes. (¢) Stationary distribution of neuronal membrane potentials in an E-I balanced network when the
external input is a constant. The red curve is the theoretical prediction and the blue histogram the simulation result. (d) An E-I
balanced network can almost instantly track the change of external inputs generated by a spike camera. Figs. 3(b)—3(d) adapted from [24].
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derived the condition for E-I balance in the network,
which is fg/fi>Wgr/Wir>Wgg/Wig, where Wy, =
Dabjabqry. Under this condition, the network receiving
spatially uniform inputs maintains a stable distribution of
neurons’ membrane potentials (see Fig.3(c)). By solving
the corresponding Fokker-Planck equation, the stable dis-
tribution is obtained as

% [1 — exp(—27a8a4)] €xp (2;11)) , ifv<0
pa(v) =11 {1—exp <7_27‘1(0—v))} , ifo<v<6

0 Ba

0, ifv>0

(2)

where B, is the variance-to-mean ratio. The derived
distribution is confirmed by the simulation (see Fig.3(c)).
This distribution is invariant with respect to the input
strength; in other words, the network is always ready to
detect the input change.

In practice, however, when the external input is spa-
tially localized, the above condition for E-I balance no
longer holds. To solve this problem, Tian et al.24 con-
sider a localized neuronal connections, in term of that
each neuron tends to have a higher connection probabil-
ity to close neighbors than to distal neighbors, with the
value decreasing as a Gaussian function of the distance.
Tian et al. derived that the E-I balance condition in such
a heterogeneous network becomes fE / fz > Wer / Wi >
Wgr/Wige, where the bar denotes spatial average. For
more details, see the analysis in [24].

Tian et al.24 applied their model to simulated data of
a spike camera and demonstrated that the model can de-
tect the rapid change of the external input (see Fig 3(d)).
3.1.3 Future development

Overall, previous studies have demonstrated that the
E-I balanced network originated from neuroscience has
potential to be applied in brain-inspired computer vision,
serving for fast object detection. To fully validate this ap-
plication, however, there are still a lot of researches to be
done. These include, for instances, 1) the reliability of the
model in various visual conditions; 2) the robustness of
the model to various noise forms; 3) the acceleration of
the model to match the high speed of spike cameras;
4) the comparison of the model with other methods;
5) the integration of the model with other modular func-
tions of computer vision; 6) the test of the model in real-
world applications.

3.2 A  Dbrain-inspired model for object
tracking

3.2.1 Biology background

In navigation tasks, animals need to track their spa-
tial locations and head-directions smoothly39. A large
volume of modelling studies has revealed that the brain

@ Springer

Machine Intelligence Research 19(5), October 2022

can exploit a type of recurrent neural network called con-
tinuous attractor neural networks (CANNs) to achieve
this taskB% 40, In the brain, in addition to tracking the
movement of an object continuously, there is an extra im-
posed requirement of tracking the object movement anti-
cipatively, i.e., to predict the future position of the ob-
ject. This is because in the brain, the transmission of
neural signal is significantly delayed. For example, the
propagation of visual signal from the retina to the
primary visual cortex takes about 50-80ms[*l. If this
delay is not compensated, our perceived position of the
object will lag its true position in the external world con-
siderably, impairing our vision. A strategy to compensate
the transmission delay is anticipation, and experimental
evidences unveil that the brain does adopt such a
strategy. For example, in spatial navigation, the internal
head direction encoded by neurons in anterior dorsal
thalamic nuclei in a rodent precedes the true head posi-
tion of the rodent by 25msl4?], i.e., the internal represent-
ation of the neural circuit predicts the external input by
25ms. In the below, we will review a computational neur-
al model to realize anticipative object tracking and dis-
cuss about its potential applications in brain-inspired
computer vision. Non-anticipative tracking will be treated
as a special case when the amount of anticipative time is
less than zero.

3.2.2 Computational model

Motivated by the experimental findings, Mi et al.[2}]
proposed a computational model for anticipative object
tracking and applied it to real-world problemsl43: 44, Spe-
cifically, they consider a CANN with adaptive neuronal
responses, which is introduced below. Without loss of
generality, a one-dimensional CANN is introduced.

