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Abstract: For industrial processes, new scarce faults are usually judged by experts. The lack of instances for these faults causes a
severe data imbalance problem for a diagnosis model and leads to low performance. In this article, a new diagnosis method with few-shot
learning based on a class-rebalance strategy is proposed to handle the problem. The proposed method is designed to transform instances
of the different faults into a feature embedding space. In this way, the fault features can be transformed into separate feature clusters.
The fault representations are calculated as the centers of feature clusters. The representations of new faults can also be effectively calcu-
lated with few support instances. Therefore, fault diagnosis can be achieved by estimating feature similarity between instances and
faults. A cluster loss function is designed to enhance the feature clustering performance. Also, a class-rebalance strategy with data aug-
mentation is designed to imitate potential faults with different reasons and degrees of severity to improve the model's generalizability. It
improves the diagnosis performance of the proposed method. Simulations of fault diagnosis with the proposed method were performed on
the Tennessee-Eastman benchmark. The proposed method achieved average diagnosis accuracies ranging from 81.8% to 94.7% for the
eight selected faults for the simulation settings of support instances ranging from 3 to 50. The simulation results verify the effectiveness
of the proposed method.
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tion of precision in the aforementioned diagnosis methods.

In order to diagnose faults under the condition of im-
balanced fault instances, researchers use the strategies at
different levels such as the data-level, model-level, and
feature-level to process the distribution of faults, as

stances for different faults in the original data space. Fur-
ther sampling and data augmentation are two popular
approaches. From the data point of view, downsampling/®l
is a traditional but efficient sampling strategy that se-

shown in Fig. 1.
The data-level strategies equalize the number of in-
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lects a small amount of typical data from the majority
classes to balance the majority and minority classes.
However, downsampling strategies will damage the origin-
al data distributions. The synthetic minority oversam-
pling technique (SMOTE)® 19 and adaptive synthetic
(ADASYN)[IL 121 gampling are also typical sampling
strategies. However, the performance of the oversampling
strategies is severely influenced by instances’ distribu-
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tions of the minority classes. Data augmentation is anoth-
er popular group of data-level strategies. The generative
adversarial network (GAN) based models!'3: 14 perform
well in generating fault instances. Since instances of new
faults are too scarce to support the reliable generation of
GAN, Zhuo and Gel'¥ designed a generative adversarial
network model using fault attributes (FAGAN) based on
auxiliary classifier GAN[I5, The model uses fault attrib-
utes as prior knowledge to assist the generation of fault
instances. However, when the generative network of
FAGAN is fine-tuned with scarce fault instances of new
faults, it still has the risk of overfitting to these support
instances.

The model-level strategies optimize model structures
or training procedures to alleviate the problem caused by
data imbalance. The classifier ensemble strategyll6l and
the cost-sensitive learning strategyll”l are two typical
strategies. However, many of these strategies essentially
need to modify conventional algorithms, including the
discrimination threshold, while it is difficult to define a
cost function that ensures performance stabilityl!8l. The
new faults can also be diagnosed with incremental mod-
els. Yu and Zhaol'¥ designed an incremental neural net-
work called the broad convolutional neural network that
allows the model to diagnose new faults with few samples.
However, the incremental networks induce the cata-
strophic forgetting problem(2%l, which is also problematic
in the machine learning field.

In real industrial processes, common features exist for
many faults. However, many strategies above treat the
new classes as individual ones and neglect the features
learned from historical records that can be highly related
to the new faults. The methods with such strategies usu-
ally retrain entire diagnosis models, which is usually un-
necessary. In contrast, methods with feature-level
strategies extract universal features from fault instances.
The new faults can be easily identified with these robust
features.

Within feature-based strategies, many researchers
have designed few-shot learning strategies to handle the
problem in recent years, which require limited adjust-
ments for the diagnosis models. The diagnosis models are
trained on the source data sets with sufficient instances
and then transferred into the target data sets with few
support instances. For image-based tasks, the source data
sets can be ImageNet2ll and other universal data sets.
For tasks with specialized knowledge, the source data sets
can be collected from similar objects?2l or the same ob-
ject under different working conditions?3 24. For ex-
ample, Lu et al.?% proposed a transfer relation network
to accomplish the few-shot transfer learning task in rota-
tion machinery. During the training procedure, the meta-
learning strategies23: 26, 27] are used to enhance the gener-
alizability of the models. Wang et al.27l proposed a fea-
ture space metric-based meta-learning model (FSM3)
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based on the prototypical network(?8l and the matching
networkl? to diagnose the faults of bearings and gear-
boxes under limited data conditions. The model casts
fault instances into a feature embedding space and dia-
gnoses the faults by comparing the feature similarity
between the tested instances and the support instances of
faults.

