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Abstract: Lung cancer is the leading cause of cancer-related deaths worldwide. Medical imaging technologies such as computed tomo-
graphy (CT) and positron emission tomography (PET) are routinely used for non-invasive lung cancer diagnosis. In clinical practice,
physicians investigate the characteristics of tumors such as the size, shape and location from CT and PET images to make decisions. Re-
cently, scientists have proposed various computational image features that can capture more information than that directly perceivable
by human eyes, which promotes the rise of radiomics. Radiomics is a research field on the conversion of medical images into high-dimen-
sional features with data-driven methods to help subsequent data mining for better clinical decision support. Radiomic analysis has four
major steps: image preprocessing, tumor segmentation, feature extraction and clinical prediction. Machine learning, including the high-
profile deep learning, facilitates the development and application of radiomic methods. Various radiomic methods have been proposed
recently, such as the construction of radiomic signatures, tumor habitat analysis, cluster pattern characterization and end-to-end predic-
tion of tumor properties. These methods have been applied in many studies aiming at lung cancer diagnosis, treatment and monitoring,
shedding light on future non-invasive evaluations of the nodule malignancy, histological subtypes, genomic properties and treatment re-
sponses. In this review, we summarized and categorized the studies on the general workflow, methods for clinical prediction and clinical
applications of machine learning in lung cancer radiomic studies, introduced some commonly-used software tools, and discussed the lim-

itations of current methods and possible future directions.
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1 Introduction

Lung cancer is the leading cause of cancer-related
deaths in the world(!). In 2020, there are around 2.2 mil-
lion new cases of lung cancer with 1.8 million deaths
worldwidel2. The diagnosis, treatment and monitoring of
lung cancer require accurate characterizations of tumors.
Computed tomography (CT) is a standard non-invasive
technology in clinicBl, providing information of the whole
tumor in the form of images by representing heterogen-
eous cell populations and their spatial locations as vari-
ous gray levels of pixels. In addition, positron emission
tomography (PET) is often used along with CT as a
functional imaging technology using agents such as !8F-
Fluorodeoxyglucose (18F-FDG) to depict the activity of
glucose metabolism/4. In clinical practice, it is convenient
and effective to visually examine the size, shape and loca-
tion of tumors from CT and PET images[).

In the past two decades, the growing interest in Al-
based medical image analysis has generated a new area of
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research termed “radiomics”. The term was first pro-
posed by Lambin et al.[6] in 2012. It refers to the process
that extracts mineable high-dimensional features from
medical images. Radiomic studies have proposed mul-
tiple types of image features including qualitative semant-
ic features, direct quantitative measurements that can be
perceived by human eyes, and computation-based fea-
tures that associate with the internal structure of a tu-
morl7l. These handcrafted features can capture both gen-
eral properties and intra-tumor heterogeneity of tumors,
which are often subsequently employed in machine learn-
ing models to predict tumor phenotypes, genotypes or pa-
tients’ prognosesl8l. In recent years, deep learning showed
its power in many pattern recognition tasks such as com-
puter vision and natural language processingl®. An im-
portant reason for such success is its great ability of fea-
ture extraction. Different from calculating predefined fea-
tures, deep learning methods are able to continuously op-
timize model parameters during the training process to
adjust feature extraction for better clinical predictions/t0.
Deep learning extends radiomics from predefined features
to a larger scope with abstractive features, delivering
strong diagnostic information and prognostic efficacyl!1.
This review first introduces the four consecutive steps
of radiomic studies in lung cancer: image preprocessing,
tumor segmentation, feature extraction, clinical predic-
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tion (Fig.1). Then, it summarizes recent studies focusing
on the clinical prediction methods, their potential applic-
ations in lung cancer radiomics and some commonly-used
software tools. Studies on this topic usually start with the
preprocessing of chest CT or other modalities of images.
Thresholding of pixel intensities with tissue-specific win-
dow sizes and levels is necessary for downstream analysis.
If multiple image modalities are involved, image registra-
tion should be performed to align body structures across
different modalities to the same coordinate system. For
studies focusing on the tumor area, they are likely to per-
form segmentation to locate tumors for detailed analysis.
Then, feature extraction is performed in which handcraf-
ted or deep features are obtained as representations of
images. After that, radiomic studies would specifically de-
velop methods for clinical prediction using extracted fea-
tures for different tasks. There are four main categories of
clinical prediction methods: radiomic signature construc-
tion, tumor habitat analysis, cluster pattern characteriza-
tion and end-to-end prediction of tumor properties. Tu-
mor genotypes and phenotypes such as malignancy, histo-
logical subtypes as well as treatment outcomes are com-
monly used as the prediction targets.

The rest of this paper is organized as follows. Section 2
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summarizes the general workflow of the radiomic analys-
is and common implementations in each step. Section 3
presents the four major categories of methods for clinical
prediction. Section 4 reviews the clinical applications of
radiomic studies on lung cancer in recent years. Section 5
introduces some commonly used software tools in the ra-
diomic studies. Section 6 discusses the current challenges
and highlights some future directions.

2 General workflow of radiomics

In general, it is difficult to make predictions of tumor
properties directly from medical images. For example, a
CT image consists of thousands of gray levels (Houn-
sfield units, HU), in which only a limited range of gray
levels are lung tissues. Considering that some image noise
may also exist, it would be misleading to extract features
in original CT images for lung studies. Therefore, an im-
age preprocessing step is necessary to filter out unrelated
information from medical images. Also, cancer studies
usually focus on the tumor and its surrounding area,
which requires a tumor segmentation step prior to the fol-
lowing analysis. Next, we need to transform tumor im-
ages to mineable feature vectors through the feature ex-
traction step. These steps make it feasible to design
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methods for clinical predictions. In this section, we will
follow the common workflow of radiomics (i.e., image pre-
processing, tumor segmentation, feature extraction and
clinical prediction) and summarize the current progress in
each step. It is worth noting that the workflow also works
for cancer types in addition to lung cancer. Fig.1 provi-
des an overview of the general workflow of radiomics.

2.1 Image preprocessing

It is necessary to conduct image preprocessing at the
beginning of the analysis. The preprocessing step mainly
contains denoising, gray-level windowing, resampling and
registration between image modalities. First, noises can
be introduced to medical images during the imaging pro-
cess. Filtering and deep learning methods on both spatial
and wavelet-transformed domains are designed to reduce
noise and improve image quality[!2l. Second, the spacing
between pixels and the interval between slices (slice
thickness) are often different among patients. Res-
ampling should be performed to make the spacing uni-
form along three dimensions. Interpolation methods such
as linear, cubic and nearest neighboring interpolations are
often used in resampling(!3l. Third, the original image
contains a much larger HU range than that of lung tis-
sues. If we directly scaled the HU value to the range from
0 to 1, the variation of lung tissue would be minimized to
a small range, and important information would be
missed for downstream analysis. Therefore, we should set
a proper HU window size and level for specific tasks ac-
cording to prior knowledge and only focus on image parts
with HU values in this window. Finally, for multi-modal-
ity images like FDG PET/CT, each image modality is
obtained separately. As a consequence, the relative posi-
tion of body structures may be different in different im-
age modalities. To better incorporate multi-modality ra-
diomic information, image registration should be per-
formed to align images with different modalities into the
same coordination. Many registration methods have been
proposed. For example, Mattes et al.l'4 designed a
strategy combining rigid body deformation and localized
cubic B-splines to capture the motion between CT and
PET images for further image alignment. Yu et al.l!] em-
ployed a deep learning model to learn a 3D non-rigid de-
formation for automatic image registration between PET
and CT images. Image registration makes it convenient to
transfer tumor segmentation and integrate radiomic in-

formation across image modalities.
2.2 Tumor segmentation

After the image preprocessing step, most studies
would focus on the region of interest (ROI) for feature ex-
traction. For lung cancer analysis, radiologists often con-
tour the tumor region to obtain the segmentation masks
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manually, which is time-consuming. Also, the precision of
segmentation highly depends on the experience of radiolo-
gists and sometimes can be subjective. With the develop-
ment of machine learning, many algorithms have been de-
signed to automatically obtain segmentation from medic-
al images(16-18], According to whether manual segmenta-
tion is included as the training target, these methods can
be divided into three categories: unsupervised, supervised
and self-supervised tumor segmentation.

Unsupervised segmentation methods

The unsupervised tumor segmentation adopts digital
image processing methods such as thresholding, edge de-
tection, region growth, and clustering. To reduce the in-
fluence of tumor-irrelevant parts, a two-step segmenta-
tion is often used, which first obtains the lung area and
then finds tumors within the lung. Thresholding methods
divide pixels into several levels according to their intens-
ities!9. Region growth methods set initial seed pixels and
then expand each seed pixel by merging similar neighbor-
ing pixels to obtain the tumor areal20l. Clustering meth-
ods employ clustering algorithms like k-means to group
pixels into several clusters. The pixel group with the
highest intensity is more likely to be a tumor(2l. The un-
supervised methods take a step forward to automatic tu-
mor segmentation while the performances are limited, as
other parts in lungs (e.g., vessels) may have similar in-
tensities as tumors and can affect the segmentation res-
ults. Also, the judgment of candidate nodules/tumors still
highly relies on human efforts.