A CANN is canonical network model which has been
successfully used to explain the representations of con-
tinuous variables in neural system, including motion dir-
ection, object orientation, head direction, spatial location,
etc.145] Tts biological relevance was also supported by re-
cent neuroscience experimentsi 0 46, A 1D CANN is illus-
trated in Fig.4(a). Denote x as a 1D continuous stimulus
encoded by a CANN, whose value is in the range of
(—m, 7] with a periodic boundary. Denote U(z,t) as the
synaptic input received by neuron at time ¢ with a pre-
ferred stimulus z, and r(z,t) as the corresponding neur-
onal firing rate. The dynamics of U(x,t) and r(z,t) are

given by
T% = —U(z,t) +p/z/ J(z,2")r(a’, t)dz'~
V(@ t) + Lot (2, t) (3)
r(z,t) U, ?) (4)

1 +rpf, U2, t)*da’

where 7 is the synaptic time constant, p is the neuron
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Fig.4 A CANN with negative feedback for anticipate object tracking: (a) Schematic diagram of 1D CANN encoding the head
direction; (b) Diagram of the negative feedback mechanism; (c) An example of anticipative tracking of the moving stimulus (black line).
Because of slow spike frequency adaptation (SFA), the bump of V(z) (blue line) is lagging behind that of U(z) (red line). (d) Distance s
that the network bump leads the moving object VS. the speed of the moving object ve,¢. In anticipative tracking condition, the leading
distance of the bump are proportional to the speed of the moving object in a wide speed regime. Figures are adapted from [25].

density, and I.q:(z,t) is the external input. J(z,z') =
(Jo/\/%a)e_(””_g”l)z/za2 represents the recurrent connec-
tion from neurons z’' to x, with Jy controlling the
connection strength and the Gaussian width a controlling
the connection range. The relationship between 7(z,t)
and U(x,t) satisfies divisive normalization, with &
controls the inhibition strength.

The current —V (z,t) denotes the adaptation effect,
whose dynamics is written as

oV (x,t)

S = =Via, ) +mUe, ) (5)

where 7, is the time constant of adaptation and m
controls the amplitude of adaptation.

The adaptation introduces a negative feedback to sup-
press neuronal activities, as shown in Fig.4(b). More act-
ive a neuron is, stronger the suppression is. Without ad-
aptation, a CANN is known to hold a continuous family
of Gaussian-shape stationary states called bumps. Adapt-
ation destabilizes the bump state to induce travelling
wave of the bump, i.e., the bump moves spontaneously in
the attractor space without relying on external inputs.
This reflects the intrinsic mobility of the CANN caused
by adaptation, measured by the speed of travelling wave
Vint. When the network receives an external moving in-
put, the network tracking behaviour is determined by two
competing factors: the intrinsic speed of the network v;n:
and the speed of the external input ves:. Interestingly, Mi
et al.?% found that when ves: < vint, the bump position
leads that of the external input, achieving anticipative
tracking, as shown in Fig.4(c). Furthermore, they found
that for a wide range of speed values, the leading dis-

tance is proportional to the speed of the external input,
implying that the anticipation time is constant, which
agrees with experimental datal*’l, as shown in Fig.4(d).

The CANN is essentially a computational model em-
ployed by the brain to track moving objects. Compared
with current machine learning algorithms, it has a num-
ber of advantages, including: 1) the computation is per-
formed by the network dynamics, without the need of
feature extraction in image frame by frame; 2) the net-
work tracking is robust to noises, a property coming from
attractors of a dynamical system; 3) the anticipation time
of the model is approximately a constant, independent of
the speed of the moving object over a wide range; 4) the
model parameters can be defined theoretically according
to the task requirement without training by a large data-
set; 5) the network computation can be implemented on
hardware for neuromorphic computing.

Because of these appealing properties, efforts have
been tried to apply CANNs to real-world problems. In
[43], a CANN was successfully implemented on the
“Tianjic” chip and integrated with other methods in a
self-driving bicycle system to track a running object. Re-
cently, a spiking CANN was developed to track moving
objects anticipatively44],

3.2.3 Future development

Overall, previous studies have demonstrated that the
CANN with adaptation originated from neuroscience has
potential to be applied in brain-inspired computer vision,
serving for anticipative object tracking. To fully validate
this application, however, there are still a lot of re-
searches to be done. These include, for instances, 1) the
acceleration of the running speed of a CANN to be com-
patible with spike camera; 2) the integration of the mod-
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el with other feature-based methods in computer vision to
improve the tracking accuracy; 3) the implementation of
a CANN with adaptive neural responses on hardware.