It is promising to diagnose new rare faults with few-
shot learning methods. However, the limitation is that
the source data sets with sufficient instances are always
required for model training of the few-shot diagnosis
methods above. In real industrial processes, it is difficult
to collect source data sets that can cover all working
states. The restriction of the source data set containing
limited fault categories reduces the performance of these
methods.

In this paper, a new diagnosis method with few-shot
learning is designed to diagnose new rare faults in indus-
trial processes. Strategies are designed to handle the re-
striction above. In industrial processes, many faults are
caused by deviations from the normal states in represent-
ative variables or latent features. Such prior knowledge
can be used to augment the source data set. A class-re-
balance strategy is designed to construct class-balanced
batches from the initial data set. Data augmentation is
used on these data batches to generate new fault batches.
The proposed model is trained via feature clustering with
these generated fault batches to take full advantage of
these unlabeled fault instances. In addition, a cluster loss
function is designed for the unsupervised feature cluster-
ing tasks during model training. With the strategies
above, the proposed model can effectively identify the
new rare faults with few support instances. The main
contributions are as follows:

1) A new diagnosis method is designed based on the
prototypical network to diagnose new rare faults in indus-
trial processes. It comprises a standardization module, a
data segmentation module, a class-rebalance module, a
data augmentation module, a feature extractor, a feature
mapping module, and a similarity calculation module.
The simulation results on the Tennessee-Eastman bench-
mark verify the effectiveness of the proposed method.

2) A class-rebalance strategy is designed to handle the
restriction of source data sets with limited fault categor-
ies. During the model training process, instances with an
equal number for each fault are selected to construct
class-balanced batches. Then, data augmentation with
prior knowledge is used on these class-balanced batches
to generate new fault batches. The model can be trained
on these generated batches by feature clustering. The
strategy expands the variety of the source data set and
improves the diagnosis performance of the proposed mod-
el effectively.

3) A cluster loss function is designed to emphasize the
differences between interclass instances and the similarit-
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ies of intraclass instances in feature embedding space.
The loss function can effectively improve the proposed
model’s performance for feature clustering and fault dia-
gnosis.

2 Problem statement and background

2.1 Problem definition

The diagnosis problem of the new rare faults with few
support instances is investigated. Sufficient records for
normal working conditions and several historical faults
are provided as the initial data set. The initial data set
Dini = {Sn, Sfi,-++,Sfn}, where S,, denotes normal re-
cords, Sy to Syn denote the records of n historical faults,
respectively. An initial diagnosis model f{*) is supposed to
be trained with D;,;. Then, a new data set Dpew =
{Sfn+1,++,Sfm} including (m —n) new faults is added
to the initial data set. The support instances of new
faults are much fewer than the support instances of his-
torical faults. The new diagnosis model f”(-) is supposed
to be trained with the mixture data set Dini, Dnew. The
purpose of this paper is to achieve an effective diagnosis
of new faults with few support instances while keeping
the diagnosis performance on historical faults.

2.2 Classification model with metric-learn-
ing

Framework of the model with metric-learning.
Generally, models with metric-learning strategies cast in-
stances of different classes into separate feature clusters
in feature embedding spaces. New instances are usually
identified by comparing the feature similarity between
these instances and class representations, as described in
Fig.2. The representations can be the support instances
of data classes directly. The matching network and the
Siamese neural networkB% identify instances by compar-
ing the feature similarity between these tested instances
and the labeled support instances in feature embedding
spaces. As another choice, the representations can also be
the feature centers of corresponding support instances.
The prototypical network in [28] is a popular metric-
based model for few-shot learning tasks. The single rep-
resentation for each data class is calculated as the mean
value of the features of the corresponding support in-
stances. The tested instances are identified by comparing
the feature similarity between these instances and the
data classes. The proposed method is designed based on
the prototypical network model.

Generally, the feature transformation networks should
be trained on sufficient instances. However, considering
the limited instances for few-shot learning tasks, the fea-
ture transformation networks are usually trained on simil-
ar data sets with abundant instances.

Feature Similarit
) ; . imilari
transformation Features . Y
metric
network %+ o o %
Instances (Training) 'R, R, '
S
H f//
. : / .
Instances (Testing) : ®a, R,

Fig.2 Framework of models with metric learning. R;, R2 and
R3 denote the representations of feature clusters.