Supervised segmentation methods

Supervised tumor segmentation methods usually take
advantage of deep learning to better extract tumor-re-
lated radiomic information from medial images. Pixel-
level delineation of the tumor area is used as the ground
truth for model training. The deep learning model pre-
dicts whether each pixel in the image belongs to the tu-
mor or the background, and the training process minim-
izes the difference between the predicted pixel labels and
the ground truth. Supervised object segmentation models
such as fully convolutional neural network (FCN)22 and
mask R-CNN[23 achieved great success in natural images.
Besides the direct applications of these models on medic-
al images, Ronneberger et al.?4 proposed U-Net, which is
specifically designed for biomedical images. U-Net is com-
posed of an encoder, a decoder and skip-connections
between layers, which can capture multi-level radiomic
information. U-Net processes 2D images, while the 3D U-
Net model is proposed to better process image volumes/25.
The automated machine learning (AutoML) techniques
are also used to improve U-Net performance by search-
ing for the optimal parameters of neural networks/26l.
There are also many architectures different from U-Net
developed for tumor segmentation from medical
images(!ll. These models provide assistance for clinical use
and shed light on the possibility of automatic tumor seg-
mentation in the future.
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Self-supervised segmentation methods

One important reason for the success of supervised tu-
mor segmentation is the large number of labeled samples.
However, it is common that many medical images re-
main in the picture archiving and communication system
(PACS) of hospitals, while only a small number of them
are manually delineated. It would be beneficial if those
unlabeled data could be used to improve the model per-
formance. Recently, self-supervised learning (SSL) has
drawn increasing attention from researchers. The SSL
strategy sets some proxy tasks to “pretrain” the deep
learning model with unlabeled data, such as predicting
rotation angles, solving jigsaw puzzles, contrastive learn-
ing, etc. In this way, the model is trained in a self-super-
vised manner. Then the pretrained deep learning model is
fine-tuned using a small amount of labeled data. Experi-
ment results show that the fine-tuned model is able to
achieve comparable performance with fully supervised
training if the SSL strategy is properly designed?7. Sever-
al SSL methods have been proposed these years for the
tumor segmentation tasks(?8l. SSL provides a new per-
spective for automatic tumor segmentation in the condi-
tion of large datasets with fewer labeled samples, which
deserves further exploration.

2.3 Feature extraction

Image features are important to the development of
clinical prediction methods and their downstream applica-
tions. How to extract useful features remains to be one of
the most important topics for radiomic studies. Many im-
age features have been used in the past few decades and
can be categorized into handcrafted features and deep
features according to whether the feature has an explicit
definition.

Handcrafted features

Handcrafted features are defined by scientists to de-
cipher certain properties of a tumor image. The handcraf-
ted features can be further divided into semantic features
that are descriptive classification or grading of the tumor,
and quantitative features that are continuous measure-
ments and defined by mathematical formulas. The quant-
itative features are usually referred to as radiomic fea-
tures in many studies.

Semantic features are the qualitative description of tu-
mor size, shape and internal structures, which are usu-
ally perceivable by human eyes. They provide the pres-
ence or the level of some commonly used tumor proper-
ties, such as tumor roundness, spiculation, and air bron-
chogram. Experiment results show that semantic fea-
tures can be applied to predict tumor genotypes29. Se-
mantic features provide a preliminary method to charac-
terize tumors from medical images, which facilitate the
development of radiomics. However, the determination of
semantic features is subjective and depends on experi-
enced radiologists. It is usually difficult to make compar-
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isons among different studies due to the divergent defini-
tions. Also, semantic features restrict the extent of tu-
mor description to the observation made by human eyes.
Mining the unperceivable information behind images is
still needed.

Quantitative features are continuous measurements of
tumor characteristics from different angles. These fea-
tures can also capture tumor information that cannot be
perceived by human eyes, delivering rich information of
the tumor for subsequent analyses. According to the
definition, quantitative features can be divided into four
categories: first-order statistics, shape features, texture
features and wavelet features. First-order statistics are
direct measurements of the image without transforma-
tion. These features describe the distribution pattern of
pixel intensities such as the mean, maximum, quantiles,
variation, etc., which are also named as “histogram” fea-
tures. Shape features decipher the size and boundary
characteristics of the ROI, which are independent from
the pixel intensities and distributions. Examples of shape
features are the perimeter, sphericity, maximum diamet-
er, etc. The third category is texture features that quanti-
fy the internal structure of the ROI. The calculation of
texture features relies on the intermediate count matrix
which summarizes the local patterns on the image. Com-
monly used count matrixes include the gray-level co-oc-
currence matrix (GLCM), gray-level size zone matrix
(GLSZM), gray-level run-length matrix (GLRLM), gray-
level dependence matrix (GLDM) and neighboring gray-
tone difference matrix (NGTDM). Each count matrix re-
flects a certain type of image characteristics, from which
a set of texture features can be calculated. For example,
GLCM summarizes the co-occurrence number of neigh-
boring pixels with certain gray levels. When values con-
centrate to the diagonal on the GLCM, the correspond-
ing image is relatively homogeneous. Examples of GLCM-
based texture features are autocorrelation, contrast,
cluster tendency, etc. Another category of quantitative
features is wavelet features, which are first-order statist-
ics and texture features extracted from the wavelet-trans-
formed image. The transformation performs high-pass or
low-pass filtering on each dimension of a 3D image, res-
ulting in eight transformed images for feature extraction.
Quantitative features are powerful in capturing tumor in-
formation from medical images. They are the most com-
monly used features in clinical applications with medical
images. Aerts et al.3 employed 440 predefined quantitat-
ive features and decoded tumor phenotypes and geno-
types. Tomaszewski and Gillies3!l discussed the biologic-
al meaning of quantitative features. To make feature ex-
traction more convenient, Griethuysen et al.[32] designed a
Python package pyradiomics to calculate quantitative
features with several lines of code, which has become a
widely used tool for radiomic analysis.

Deep features

Different from handcrafted features with clear defini-
tions, deep features are the general name for image fea-
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tures extracted by deep neural networks. Most deep-
learning-based radiomic studies employ convolutional
neural networks (CNNs) to extract image features. Each
layer of the CNN contains several convolutional kernels
with a given size such as 5 X 5 and trainable parameters.
Each kernel is shifted along the image, and a convolution
operation is calculated between image intensities and ker-
nel parameters to generate a feature map. Parameters for
different convolutional kernels are different to capture
multi-view image characteristics. In addition to convolu-
tion, the pooling operation is often used to merge neigh-
boring pixels on the feature map to reduce feature dimen-
sionalities. The maximum and average are two common
pooling methods with a given size. In this way, CNN is
able to capture basic features (boundary, corner points,
etc.) in the first few layers, which are further integrated
into higher-level features in the latter layers. After train-
ing, kernel parameters are optimized to extract useful in-
formation for the prediction goals and the flattened fea-
ture map of the last layer is regarded as the deep fea-
tures of the image. Recently, a new deep learning model
named vision transformer (ViT)[B3] achieved superior per-
formance in image analysis. ViT provides another ap-
proach for the extraction of deep features from medical
images. It divides the image into several patches and ob-
tains the vectorized embedding for each patch with a lin-
ear projection. Then, the patch embedding and corres-
ponding position encodings are input to the transformer
encoder. ViT takes advantage of the attention mechan-
ism[34 and guides the model to focus more on the image
parts related to the prediction goall3?l. There have been
studies applying the ViT model to radiomic analysis for
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2.4 Clinical prediction

The next step is clinical prediction using extracted
features. People usually design methods to: 1) predict tu-
mor properties or clinical outcomes such as nodule malig-
nancy, tumor histologic subtypes and patient’s prognosis
or 2) obtain unperceivable tumor information and then
correlate it with tumor properties or clinical outcomes.
This is the most innovative part in the workflow of ra-
diomics with many newly developed methods published in
recent years. Besides algorithm design, evaluation is an-
other important part to validate the effectiveness of the
proposed methods. Scientists often collect patient co-
horts from other institutes for external validation. The
consistency of the evaluation performance across mul-
tiple institutes illustrates the robustness of the methods.
The details of the methods for clinical prediction in ra-
diomic analysis are introduced in Section 3.

3 Methods for clinical prediction

Radiomics is a research field with the rapid develop-
ment of methods. We summarized current radiomic stud-
ies into four categories according to their methods for
clinical prediction: radiomic signature construction, tu-
mor habitat analysis, cluster pattern characterization and
end-to-end prediction of tumor properties, which are illus-
trated in Fig.2. Details of each category of methods and
the comparison between them are described in this sec-
tion.
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3.1 Radiomic signature construction

The most commonly used method for radiomic analys-
is is building the radiomic signature, which is a continu-
ous measurement of tumor characteristics and is poten-
tially associated with certain clinical target(s). The calcu-
lation of a radiomic signature is the weighted sum of se-
lected quantitative features introduced in Section 2.3:

Signature = wix1 + wakz + - - + WmTm (1)

where {z,,---,zm} are selected features and {w,,---,
W, } are corresponding coefficients.

Feature selection

By definition, quantitative features usually contain
many colinear features that do not provide additional in-
formation. Also, the high dimensionality of features would
cause the overfitting problem in prediction37. Therefore,
feature selection is important to build a meaningful and
powerful radiomic signature. After selection, the remain-
ing features are used to build the radiomic signature for
clinical targets such as tumor histologic subtypes,
patient’s survival conditions, etc.