3.3 A brain-inspired model for spatio-tem-
poral pattern recognition

3.3.1 Biology background

A large volume of experimental studies have revealed
that the subcortical pathway, which goes from the retina,
to superior colliculus (SC), and to higher visual cortex,
plays an important role in rapid object recognitionl4s 491,
For example, the mice study showed that this pathway
mediates the rapid innate responses of the animall30l. The
capability of the subcortical pathway for rapid motion
processing relies on its two main features. Firstly, differ-
ent from the ventral visual pathway that slowly and hier-
archically processes visual information, the subcortical
pathway provides a shortcut from the retina to higher
visual cortex with no explicit feature extraction, where
the retina behaves like a reservoir network. Secondly, SC
can linearly read out the retina output and perform fast
decision making. The experimental studyl5!l showed that
the wide vertical cells in SC, which have large receptive
fields and wide-acting inhibition, can realize sampling
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over a large retina area and implement winner-take-all
computation. The monkey experiment also demonstrated
that SC plays an causal role in perceptual decision mak-
ingl52l. In addition to the retina-SC subcortical pathway,
the early stages of the auditory pathway also share a sim-
ilar structure, i.e., a reservoir to decision-making path-
way, suggesting that there may serve as a canonical
mechanism for fast spatio-temporal pattern recognition.
3.3.2 Computational model

Inspired by the structure and computations of the
subcortical pathway, Lin et al.26] recently proposed a
computational model for rapid motion patterns recogni-
tion. As shown in Fig.5(a), they built a reservoir module
followed by a decision module to mimic the retina-SC
pathway, referred to as reservoir decision-making net-
work (RDMN) hereafter. The details of RDMN are intro-
duced below.

In RDMN, a hierarchical reservoir network was em-
ployed to simulate the information processing in the ret-
ina, which consists of L feedforwardly connected layers,

as shown in Fig.5(a). Denote z!

as the synaptic input
Ny

, L, with N; as the number of neurons in layer .

current received by neuron i in layer [, for i =1,--- |
=1, -
The recurrent dynamics in the reservoir layer [ is given

by

(vll[

Layer L

Decision-making module

#1 #3 #5

I Gait sequence
[ Noise sequence

|

Decision-making module activity

0.25 20
:
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Fig. 5

RDMN performs gait recognition in an event-driven manner. (a) Structure of RDMN, which consists of a reservoir module and a

decision-making module. (b) An example of looming pattern (left panel) and the generalization performance in the looming pattern
discrimination task (right panel). (c) An example trial of the gait of a subject. (d) Neural dynamics of the decision-making module in the

event-based gait recognition task. Figure is adapted from [26].

@ Springer



X. L. Zou et al. / Towards a New Paradigm for Brain-inspired Computer Vision 419

Ni—1

—LU-‘FZMZI lll ZMll

JF#i

Z Ml ,0 [e:ct
(6)
where r; = tanh (z;) is the activation function of neuron
i, le]l_l is the feedforward connections from neuron j in
layer [ —1 to neuron ¢ in layer [, ijl denotes the
recurrent connections from neuron j to neuron ¢ in layer
[. 7 is the time constant of layer [, ijo denotes the input
connections. Ije” denotes the external input, with N, is
the input dimension. d;,1 =1 for | =1, and otherwise 0,
which indicates that the external input is only sent to
layer 1. The connection matrices MZZJO7 Mf]l ! M”
all random and sparse, which are sampled from Gau551an
distributions and not trained. Notably, the largest
eigenvalue of recurrent connections Mlljl in the reservoir
module is set to be slightly larger than 1 to enable the
the network dynamics to operate on the edge of chaos(53].
After the external visual input is mapped into a spe-
cial state of the retina network, SC performs temporal in-
formation integration and decision making. Thus, a de-
cision-making model is used to model the information
processing in SC54. In RDMN, the decision-making mod-
el was greatly simplified and extended to multi-class clas-
sification tasksi26l. The simplified model is composed of
several competing neurons, which receive all the inputs
from the neurons in the reservoir module, as shown in
Fig.5(a). And each neuron in the decision-making mod-
ule represents one category. Denote I; as the input sum-
mation from all neurons in the reservoir module, y; as the
total synaptic input of decision neuron 4, r; as the corres-
ponding activation function, and s; as the synaptic input
due to NMDA receptors. The dynamics of the decision-
making network are given as