The feature selection process usually includes feature
stability assessment, correlation-based feature elimina-
tion and supervised feature elimination(3% 371, The feature
stability assessment includes the consistency evaluation of
temporal, spatial and cross-dataset variationsB7l. The as-
sessment of temporal stability usually employs the “test-
retest” setting, in which repeated CT scans (or other im-
age modalities) on the same patient are performed with a
time interval of several minutes. The assessment of spa-
tial stability involves multiple delineations of the same
tumorB%. Quantitative features with high consistency
between the test-retest CT images and different delin-
eated areas of the same tumor are regarded as stable fea-
tures for temporal and spatial stability, respectively. Sim-
ilarly, radiomics features with high consistency between
training and test datasets are considered as stable fea-
turesi37). Another feature selection step is correlation-
based feature elimination, in which redundant features
with high correlations between each other are identified.
A correlation heatmap is often used to visualize feature
correlations. It should be noted that the feature selection
based on stability and correlation is unsupervised as no
information of clinical targets is involved in this process.

The next step is supervised feature elimination with
the involvement of clinical prediction target(s). There are
three categories of supervised feature selection methods:
filter, wrapper and embedded methods. Filter methods
rank all the features using certain metrics (e.g., the cor-
relation with the prediction target) and select top-ranked
features to build radiomic signatures. Wrapper methods
involve a prediction-selection loop to choose the most in-
formative features. All features are used to make predic-
tions, and a subset of features is selected iteratively ac-
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cording to the prediction performance of each feature.
Embedded methods include feature selection in the classi-
fication algorithm. A common practice is adding a regu-
larization term to the loss function. For example, the
least absolute shrinkage and selection operator
(LASSO)B8] method adds the sum of the absolute values
of coefficients as a penalty:

1
min

2
lin— (yi —w"®:) + Mwl, (2)

N
=1

k3

where N is the sample size, y is the prediction target, w
is the coefficient vector, @ is the selected feature vector
and )\ is the hyper-parameter that controls the proportion
of penalty. LASSO regression minimizes the coefficients of
irrelevant features down to zeros, and the features with
non-zero coefficients are selected. By comparison with
wrapper methods, embedded methods are computa-
tionally more efficient. Different supervised feature
selection methods are chosen according to the task. The
classification tasks often adopt wrapper methods with
support vector machine (SVM), such as R-SVMM“0l, SVM-
RFE (recursive feature elimination)!] etc. Regression
tasks wusually use embedded methods using LASSO
regression. Specifically, for the prediction of patient’s
survival time, people often choose the Cox proportional
hazard (CPH) model to build the signaturel2:

h(tlw:) = ho (t) exp (w" ;) (3)

where h(t|z;) is the expected hazard of sample x; at
time t, and ho (t) is the baseline hazard when all the
features are equal to zero.

Signature construction and evaluation

After feature selection and parameter optimization,
the radiomic signature is constructed and then applied to
the test dataset to evaluate its effectiveness. If the ob-
tained radiomic signature is highly consistent with the
prediction target(s) on both the training and test data-
sets, it is considered to be an imaging biomarker that has
the potential for clinical applications.

We have introduced the comprehensive steps of build-
ing a radiomic signature, but this does not mean that all
the steps should be performed in clinical studies. Actu-
ally, studies in this direction follow a similar pipeline, but
the detailed methods are designed specifically according
to their research goals and datasets. For example, some
studies directly make predictions using selected features
without explicitly constructing radiomic signatures3l.
Feature stability assessment may not be performed due
to the lack of test-retest CT images or multiple tumor de-
lineations.

3.2 Tumor habitat analysis

Another category of methods is tumor habitat analys-
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is. The name “habitat”

procedure. The uncontrolled growth of tumor cells leads

comes from the tumorigenesis

to the independent promotion of local tumorigenesis, res-
ulting in divergent local micro-environments/44 45, After
natural selection on tumor cells, tumor sub-regions with
similar environments would contain cells with similar
genotypes and phenotypes46l. These sub-regions become
the “habitats” for a certain type of tumor cellsi47l. As the
genetic difference of cells affects the pixel intensity on
medical images, people are able to partition pixels/voxels
within the tumor area into several groups to identify the
tumor habitats. Quantitative features can be calculated
within each habitat to obtain the local characteristics of
the tumor.

Multiparametric functional imaging is usually in-
volved in tumor habitat analysis, such as 8F-FDG
PET/CT, hypoxia PET/CT (8F-HX4 PET/CT) and dy-
namic contrast-enhanced CT (DCE-CT). These function-
al imaging modalities are designed to capture a variety of
biological characteristics of the tumor, such as metabolic
activity, hypoxia level, blood flow, etc., providing extra
radiomic information for decoding intra-tumor heterogen-
eity. After image registration that aligns these functional
imaging modalities to CT images, pixels/voxels are vec-
torized with clear biological meaning for each feature,
which facilitates the habitat partition process.

According to the goal of habitat analysis, current
studies on lung cancer can be divided into two types:
identifying high-risk sub-regions or using local radiomic
information to make more accurate predictions. Similar to
the radiomic signature, clinical targets such as nodule
malignancy, histological subtype and survival condition of
patients are commonly used to evaluate the clinical value
of these methods. The study by Wu et al.l48] is a pilot
study for high-risk sub-region identification. The authors
proposed a 2-step clustering process using FDG-PET and
CT images. First, voxels in each tumor were merged into
many “supervoxels” with k-means clustering. Next, they
identified tumor sub-regions by grouping supervoxels via
population-level hierarchical clustering. The volume of
each sub-region was calculated and associated with pa-
tient's overall survival (OS) and out-of-field progression
(OFP). The sub-region with the volume significantly as-
sociated with OS and OFP was regarded as high-risk.
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Even et al.l[49 conducted a similar study. Besides CT and
FDG-PET, HX4-PET images and images of blood flow
(BF) and blood volume (BV) obtained from DCE-CT
were also involved. They normalized each image modal-
ity and summed them into one merged image, then super-
voxels were obtained with an adapted k-means clustering
method named simple linear iterative clustering
(SLIC)BY. OS was also employed to identify high-risk
sub-regions. Besides, the identified sub-regions can also
be employed as mediators for the extraction of local
quantitative features, which are further used to predict
tumor malignancy®! and histological subtypes(52. Besi-
des multiparametric functional imaging, Cherezov et al.[53l
also explored the feasibility of solely using CT images to
identify tumor sub-regions. The authors calculated wave-
let features in patches of tumor images and then per-
formed population-level clustering to group patches into
sub-regions. Results showed that combining regional
properties can better predict tumor malignancy.

All the studies employed supervoxels in habitat ana-
lysis, which aims to identify similar and neighboring
pixels/voxels within the same tumorl8l. The supervoxel
strategy is chosen to minimize the effect of registration
uncertainties, reduce the amount of data and reduce
noisel49l. Then population-level clustering is applied to
group the supervoxels into sub-regions. Differences among
these studies include the usage of functional imaging
modalities, the method to construct supervoxels, and the
metrics to determine the number of sub-regions. We sum-
marized the characteristics of these studies in Table 1
and illustrated the common workflow in Fig. 3.

3.3 Cluster pattern characterization

The partitioning of tumor sub-regions in habitat ana-
lysis helps the extraction of local quantitative features.
However, this category of studies does not consider the
spatial distribution of tumor habitats, which is closely re-
lated to intra-tumor heterogeneity. Intra-tumor hetero-
geneity is an important issue in cancer studies as it may
lead to drug resistance and therapy failurel4. Intra-tu-
mor heterogeneity is contributed by not only the diverse
composition of cell populations but also their uneven dis-
tribution within the tumor. A comprehensive radiomic

Table 1 Summary of radiomic studies on tumor habitat analysis

Study Goal Image modality

Metric for sub-region
number determination

Construction of

Prediction target
supervoxels

Wu et al.[48] Identify high-risk sub-

regions

FDG PET/CT

Even et al.[49] FDG PET/CT; HX4

PET/CT; DCE-CT

Chen et al.[51] Extract local features FDG PET/CT
for better predictions
Shen et al.[%2] FDG PET/CT
Cherezov et al.[53] CT

k-means clustering

k-means clustering
k-means clustering

Predefined patches

Gap statistics OS of patients

SLIC method Calinski-Harabasz index OS of patients

Calinski-Harabasz index Nodule malignancy

Calinski-Harabasz index Histologic subtype

Gap statistics Nodule malignancy
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Fig.3 Workflow of tumor habitat analysis

measurement of the tumor should also capture the distri-
bution pattern of pixels/voxels on medical images.

To integrate both local and global information into
the radiomic analysis, Li et al.l®s] proposed a strategy
named cluster patterns, which deciphers the distribution
of similar sub-regions within the tumor. The cluster pat-
tern is generated by the combination of local information
extraction and global pixel clustering. First, the authors
calculated quantitative features for each pixel from a
squared window around it. Then, pixel clustering is per-
formed to group tumor pixels into a fixed number of
clusters. After coloring pixels with their clustering labels,
the distribution pattern of similar sub-regions (i.e., clus-
ter pattern) can be visualized. In a public patient cohort
of lung cancerBY, they observed three cluster patterns,
which were named as “unicore”, “multicore” and “dif-
fused”, respectively. The unicore pattern is like concent-
ric rings with a single centric region which implies weak
heterogeneity, while the diffused pattern exhibits a
scattered distribution with irregular shapes, indicating a
higher heterogeneity level. The multicore pattern has
multiple centric regions, which is in between unicore and
diffused patterns. The cluster pattern provides an intuit-
ive visualization and a mediator for measurements of in-
tra-tumor heterogeneity, which was further illustrated by
the close association with patient’s survival conditions/53].
Fig.4 shows examples of CT images and calculated cluster
patterns.

The cluster pattern categorization seems to be similar
to the aforementioned habitat analysis, but they are dif-
ferent in many aspects. The partition of habitats requires
the clustering of pixels or supervoxels across patients in
the cohort, considering that the same type of tumor cells
in different tumors would present similar radiomic char-
acteristics on medical images. The generation of cluster
patterns is performed in the same tumor without the us-
age of cross-tumor similarities, which is freed from the re-
quirement of large patient cohorts. Another difference is
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the choice of cluster number. Instead of determining with
metrics such as the Calinski-Harabasz index[5%l or gap
statisticsl®”), the cluster pattern characterization adopted
multiple cluster numbers to observe the continuous
change of cluster pattern, which further illustrates the de-
gree of intra-tumor heterogeneity.

The cluster pattern study serves as a pilot study for a
comprehensive description of intra-tumor heterogeneity in
lung cancer. It is promising that the integration of multi-
scale radiomic information could enhance the prediction
for tumor phenotypes and patient’s prognosis.

3.4 End-to-end prediction of tumor prop-
erties

Deep learning is a new category of methods used in
radiomics these yearsl®8l. According to the feature extrac-
tion mechanism introduced in Section 2.3, deep learning
designs models in an end-to-end manner with medical im-
ages as the input and clinical targets as the output and
optimizes model parameters for specific tasks. The optim-
ization process is called a “training” process, in which the
model tries to fit the data and labels guided by the loss
function. The goal of training can be written in the fol-
lowing formulas:

minLoss(f (z).y) (4)
where z is the input data, y is the label, f(-) is the deep
learning model, and w is the parameter set of f(-). The
training process contains two parts: forward propagation
and backward propagationl®. In forward propagation, we
input data into the model and calculate the values of
nodes layer by layer to obtain the outputs f (z). Then we
compute the loss function and start back propagation, in
which gradients of the loss function on each node are
calculated from the output layer to the input layer. We
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Local
feature extraction

update the parameters w using the preset learning rate 0:
Wit1 = Wi — 8V (5)

where 4 is the number of training iterations, and V is the
gradients. The loss function is chosen according to the
task. For example, cross entropy (CE) loss is used for
classification tasks:

Loss (f (x),y) = — Y _ysclog (f (x;),) (6)

where )/ is the total cluster number, y;. is the binary
label of sample j that belongs to cluster ¢, and f(x;), is
the predicted probability of sample j that belongs to
cluster c. For regression tasks, people often choose the
mean square error (MSE) loss:

Loss (f (z),y) = Z (f (25) = 95)* (7

where N is the number of samples. In lung cancer
studies, the survival time of patients is another research
interest that is more than a regression task, as both the
time length and the data censoring should be considered.
The loss function for survival time prediction is designed
according to the CPH modell42]:

Loss (f (x),y) = — Z f (z;) — log Z of (@) (8)

Jjeu kEF;
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Global
pixel clustering

Unicore

Multicore

Diffused

Fig. 4 Examples of CT images and calculated cluster patterns

where U is the set of right-censored samples, Fj is the set
of “at-risk” samples with event or follow-up times F; =
{k|Yx > Y;}, and Y; is the event or last follow-up time of
patient 50601,

Deep learning models usually rely on relatively large
datasets to achieve good performancelsll. However, the
annotation of medical imaging requires professional know-
ledge and experience, which is expensive and time-con-
suming. The number of medical image datasets is much
less than that of natural images, such as ImageNet[62l. To
solve the issue of data insufficiency, scientists employed
the transfer learning strategy by using model parameters
pretrained on ImageNet as initialization. Then the deep
learning model is fine-tuned using lung cancer images and
labels. The transfer learning strategy is widely used in
lung cancer radiomics, such as predicting nodule malig-
nancyl63 and treatment responsel64].

3.5 Advantages and limitations

The four categories of methods introduced in this sec-
tion have their pros and cons. The radiomic signature is
easy to compute and interpret as each quantitative fea-
ture has a clear mathematical definition. But, these fea-
tures are defined on the whole image and provide only
global statistics. Although texture features count the fre-
quency of local patterns (e.g., run-length of certain gray
levels), they do not consider the distribution of the local
patterns. The studies of habitat analysis focus more on
regional properties without considering the global distri-
bution of sub-regions. Besides, most habitat analysis
studies involve multiparametric imaging modalities,
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which may not be feasible for all clinical conditions. Loss
of information, especially intra-tumor heterogeneity, ex-
ists in both radiomic signature and habitat analysis. The
cluster-pattern-based method is proposed to solve this is-
sue by integrating both local and global quantitative fea-
tures, which provides a comprehensive characterization of
the intra-tumor heterogeneity. The cluster pattern is
built in an unsupervised manner so that the method pos-
sesses good generalization ability and there is no need for
a large training dataset. But, it is required to choose
proper parameters such as the cluster number to obtain
meaningful cluster patterns. The end-to-end methods do
not rely on predefined features but instead learn the fea-
ture extraction through supervised training. The integra-
tion of local and global features is also achieved. Recent
end-to-end deep learning methods generally achieve bet-
ter prediction performance than other methods in lung
cancer studies. Compared with the non-deep-learning
methods, the major limitations of deep learning are the
interpretability and the requirement of a large amount of
training data and computational resources]. It would be
desirable that the advantages of different methods could
be integrated to build more powerful radiomic methods in
the future.

4 Clinical applications

Radiomics has the potential of broad applications in
the diagnosis and treatment of lung cancer, in which the
abovementioned radiomic methods play important roles
in capturing unperceivable information from medical im-
ages to facilitate clinical decision-making. In this section,
we discuss typical application scenarios such as the de-
termination of nodule malignancy, histologic subtype clas-
sification, tumor genotype identification and treatment
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response prediction. It is worth noting that the reported
performances may not be directly comparable among
studies as the included patient cohorts are different.

4.1 Nodule malignancy classification

Lung cancer screening is widely used to help discover
tumors at early stages to start treatment as soon as pos-
sible. One important step for lung cancer screening is to
determine the malignancy of lung nodules, in which the
biopsy is commonly used. However, the biopsy is invas-
ive and time-consuming, which may not be suitable for
the screening of lung cancer. Medical imaging tools like
CT provide a chance to distinguish malignant and be-
nign nodules non-invasively.

Both predefined handcrafted features and deep learn-
ing have been used for nodule classification. For example,
Hawkins et al. downloaded CT scans of 196 patients from
the national lung screening trial (NLST)I6) and extrac-
ted 219 quantitative features from 3D CT images. They
performed feature selection to remove redundant and un-
stable features, leaving 23 features for classification. Then
the authors tried multiple machine learning models such
as decision tree, random forest, naive Bayes and SVM to
predict tumor malignancy using the selected featuresl67.
Similarly, Wu et al.l% combined semantic and quantitat-
ive features from CT images and clinical factors of pa-
tients in a prediction model. Xie et al.09 designed a
knowledge-based deep learning model to address this
problem. They took the 2D image sections from 9 differ-
ent angles of the 3D CT image volume to obtain mul-
tiple views of the chest. For each view, the nodule seg-
mentation mask was used to generate three knowledge-
based nodule images, including the nodule and surround-
ing area, the peritumor area and the voxel heterogeneity

Table 2 Summary of radiomic studies on nodule malignancy classification

Study Image modality Dataset Features Reported performance
Hawkins et al.[67] CT 196 patients (from NLST) Quantitative features AUC: 0.83 ACC: 0.80

Wu et al.[68] CcT 238 patients (in-house cohort) Semantic features, AUC:0.88

quantitative features,
clinical factors

Wang et al.[70] CcT 593 patients (from LIDC-IDRI) Quantitative features ACC:0.76

Beig et al.ll] CcT 290 patients (in-house cohort) Quantitative features AUC: 0.80
Xie et al.[69] CT 1 018 patients (from LIDC-IDRI) Deep features AUC: 0.96 ACC: 0.92
Shen et al.[72] CcT 1 010 patients (from LIDC-IDRI) Deep features AUC: 0.93 ACC: 0.87
Zhang et al.[73] FDG PET/CT 135 patients (in-house cohort) Quantitative features AUC: 0.89 ACC: 0.82

Chen et al.[7] FDG PET/CT 149 patients (in-house cohort) Quantitative features ACC:0.86

Kang et al.[75] FDG PET/CT 268 patients (in-house cohort) Quantitative features AUC: 0.92
Park et al.[70] FDG PET/CT 359 patients (in-house cohort) Deep features AUC: 0.84 ACC: 0.77

* We only recorded the reported performance on test or external validation cohorts. If multiple methods are used, the highest performance is

recorded. The other tables are the same in this paper.

**The reported performances may not be directly comparable among studies as the included patient cohorts are different.
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map, which were then input into a CNN model. The out-
put vector of all knowledge-based nodule images from all
9 views was concatenated to predict the malignancy of
nodules[®9. These studies used the lung image database
consortium and image database resource initiative (LIDC-
IDRI) dataset, which contains CT images paired with
nodule position information of 1010 patients. We sum-
marized typical studies on nodule malignancy classifica-
tion in Table 2.