L Nt
RS S M o
=1 j—1
Ndm
yi(t) = Jgsi + Z Jus; + 1 (8)
P

m(t):gln {1+eXp (yi;e)} ()

dSi
dt

= —8; + ’y(l — si)m (10)

Ts

J
j of layer I to neuron ¢ in the decision-making module, I3

dm,l 1 .
where M7 7t is the feedforward connection from neuron

is the bias input. The synaptic input y; is composed of
three parts: 1) Jgs; is the self-excitation input,
representing the excitatory interactions between neurons

encoding the same category; 2) Zjl\;f{" Jurs; denotes the

mutual inhibition between neurons; 3) I; is the
feedforward input from the reservoir module. The
parameters 3, v and « control the shape of the nonlinear
activation function. Equation (10) models the the slow
dynamics of the synaptic current due to NMDA
receptors, with the time constant 7 >> 1. 75 controls the
time window for integrating input over time by decision-
making neurons. The parameters I3, Jg,JJym are both
chosen optimally based on a thorough mathematical
analysis[20].

The only parameters needed to learn in RDMN are
the feedforward connection matrix M ﬁ;n’i from the reser-
voir module to the decision-making module, shown by red
lines in Fig. 5(a). The loss function is the discrepancy betw-
een the actual inputs received by decision-making neur—
ons and the target inputs, E = (1/2) 3 Ndm SV o T atx
[fF(t) — IF(t)]? where fF(t) is the target input. Mff;”l can
be optimized by minimizing the loss function using back-
propagation through time, or FORCE learning/®%, a biolo-
gically more plausible method.

When a spatio-temporal input is presented to RDMN,
due to the echo properties of the reservoir network, the
input is firstly projected from a low-dimensional space to
a high-dimensional neural state space, which tends to be-
come linearly separable. Moreover, the hierarchical reser-
voirs operate at different time and frequency scales,
which further enhances the linear separation. With the
evidence emerged from the reservoir module, the decision-
making module performs a temporal information integra-
tion process via its attractor dynamics. Because of the
self-excitation and mutual inhibition in the decision-mak-
ing module, neurons representing different categories in-
tegrate information and compete with each other. When
a neuron wins the competition, the corresponding classi-
fication is made.

Several appealing properties of RDMN are demon-
strated through experiments: 1) RDMN successfully re-
produces the looming pattern discrimination task as ob-
served in the animal experiment, demonstrating that the
model can achieve an excellent generalization perform-
ance with only a few trials, see Fig.5(b); 2) When train-
ing data is limited, RDMN outperforms deep learning
counterparts, such as LSTM and gated recurrent unit
(GRU) on the gait recognition task, and notably, RDMN
achieves this by using much fewer numbers of training
parameters than long short-term memory (LSTMs) and
GRUs. This property is appealing for few-shot learning;
3) Due to the self-excitation and mutual inhibition in the
decision-making process, RDMN can perform recognition
in an event-based manner, enabling the model to auto-
matically detect and recognize the input pattern, as
shown in Figs.5(c) and 5(d). This property is appealing
in real-world applications.

3.3.3 Future direction

Overall, previous studies have demonstrated that

RDMN originated from mimicking the subcortical path-
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way have potential to be applied in brain-inspired com-
puter vision, serving for rapid moving object recognition.
To fully validate this application, however, there are still
a lot of researches to be done. These include, for in-
stances, 1) the development of temporal structure extrac-
tion in RDMN to further enhance its spatio-temporal pat-
tern recognition capability; 2) the deployment of event-
based decision module on neuromorphic computing
devices for efficient computing on spike signals; 3) the in-
tegration of the ventral and subcortical models for integ-
rated local-global and fast-slow visual information pro-
cessing; 4) the combination of moving object detection,
anticipative tracking, and recognition models to build a
unified computational framework for spatio-temporal in-
formation processing.