4.2 Histologic subtype identification

There are two major types of lung cancers — Non-
small cell lung cancer (NSCLC) and small cell lung can-
cer (SCLC). Approximately 85% of lung cancers belong
to NSCLC and the other 15% belong to SCLC. NSCLC
can be further divided into three major histologic sub-
types: adenocarcinoma (ADC), squamous cell carcinoma
(SCC), and large-cell carcinoma (LCC)l"7l. There is also a
small proportion of lung cancers not belonging to any of
the three subtypes, which are named as “not otherwise
specified (NOS)”. As the treatment efficacy of lung can-
cer highly depends on the histologic subtypel™ 7 identi-
fication of the cancer subtype is an important step in the
diagnosis of lung cancer.

With the development of imaging technologies, scient-
ists have tried to explore the possibility of identifying his-
tologic subtypes from a radiomic perspective. For ex-
ample, Wu et al.80 selected a subset of non-redundant
features that correlate with histology from 440 pre-
defined quantitative features, and then built machine
learning models including random forest, naive Bayes and
k-nearest neighbors to classify ADC and SCC using the
selected features. Similar studies have been conducted
with different patient cohorts, quantitative features and
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methods8l 82, Besides CT, FDG PET imaging is often
used to provide additional radiomic information(83-85,
There are also studies using deep learning for the classi-
fication task. Chaunzwa et al.3¢ employed the transfer
learning strategy to fine-tune the VGG-16 model with
parameters pretrained on ImageNet. Marentakis et al.l87]
tried several classical CNN architectures (e.g., AlexNet,
Inception, ResNet) for feature extraction of each image
slice and designed a long-short-term memory (LSTM)
model to integrate radiomic information among slices.
Guo et al.®8] performed the analysis in a different man-
ner by directly training a self-designed 3D CNN model for
the classification task. The relevant studies are summar-
ized in Table 3.

In recent years, scientists have further proposed sub-
typing methods for NSCLC subtypes, such as ADC. The
progression of early-stage lung ADC usually undergoes
several stages: adenocarcinoma in situ (AIS), minimally
invasive adenocarcinoma (MIA) and invasive adenocar-
cinoma (IAC)®2. The phenotype and prognosis of the tu-
mor highly depend on the histology stage. For example,
the cure rate for tumors in AIS and MIA stages is nearly
100%, while it decreases substantially for TACE3. Ra-
diomic approaches are used for the identification of these
lung ADC subtypes®% %l. People can also classify tumors
into earlier or later stages to judge their invasiveness
(AIS VS. MIA/IAC)] or malignancy (AIS/MIA VS.
TAC)97-102],

4.3 Radiogenomics

Tumorigenesis and tumor progression are complex bio-
logical processes that involve complicated gene muta-
tions and interactions. Tumorigenesis usually starts from
the alteration of genes responsible for the reproduction,

Table 3 Summary of radiomic studies on histologic subtype classification

Study Classification task Image modality Features Reported performance
Wu et al. [80] ADC VS. SCC CcT Quantitative features AUC:0.72
Zhu et al.[81] ADC VS. SCC CT Quantitative features AUC: 0.89
Bashir et al.[82] ADC VS. SCC CT Semantic features AUC: 0.82
Quantitative features AUC: 0.50
Sha et al.[83] ADC VS. SCC FDG PET/CT Quantitative features AUC:0.78
Hyun et al.[84 ADC VS. SCC FDG PET/CT Quantitative features AUC: 0.86
Koyasu et al.[85] ADC VS. SCC FDG PET/CT Quantitative features AUC: 0.84
Chaunzwal86l ADC VS. SCC CT Deep features (CNN) AUC:0.71
Marentakis et al.[87] ADC VS.SCC CcT Deep features (LSTM+CNN) AUC: 0.78
Ubaldi et al.[89] ADC VS. SCC VS. LCC CT Quantitative features AUC:0.72
Guo et al.[8] ADC VS. SCC VS. SCLC CT Deep features (CNN) AUC: 0.84
Liu et al.[90] ADC VS. SCC VS. LCC VS. NOS CcT Quantitative features ACC:0.86
Patil et al.[%1] ADC VS. SCC VS. LCC VS. NOS CcT Quantitative features ACC:0.88

*The reported performances may not be directly comparable among studies as the included patient cohorts are different.
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survival and differentiation of cells, which further activ-
ates or suppresses the expression of downstream genes in
certain biological pathways and results in uncontrolled
cell growth[103], It is important to identify changes in can-
cer-related genes and pathways to individualize treat-
ment plans for patients, which is the goal of precision
medicinel!04. Traditional genomic analysis relies on tis-
sue-based assays using biopsy or surgery. However, these
methods rely on invasive sampling, which is harmful to
the human body and cannot be applied to all clinical
scenarios(l%5. Furthermore, lung cancer presents strong
intra-tumor heterogeneity with diverse composition and
spatial distribution of cells within the same tumorl!06],
The genotype of the sampled region may be different
from the other parts of the tumor. Insufficient informa-
tion of intra-tumor heterogeneity probably results in drug
resistance and therapy failure, which is a major impedi-
ment to cancer treatment and prognosis!!07. Therefore,
people are exploring the possibility of comprehensively
decoding tumor genotypes from medical images, which fa-
cilitates the development of radiogenomics.

Radiomics and gene mutations

In lung cancer, many radiogenomic studies focus on
the prediction of gene mutations from CT images. Muta-
tion detection of some cancer-related genes such as epi-
dermal growth factor receptor (EGFR), anaplastic lymph-
oma kinase (ALK), Kirsten rat sarcoma virus (KRAS)
and serine/threonine-protein kinase B-Raf (BRAF) has
been widely used for treatment selections(l8l. The devel-
opment of drugs targeting these genes significantly im-
proves the treatment effects and prognosis of patients/l09].
Accurate and efficient prediction of gene mutations from
CT images would greatly benefit the precision medicine
in lung cancer.

The primary radiogenomic study is to build the correl-
ation between gene mutations with semantic features on
CT images. Rizzo et al.l'0 found that the presence of
pleural retraction, round tumor shape and pleural effu-
sion are closely related to alterations in EGFR, KRAS
and ALK, respectively. The development of computation-
al features facilitates the quantitative prediction of gene
mutations using machine learning methods!!l. For ex-
ample, Song et al.['12] selected significant quantitative fea-
tures and built a random forest model to predict ALK re-
arrangement. Tu et al.l!3 extracted quantitative fea-
tures to predict EGFR mutation with a logistic regres-
sion model, which achieved better performance compared
with clinical and morphological features, and combining
all these features together could achieve the best predic-
tion results. PET/CT images are also involved in the pre-
diction of gene mutation status[!'4 115, When multi-mod-
ality images are involved, these studies usually extract
handcrafted features on each modality and concatenate
them to make predictions.

Deep learning has also been applied to gene mutation
predictions. Most studies focus on the mutation status of
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EGFR in NSCLC as the sample size is relatively large.
Wang et al.[l16] designed a DenseNet-based model to clas-
sify the EGFR mutation status of lung ADC and
achieved better prediction performance than methods us-
ing predefined quantitative features. Wang et al.[l16] visu-
alized the saliency maps and observed that the CNN
model paid attention to different tumor regions between
the EGFR mutated and wildtype subtypes. Mu et al.[105]
trained a CNN model similar to ResNet-18 to predict
EGFR mutation in NSCLC and used the model output
(named deep learning score) as a signature of the ther-
apy response to EGFR tyrosine kinase inhibitors (EGFR-
TKIs). There are also studies that built multi-task deep
learning models to simultaneously predict EGFR muta-
tion together with KRAS mutation!!”l or programmed
cell death ligand 1 (PD-L1) expression status[!18: 119,
When using multi-modality images, each modality is used
as a channel of the input of the CNN model, which keeps
the topological structure of tumor images and facilitates
the aggregation of local features. We summarized deep-
learning radiomic studies on gene mutation prediction in
Table 4.

Table4 Summary of deep learning studies on
gene mutation prediction

Reported
Study Target gene  Image modality  performance
(AUCQC)

Dong et al.[117] EGFR CcT 0.81
KRAS 0.74

Wang et al.[116] EGFR cT 0.81
Wang et al.[118] EGFR CT 0.73
Wang et al.[119] EGFR CT 0.93
Zhao et al.[120] EGFR CT 0.75
Wang et al.[121] EGFR CT 0.88
Zhang et al.[122] EGFR CT 0.84
Gui et al.[123] EGFR CT 0.86
Mu et al.[105] EGFR FDG PET/CT 0.81
Yin et al.[124] EGFR FDG PET/CT 0.84

*The reported performances (AUC) may not be directly comparable
among studies as the included patient cohorts are different.

Radiomics and functional gene sets

A functional gene set is a group of genes that share
common biological functions[!25, Expression changes with-
in some gene sets would cause abnormal cell functioning,
which may further facilitate tumorigenesis. Scientists
have found several cancer-related gene sets that control
cell activities such as the cell cycle and glucose
utilization1%3], It would be helpful if tumor-specific func-
tional gene sets can be identified precisely to provide
guidance for targeted therapies.

Scientists try to decode gene set alterations in lung
cancer from medical images to find the relationship



J. Li et al. / Machine Learning in Lung Cancer Radiomics

between image features and biological pathways via func-
tional gene sets. There are two categories of studies in
this direction according to the division of gene sets. One
category of studies adopts gene sets from pathway data-
bases such as the kyoto encyclopedia of genes and gen-
omes (KEGG)[20l and Molecular Signatures Database
(MSigDB)[127. For example, Grossmann et al.l28 ranked
genes by the Spearman correlation of expression values
with quantitative features and identified the correlated
pathways for each quantitative feature using gene set en-
richment analysis (GSEA)[?3. Grossmann et al.'?8] ob-
served that quantitative features such as texture entropy
and voxel intensity variance features are associated with
the immune system, the p53 pathway, and other path-
ways involved in cell cycle regulation. They also integ-
rated radiomic, genomic and clinical information for bet-
ter prognosis prediction!!?8], Similar methods were also
proposed to find pathways correlated with selected quant-
itative featuresP) and/or the CT-derived signaturel!29.
Xia et al.l'30] combined radiomic and deep features to
build a “fused” signature that showed broader radiog-
nomic relationships with cancer-related pathways such as
tumorigenesis. Different from studies using GSEA to ob-
tain correlations, Smedley employed deep neural net-
works to predict quantitative features using gene sets,
and the results showed that tumor texture features can
be predicted from genes related to pathways such as
AKT signaling and tumor necrosis factor[131],

Another category of studies groups genes by their ex-
pression patterns without involving prior knowledge of
pathways. Genes are first grouped into highly co-ex-
pressed clusters according to their expressions, termed
“metagenes” or “gene modules”. Then, correlations be-
tween metagenes and quantitative features are examined.
For example, Gaveart et al.l!32] correlated semantic fea-
tures extracted from CT images with the first principal
component of each metagene and identified pathways in
which each metagene is enriched. Gaveart et al.!32 also
transferred such correlations to another dataset with pa-
tient’s survival records to evaluate the prognostic value of
semantic features using gene expression as a link. Zhou
et al.l133] and Wang et al.!34 conducted experiments in a
similar manner, focusing more on the biological meaning
of image features instead of prognosis. Li et al.!3% used
weight gene co-expression network analysis (WGCNA)[136]
methods to identify metagenes, and then built a PET ra-
diomic signature using the metagene that is closely asso-
ciated with prognosis/!35. In these emerging studies that
explore the connections between radiomics and biological
pathways, the established connections can facilitate the
interpretability and reliability of radiomics for prognosis
prediction.

Radiogenomics links studies in computer science, radi-
ology and biology, expands the clinical applications of ra-
diomics and creates new possibilities for the future devel-
opment of precision medicine. The development of radio-
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genomics is closely related to the progress of sequencing
technologies, such as the next-generation sequencing
(NGS)[137], In recent years, single-cell genomics has played
an increasingly important role in biological studiesl!38].
Single-cell gene expression unprecedently improves the
resolution for cancer research and provides much more
detailed information of tumors[!3% 140l The joint analysis
of single-cell omics and radiomics is worth exploring in
future studies.

4.4 Therapy response and prognostic pre-
diction

Besides tumor phenotypes and genotypes, radiomics
can also be applied to predict treatment effects and pa-
tient’s prognoses. Early radiomic studies directly em-
ployed the survival time of patients as the clinical end-
point to evaluate the effectiveness of developed methods,
including radiomic signatures, tumor habitat analysis and
deep learning. For example, Aerts et al.3% and Huang
et al.ll4l] validated the prognostic value of the selected
quantitative feature and the proposed radiomic signature,
respectively. Wu et al.[48] identified a high-risk sub-region
that is closely correlated with OS. Hosny et al.l142] built a
deep learning model for lung cancer prognostication us-
ing CT images paired with OS data across multi-insti-
tute patient cohorts. As most patients diagnosed with
lung cancer receive at least one type of therapy, recent
studies have focused more on the prediction of the re-
sponse and prognosis of certain therapy types, such as
chemotherapy, radiotherapy, targeted therapy or immun-
otherapy. The non-invasive identification of patient
groups that may benefit from a certain type of therapy
will be of great help to the precision treatment of lung
cancer.

Chemotherapy

Chemotherapy is a common treatment for lung can-
cer that uses certain drugs to kill cancer cells or stop
them from spreading to other parts of the body. It is of-
ten used along with other therapies to improve its effect-
iveness. The treatment outcome is evaluated by the re-
sponse status (whether there is tumor shrinkage or not),
time to progression (TTP) and prognostic information
such as OS, disease-free survival (DFS) and progression-
free survival (PFS). The targets used for model training
and validation can be either the same or different. For
example, Coroller et al.[143] built a machine learning clas-
sifier using selected quantitative features to predict
pathological complete response (pCR) and gross residual
disease (GRD). Zhang et al.'*4 constructed a radiomic
signature to predict PFS. They validated the trained
model on an additional patient cohort with the same clin-
ical endpoint. Vaidya et al.145] employed the histopatho-
logical image and genomic profiles to validate the ob-
tained radiomic signature. Khorrami et al.[146] built a ra-
diomic signature by predicting the pathological response
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status and then associated the signature with OS and
DFS. All the abovementioned studies focused on NSCLC,
while Jain et al.l'47 studied SCLC in a similar manner.
We summarized typical radiomic studies on chemother-
apy response for lung cancer treatment in Table 5.

Radiotherapy

Radiotherapy is another commonly used treatment
strategy for lung cancer. It shrinks tumors by killing can-
cer cells with high-energy beams. Conventional and ste-
reotactic are two major types of radiotherapy in terms of
whether to apply beams from multiple angles. Radiother-
apy is often used together with chemotherapy (also
named as “chemoradiation”). Radiomic studies for radio-
therapy are conducted in a similar manner as those for
chemotherapy. Fried et al.[13] constructed a radiomic sig-
nature to predict OS after radiotherapy using features ex-
tracted from PET/CT images. Wu et al.l1%4 used the dis-
tant metastasis rate as the clinical endpoint and incorpor-
ated the histological subtype of tumors with a PET ra-
diomic signature to build a more powerful model. Other
non-radiomic information such as clinical information and
counts of circulating tumor cells (CTCs)[!5] were also
used to improve the model performance. Scientists also
longitudinal CT
prognostic

in studies which
provide For
Timmeren et al.ll%] modeled the quantitative features

employed images

more information. example,
along longitudinal CT scans with linear regression and
then obtained the slope of each feature as new features to
build the radiomic signature. There are also unsuper-

vised methods used to assess therapy responses. Huynh
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et al.l%7 performed unsupervised feature selection to
identify quantitative features associated with OS, distant-
metastasis-free survival (DMFS) and local-recurrence-free
survival (LRFS). Li et al.'38 identified patient groups
that potentially benefit from radiotherapy by a two-way
clustering method. Table 6 summarizes typical radiomic
studies on lung cancer radiotherapy responses.

It is worth noting that a new concept of “dosiomics”
was introduced in radiotherapy analysis, which means us-
ing image features extracted from the planned treatment
dose map to predict certain clinical endpoints. Dosiomic
features can be used as prediction factors alone or integ-
rated with quantitative features extracted from CT or
PET images. Liang et al.['63] used texture features of the
dose distribution map to predict the incidence of radi-
ation pneumonitis (RP) after radiotherapy of lung cancer.
Luo et al.l'61 combined dosiomic statistics with quantitat-
ive features on core-beam CT (CBCT) images to predict
tumor progression status and PFS. Dosiomics provides
another modality of information based on human know-
ledge and experience, which is helpful to improve the pre-
diction performance of radiomic models.

Current clinical practice of radiotherapy relies on
manual or semi-manual planning for radiation dose. With
the development of radiomics, automatic dose planning
has become possible and attracts more and more atten-
tion during these years. The goal of studies on this topic
is to deliver an adequate dose for the tumor while con-
trolling the dose on other healthy organs at risk (OARs).
Some studies try to plan the overall dose level to be de-

Table 5 Typical radiomic studies on chemotherapy response for lung cancer treatment

Method

Primary target(s) for
model development

Predicted clinical
endpoint(s)

Including non-
radiomic information

Concurrent Image
Study treatment modality
Coroller et al.[143] Radiotherapy CT
Zhang et al.[144] Radiotherapy FDG
PET/CT
Yang et al.[148] EGFR targeted CECT
therapy
Chang et al.[149] - CT
Khorrami et al.[146] - CT
Jong et al.[150] - CT
Jain et al.[147] - CT
Vaidya et al.[145] - CcT
Xie et al.[151] - CT
Khorrami et al.[152] - CT

Radiomic classifier

Radiomic signature

Radiomic signature

Radiomic classifier

Radiomic signature

Raidomic signature

Radiomic signature

Radiomic signature

Radiomic signature

Radiomic classifier
and signature

Therapy response
status

PFS of patients
Therapy response

status

Therapy response
status

Therapy response
status
OS of patients

OS of patients

DFS of patients

DFS of patients

Therapy response
status

Therapy response
status

PFS of patients

Therapy response
status

Therapy response
status

Therapy response
status; OS and DFS
of patients

OS of patients

OS and PFS of
patients; Therapy
response status

DFS of patients

DFS of patients

TTP and OS of
patients

Lymph node
radiomics; Clinical
information

No

Clinical information

Clinical information

Clinical and
pathological
information

No

Clinical information

Clinical information

Clinical and
pathological
information

Clinical and
pathological
information
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Table 6 Typical radiomic studies on radiotherapy response for lung cancer treatment