4 Conclusions and discussions

SNNs were regarded as the “third generation of neur-
al network models” as early as in the 1990s/6. SNNs are
biologically more plausible than artificial neural networks,
however, up to now, the performances of SNNs are far be-
hind that of artificial neural networks(!8l. We need to
learn more from biological systems to promote the devel-
opment of brain-inspired computer vision. A key issue
that is missed is the fact that biological vision is targeted
on processing spatio-temporal patterns. To capture this
missing point, recently, a new paradigm for brain-in-
spired computer vision is emerging, which takes into ac-
count the spatio-temporal nature of signals in every part
of a vision task, from signal sensing, to object detection,
object tracking, object recognition, etc. In recent years,
with the rapid development of spike cameras, we are able
to collect spatio-temporal spike data from a large and
complex scenel223; with the rapid advance of computa-
tional neuroscience, we are able to build more capable
computational models to process spatio-temporal spike
data efficientlyl(24-26: 57; with the fast progress of mneur-
omorphic computingl58-6l, we have hope to develop com-
puting platforms that can support the efficient running of
brain-inspired neural network models. Combining the
above progresses, we are at the edge of entering a new era
of practicing brain-inspired computer vision.

In this paper, we have reviewed some recent primary
studies on developing spike cameras?23l and computa-
tional models for object detection24, tracking(??, and re-
cognition(26l. This is just the beginning and there are still
a lot of researches to be done. In the below, we look
ahead to some key issues needed to be solved for the suc-
cess of the new brain-inspired computer vision paradigm.

1) Developing biologically more plausible brain-like
sensing devices. The retina in the brain has rich cell types
and wiring structures, which enable the retina to per-
form smart neural computationsl®?, such as light adapta-
tion[63], image sharpening, etc. However, recent brain-like
sensing devices have only simply converted light patterns
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into spike signals, and generated a pixel-level representa-
tion of an image. In the future, we need to develop brain-
like sensing devices that can mimic more computational
features of the retina. For example, DVS records the mo-
tion information, which approximately simulates the peri-
pheral information processing of the retina; while the
spike camera records the detailed texture information,
which approximately simulates the information pro-
cessing of the fovea. Integrating the advantages of two
devices can better simulate the sensory function of the
retina of the brain21].

2) Designing much smarter brain-inspired computa-
tional vision models. This paper has only introduced
three rather simple computational models for object de-
tection, tracking, and recognition. The biological vision
system has much more complicated architectures and
richer computational functions, e.g., visual information is
processed in parallel through multiple pathways, visual
cognition is from global to local, and prior knowledge af-
fects our perception of an image through feedback. We
can learn from these characteristics of the biological visu-
al system to develop improved brain-inspired computa-
tional models. Also, we can utilize machine learning
methods to trained brain-inspired models from data to
improve their performances.

3) Exploring more suitable application scenarios for
brain-inspired vision models. As the biological vision sys-
tem is evolved to adapt to natural environments, its com-
putational advantages should be reflected on the efficient
and dynamic interactions with the surrounding environ-
ments. Thus, for brain-inspired vision, we should also
consider suitable application tasks that can fully utilize
its advantages, rather than applying it to the tasks, such
as static image classification, which deep neural networks
are good at. Recently, some interesting researches along
this direction have started and they have already demon-
strated promising performances, including, for instances,
neuromorphic vision-based action detection®4, neur-
omorphic vision sensor for surveillance (NeuroAED)[65],
and event-based neuromorphic vision for autonomous
driving[6d],

4) Developing more convenient and efficient program-
ming tools for brain-inspired vision models. The fast de-
velopment of deep learning technologies has benefited
from not only large datasets and computing power such
as GPU, but also the convenient softwares, such as Pyt-
orch and Tensorflow. These programming tools lower the
entry barrier for new comers and boost the whole field.
Brain-inspired computational models rely heavily on
neural dynamics, event-based computation, and sparse
connectivity between neurons. Up to now, simulating and
training large-size brain-inspired models are still challen-
ging. Developing efficient and convenient programming
tools, similar to Pytorchl67 and Tensorflow(s8 to deep
neural networks (DNNs), are urgently needed. Recently,
some software platforms towards this goal have been de-
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veloped, such as BrainPy[69,
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