. Image Primary target(s) for Predicted clinical Including non-
Study Radiotherapy type modality Method model development endpoint(s) radiomic information
Wang et al.[159] Conventional CECT Radiomic signature OS of patients OS of patients Clinical information
Timmeren et al.[156] Conventional Longitudinal Radiomic signature OS and LRFS of OS and LRFS of No
CBCT patients patients
Fried et al.[153] Conventional FDG Radiomic signature OS of patients OS of patients Clinical information
PET/CT
Arshad et al.[160] Conventional FDG Radiomic signature OS of patients OS of patients No
PET/CT
Huynh et al.[157] Stereotactic CcT Unsupervised - OS, DMFS and LRFS No
quantitative feature of patients
selection
Jiao et al.[155] Stereotactic CcT Deep signature RF'S of patients RFS of patients  Clinical information;
CTC measurement
Luo et al.[161] Stereotactic CcT Radiomic classifier =~ Tumor progression Tumor progression Clinical and dosiomic
and signature status status and PFS of information
patients
Li et al.[162] Stereotactic CT (first  Radiomic signature OS, RFSand LRFS OS, RFSand LRFS Clinical information
follow-up) of patients of patients
Wu et al.[154] Stereotactic FDG Radiomic signature Distant metastasis  Distant metastasis Histological subtype
PET/CT rate rate
Li et al.[158] Stereotactic FDG Unsupervised - OS and DF'S of No
PET/CT clustering patients

livered. For example, Lou et al.l!64 trained a deep learn-
ing model to predict the treatment outcome using pre-
They also added a decoder
branch in the deep learning model to recover predefined

treatment CT volumes.

quantitative features in order to supplement deep fea-
tures. After that, they combined the model output with
clinical variables to derive an individualized dose. Anoth-
er type of study is to predict the dose level for each
voxel. People usually adopt the U-Net structure and
make some task-specific adjustments, such as using dense
convolution[1%5] or adding cross-scale connectionsl!66 to
deal with this task. By setting the loss function to minim-
ize the difference between the predicted dose and manu-
ally planned dose for each voxel, the deep learning model
is trained to capture the dose-related features on the CT
volume. These methods also employ the mask of plan-
ning target volume (PTV), OARs and beam setup in-
formation as guidance to make more accurate predictions
on lesions and to avoid harming normal tissues.

Targeted therapy

Targeted therapy is a type of cancer treatment that
targets certain gene mutations to directly inhibit cell pro-
liferation, differentiation, migration, etc. During the past
few years, the application of targeted therapy such as
EGFR-TKI has greatly facilitated the development of
precision medicinell67). However, not all patients with the
mutation would benefit from the treatment due to drug
resistance. It would be helpful if the effectiveness of tar-
geted therapy could be identified before the treatment.
Radiomics provides a non-invasive tool to predict the
therapy response, and most studies in lung cancer focus
on EGFR-targeted therapies. Yang et al.ll48l constructed

a radiomic signature and incorporated the clinical inform-
ation of patients to make predictions. Mu et al.[109] built a
CNN model to predict EGFR mutation status, and then
used the output of CNN as a deep signature to stratify
patients according to their PFS. Song et al.[l88] adopted
the generative adversarial network (GAN) to extract deep
features in a self-supervised manner. Song et al.ll68] de-
signed two generators, one of which is an encoder to ob-
tain the deep feature vector from the original image and
the other is a decoder to generate mimic images from a
random noise vector. There are also two discriminators to
distinguish both the image pairs and the vector pairs.
They simultaneously trained the generators and discrim-
inators, and then the deep features were used to build a
signature for PFS with the LASSO model. Wang et al.[169]
obtained deep features by predicting EGFR mutation
status using a CNN model, and then these deep features
were combined with clinical factors to build a prognostic
signature by predicting PFS. Different from most studies
that focus on the tumor area, they extracted features
from the whole lung and suggested that the genotype and
prognostic information could also be obtained from the
area outside the tumor. Studies for ALK-related ther-
apies are conducted using similar strategies with pro-
gnostic signatures or classifiers constructed using LASSO
or CNN models170-172], Table 7 summarizes typical ra-
diomic studies on the responses of lung cancer to tar-
geted therapy.

Immunotherapy

Immunotherapy has emerged as an important new op-
tion for lung cancer treatment, especially for advanced or
recalcitrant tumors[!70: 1771 A majority of drugs for im-
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Table 7 Typical radiomic studies on targeted therapy response for lung cancer treatment

Targeted Image

Primary target(s) for Predicted clinical Including non-

Study mutation modality Method model development endpoint(s) radiomic information
Tang et al.[173] EGFR CcT Radiomic predictor PFS of patients PFS of patients Clinical information
Hou et al.[174] EGFR cT Deep classifier Tumor progression level Tumor progression level No
Song et al.[168] EGFR CcT Deep signature PF'S of patients PF'S of patients No
Wang et al.[169] EGFR CcT Deep classifier and EGFR mutation status PF'S of patients Clinical information
signature and PF'S of patients
Yang et al.[148] EGFR CECT Radiomic signature Therapy response status Therapy response status Clinical information
Shao et al.[173] EGFR FDG Radiomic signature PFS of patients PF'S of patients Clinical information
PET/CT
Mu et al.[105] EGFR FDG Deep signature EGFR mutation status PF'S of patients No
PET/CT
Huang et al.[170] ALK CT Radiomic signature OS of patients OS of patients No
Song et al.[171] ALK CcT Deep classifier and ALK fusion status PF'S of patients Clinical and
signature pathological
information
Liet al.[172] ALK CECT Radiomic signature PF'S of patients PF'S of patients Clinical information

that
boost an antitumor immune response from T cells to find

munotherapy are immune-checkpoint inhibitors
and attack the tumorll”l. Cytotoxic T lymphocyte anti-
gen 4 (CTLA-4), programmed cell death protein 1 (PD-1)
and PD-L1 are common targets for immunotherapyl179.
Clinical trials have shown the effectiveness of immuno-
therapy with significant improvement in patient
survivall!80l, Similar to other therapies, people also seek
for non-invasive methods to identify patients who may
potentially benefit from immunotherapy. Jazieh et al.[181]
built a radiomic signature for immunotherapy by predict-
ing PFS. Liu et al.['82] employed longitudinal CT images
and calculated the absolute differences between features
extracted on pretreatment and follow-up CT images, and
then constructed a delta radiomic signature to predict
therapy response status. Besides therapy response status
and patient’s prognosis, the genomic properties of tumors
are also used as primary prediction targets for model de-
velopment, such as tumor mutation burdenl!83, the ex-
pression status of PD-L1[84 and the mean expression of
Granzyme A (GZMA) and perforin 1 (PRF1)!85. These
studies trained deep learning models and used the output
of the trained model as the deep signature for prognostic
analysis. Typical studies on immunotherapy response for

lung cancer treatment are summarized in Table 8.

5 Software tools

There are some commonly-used open-source software
tools in the field of radiomics that help researchers to
carry out ideas and evaluate results. Some of them are
desktop computer programs with easy operations and
good interactivities. The others are packages developed to
facilitate flexible implementation of algorithms using cer-
tain programming languages. In this section, we intro-
duced two frequently-used desktop computer programs

@ Springer

(ITK-SNAP[M and 3D Slicer’?]) and took the most pop-
ular programming language Python! as an example to
summarize typical packages used in lung cancer radiomic
studies.

5.1 Desktop computer programs

In the radiomic analysis, desktop computer programs
are efficient tools for medical image visualization and pre-
processing. ITK-SNAP and 3D Slicer are two widely-used
open-source desktop computer programs. Both of them
provide multi-directional visualization of medical images
from the axial, coronal and sagittal planes in the form of
either 2D images or 3D reconstructed objects. Prepro-
cessing steps such as denoising, gray-level windowing, res-
ampling and image registration can be performed with a
few clicks of the menu buttons. These computer pro-
grams also support semi-supervised tumor segmentation,
in which users draw the approximate location of tumors
as guidance, and then the plug-in algorithms automatic-
ally generate the tumor masks. The obtained tumor
masks may not be ideal, and users can make modifica-
tions manually. The processed images and tumor masks
can be saved for downstream analysis. The 3D Slicer also
provides a Python scripting interface, which is conveni-
ent for users to write codes to implement the following
feature extraction and clinical prediction steps using the
same software.

5.2 Python packages

Python programming gives the choice of algorithms in
each step of radiomic analysis to the users, making it pos-
sible to flexibly implement the programs according to the

! https://www.python.org
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Stud Immunotherapy Image Method Primary target(s) for Predicted clinical Including non-
ucy target(s) modality etho model development endpoint(s) radiomic information
Yang et al.[186] PD-1 CT Radiomic classifier Therapy response Therapy response No
and signature status status; PF'S of
patients
Trebeschi et al.[187] PD-1 CECT Radiomic signature = Therapy response Therapy response No
status status; OS of patients
Wu et al.[188] PD-1 CT & CECT Radiomic signature = Therapy response Therapy response  Clinical information
status status
Liu et al.[182] PD-1 Longitudinal Delta radiomic Therapy response Therapy response No
CcT signature status status
Jazieh et al.[181] PD-L1 CcT Radiomic signature PF'S of patients OS and PF'S of Clinical and
patients pathological
information
Tunali et al.[189] PD-1/PD-L1 CECT Radiomic classifier =~ Therapy response Therapy response  Clinical information
and signature status status; PF'S of
patients
Khorrami et al.[190] PD-1/PD-L1 Longitudinal Delta radiomic Overall survival of ~ Therapy response No
CcT classifier and patients status; OS of patients
signature
Park et al.[185] PD-1/PD-L1 FDG Deep signature Mean expression of ~ Therapy response No
PET/CT GZMA and PRF1 status; OS and PFS
of patients
He et al.[183] Immune CT Deep signature Tumor mutation OS and PFS of No
checkpoint(s) burden (TMB) level patients
Mu et al.[184] Immune FDG Deep signature Expression status of Therapy response No
checkpoint(s) PET/CT PD-L1 status; OS and PFS
of patients

data and tasks. In recent years, the Python community
has wrapped many reusable code modules into packages
with clear definitions of inputs and outputs. It becomes
more and more convenient to conduct radiomic analysis
using Python packages instead of writing codes from
scratch. We summarized the commonly-used Python
packages in lung cancer radiomics with the webpage of
each package provided, as shown in Table 9.

The first step in image preprocessing is to load the
medical images. People have developed pydicom['93], niba-
bel1%4 and SimpleITK[!9] to load the images stored in the
dicom, NIFTI or both formats, respectively. After image
loading, researchers can reduce the noises in images us-
ing the OpenCV[9%] package, which is one of the most
famous packages in computer vision. The gray-level win-
dowing can be performed directly using the basic func-
of Python.
achieved with the SimpleITK or scipy[7 package to in-

tions The resampling operation can be
terpolate images to a certain size or voxel spacing. When
multi-modality images are involved, researchers can align
two images using the image registration packages Sim-
pleElastix[198] or DEEDS!99.

In terms of tumor segmentation, the frequently-used
nnU-Net[2] is a user-friendly package for both 2D and 3D
segmentation tasks. This package is suitable for research-
ers with little experience in training deep learning models.
There is no need to make the image sizes uniform prior to
training, as nnU-Net itself would crop sub-volumes from

the original image as inputs. Another convenience is that
the hyper-parameters such as crop size, network architec-
ture and training parameters are automatically con-
figured. Users only need to transform images and labels
to the NIFTI format and organize them according to the
requirement of nnU-Net. Detailed instructions for using
the package are available on the website (Table 9).

As for feature extraction, the most commonly used
package is pyradiomicsB2. The calculation of predefined
quantitative features is implemented in the package and
feature values can be obtained with several lines of code.
pyradiomics supports customized feature extraction by
specifying the features to be included or excluded.

Among packages developed for clinical prediction, the
scikit-learn(290 package is powerful in implementing non-
deep-learning models. It also supports many machine
learning operations such as feature selection, model train-
ing, evaluation metric calculation, and cross validation.
Deep learning models are usually built by deep learning
frameworks such as PyTorch(201l or TensorFlow. There
are packages focusing on deep learning in medical images
like MONAII202] that developed on the top of existing
frameworks. It becomes more quickly to implement clas-
sical models using MONAI as users only need to set a few
model parameters without defining the model architec-
ture layer by layer.

Besides the abovementioned tools, there are many
other packages designed for similar purposes, developed

@ Springer



770

Machine Intelligence Research 20(6), December 2023

Table 9 Commonly-used Python packages in lung cancer radiomic studies

‘Webpage Notes

Category Function Package name
Image preprocessing Image input and output Pydicom
Nibabel
SimpleITK
Image denoising OpenCV
Image resampling SimpleITK
Scipy
Image registration SimpleElastix
DEEDS
Tumor segmentation  Segmentation mask generation nnU-Net
Feature extraction Predefined feature calculation Pyradiomics

Clinical prediction Training and evaluation of non-

deep-learning models

Scikit-learn

Training and evaluation of deep PyTorch
learning models
Tensorflow
Fast implementation of deep MONAI

learning procedures

https://pydicom.github.io Designed for dicom files

https://nipy.org/nibabel Designed for NIFTI files
https://simpleitk.org

https://opencv.org
https://simpleitk.org

https://scipy.org/

https://simpleelastix.github.io Works together with

SimplelTK

https://github.com/mattiaspaul /d
eedsBCV

https://github.com/MIC-
DKFZ/nnUNet

Needs GPU(s) for training
and prediction

https://pyradiomics.readthedocs.io Works together with

SimpleITK

https://scikit-learn.org

https://pytorch.org
https://www.tensorflow.org

https://monai.io Works together with

PyTorch

on either Python or other programming languages such as
MATLAB, R, etc. These packages and desktop computer
programs greatly facilitate the scientific study of radiom-
ics and make it possible to apply machine learning to
cancer diagnosis in clinic.

6 Challenges and future directions

Radiomics is a rapidly developing field with many pro-

posed methods and potential clinical applications.
However, there are some challenges that may hinder the
future advancement of radiomics research and applica-
tions, including the reproducibility of methods, insuffi-

cient labeled data and unclear causal relationships.
6.1 Improving study reproducibility

The most common challenge is the reproducibility of
studies, especially across different
tions[293], The predefined semantic and quantitative fea-
tures introduced in Section 2.3 are frequently used in ra-
diomic studies, but these features are sensitive to the
steps in the radiomics workflow, such as image acquisi-
tion and tumor segmentation. Descriptive semantic fea-
tures such as roundness and spiculation are highly de-
pendent on the tumor segmentation and subjective judg-
ments of the radiologist3ll. As for quantitative features,
they are affected by the radiation dose and the choice of
reconstruction algorithm[204. Meyer et al.[295] checked the
stability of 106 features and found that only 11.3% of
them were reproduced for all tested radiation doses and
CT reconstruction settings. Variations of quantitative

radiomic institu-
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features further decrease the reliability of radiomic signa-
tures and the reproducibility of clinical predictions. Such
issues are also encountered in deep learning studies[206].
There have been some efforts to compensate for the vari-
ations of quantitative feature values caused by different
CT protocols(207. Besides, the number and definition of
quantitative features also vary a lot among different stud-
ies, making it hard to compare the performance between
different methods. Different methods may even produce
different feature values for the same image. To solve this
issue, scientists have established the image biomarker
standardization initiative (IBSI)28] which aims to stand-
ardize the extraction of image features.

6.2 Handling insufficient labeled data

Another factor that restricts the performance of ra-
diomic methods is the lack of labeled datalfl. Patient co-
horts in radiomic studies are usually retrospectively col-
lected, in which the paired images and clinical informa-
tion are available for only a small group of patients[l!l].
Most radiomic methods are designed to work in a super-
vised manner. Insufficient training data would make such
machine learning models fail to capture useful informa-
tion from medical images or cause overfitting, especially
in deep learning models299. Several strategies have been
proposed to solve this issue. The simplest way is adding
regularization terms in the loss function used to train the
machine learning model, such as the LASSO and elastic-
net methods. In deep learning, people also employ the
dropout method in which some nodes (along with their
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connections) are randomly dropped from the neural net-
work during training to avoid overfitting210l. A prom-
ising new strategy is model pretraining which employs
self-supervised learning methods to better initialize mod-
el parameters, and then the model is fine-tuned with a
small number of labeled data to achieve comparable per-
formance with fully supervised training?7l. This type of
model pretraining is suitable for the training of deep
learning where a large dataset with few labeled data is
available. Besides these two strategies, the federal learn-
ing framework may also be applied to incorporate train-
ing data from multiple institutes?!ll. In federal learning,
people do not need to collect data from different sources
to build a single training set. Instead, the machine learn-
ing model with the same architecture can be distributed
to multiple institutes to perform training on each insti-
tute. For each iteration during training, the gradients of
parameters in each institute are transmitted to the cent-
ral institute and the merged gradients are distributed to
each institute again. In this way, the training set is en-
larged with multi-source datasets. Federal learning can
also be beneficial to solve the overfitting problem and
protect data privacyl212,

6.3 Uncovering causal relationships

Currently, almost all radiomic studies make efforts to
establish the correlation between image characteristics
and clinical targets. But the correlation is usually built on
given datasets and is often unstable when applied to oth-
er datasets. The reason is that two correlated factors may
be simultaneously affected by other factors, which are
called confounders. Different from correlation, the causal-
ity between factors characterizes the underlying biology
of cancer and is not affected by confounders. Causality
can be uncovered by causal inference methods[?!3l, which
may solve the issues of data scarcity and model robust-
ness in radiomics. Castro et al.2!4 discussed the import-
ance of establishing the causal relationship between im-
ages and corresponding labels and offered step-by-step re-
commendations for future studies. More efforts should be
made in the future, especially in establishing the correla-
tion between tumor genotypes and clinical outcomes with
the help of radiomics. Radiomics characterizes tumor
phenotypes such as tumor size, shape and internal struc-
tures, which are affected by tumor genotypes and further
affect treatment effect and patient’s prognosis. With the
development of imaging and sequencing technologies, sci-
entists would obtain a deeper understanding of tumor
properties from both macroscopic and microscopic levels.
Radiomics serves as the link to uncover causal relation-
ships between tumor phenotypes and genotypes, and
helps to establish a comprehensive cross-scale mechanism
of tumorigenesis and tumor progression in the future.
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6.4 Summary

In this review, we summarized recent progress in ra-
diomic studies. Radiomics has great potential in lung can-
cer diagnosis, although currently most radiomic studies
are not applied to the real-world clinical decision-making.
Besides improving the prediction performance, future Al-
based radiomics should integrate more biological informa-
tion of the tumor to provide interpretability for clini-
cians and patients. Clinical trials are also needed to valid-
ate these radiomic discoveries. On the basis of all these
approaches, we believe that radiomics will step towards
routine clinical practice and facilitate precision medicine
in the future.
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