Triple Loss. In order to project the features of differ-
ent faults into separate clusters, the training loss func-
tions should be designed for the feature transformation
networks. The nature of metric-learning is to learn a
data-driven metric to make the distances between intra-
class features smaller and the distances between inter-
class features larger. A general formula of the training
losses s3]

L=XMLi(d") 4+ AaLa(d®) + XsLs(d”,d®) (1)

where d* and d® denote the intraclass distance and
interclass distance, respectively. A1, A2, and A3 are the
trade-offs. The three terms represent the intraclass
constraint, interclass constraint, and relative constraint,
respectively.

The triple loss is one of the widely applied loss func-
tions for metric-learning. It is first proposed in face recog-
nition tasksi2, as given in (2). The triple loss involves
three instances, named anchor instance, positive instance,
and negative instance, respectively. The positive instance
belongs to the same class as the anchor instance, but the
negative instance belongs to a different class. The inten-
tion of triple loss is to draw the distance between fea-
tures of the anchor instance and the positive instance
closer than the distance between the features of the an-
chor instance and the negative instance.

N

L= [If @) = £ @I - IIf (@) = £ @5 + o]
(2)

K3
where x{ is the anchor instance and z is the positive
instance. zj is the negative instance. « denotes the
predefined margin of each data cluster. f{*) denotes the
transformation function of the feature transformation
network. [']+ is the operation of max( -, 0).

3 Fault diagnosis method with few-shot
learning based on a class-rebalance
strategy

This section describes the proposed method. Fig.3
shows the framework of the proposed method with few-
shot learning based on a class-rebalance strategy, which
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mainly contains three parts:

Preprocessing of the historical records. The con-
secutive working states of industrial processes are usually
monitored by sensor data that are recorded as floating
point numbers. Considering the system with k sensors,
data vector X, is sampled at time ¢ with k sensor data (X; =
[x1,22, -+ ,x]). The standardization module first stand-
ardizes the continuous sensor records [Xo, X1, , X¢]
along each variable, as [)2'0, X1, ,Xt]. Then, in order to
analyze the dynamic features of the standardized mul-
tivariate records, the data segmentation module divides
the standardized records into individual data segments
using a sliding window with fixed sliding steps s. Data
segment S; collected at time ¢ includes i consecutive data
vectors [Xt77;+1,)2t7¢+2, e ,Xt]. These data segments are
the model’s input instances.

Training of the diagnosis model. The training in-
cludes the pretraining and fine-tuning steps.

In the pretraining step, a robust feature extractor is
supposed to be trained with the initial data set. The
class-rebalance module is first executed to select in-
stances with equal numbers of normal states and historic-
al faults in the initial data set to construct class-bal-
anced batches. Then, the data augmentation module de-
scribed in Section 3.2 is used on these data batches to
generate new fault instances that are different from the
real faults. Instances with an equal number are selected
from each generated fault to construct generated fault
batches in a similar way to the class-balanced batches.
The model is trained via feature clustering with these
generated fault batches. With the pretrained model, in-
stances of different faults can be projected into separate
feature clusters in the feature embedding space. The cen-
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ters of the normal states and n real feature clusters are
defined as the fault representations R} to RY.

The model needs to be adjusted to identify new rare
faults during the fine-tuning step. The class-rebalance
module is first executed to construct class-balanced
batches with the instances of the initial data set and the
support instances of new faults. The parameters of the
feature extractor are fixed. Then, the feature mapping
module is fine-tuned with those class-balanced batches
directly. Since the parameters of the feature mapping
module have been changed, the representations of nor-
mal states and m faults should be recalculated with the
corresponding fault instances.

Online diagnosis. During the online diagnosis, the
features of instances to be diagnosed are first calculated
by the model. Then, the similarity calculation module is
executed to diagnose the instances with the feature simil-
arity between instances and the faults. The cosine simil-
arity is used as a similarity metric of the proposed meth-
od. The fault with the most similar representation is dia-
gnosed as the output.

3.1 Architecture of the proposed model

Model structure. Fig.4 shows the basic architec-
ture of the proposed model. The basic structure of the
feature extractor is a 1-D convolutional neural network
(I-D CNN) with a channel-wise attention mechanism.
With a two-layer 1-D CNN as an example, the Convld 1
and Convld 2 are 1-D convolution layers with kernels
sized m, whose input and output dimensions are di, da,
and da, ds, respectively. The attention vectors are calcu-
lated by auto-encoder modules. The feature maps are av-
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Fig. 4 The model architecture of the proposed method. F in the blank square in the left part denotes the sub-dataset for the fault 1,
and D7 denotes the sub-dataset for normal working states. F} and Dp denote the instances of faults and normal working states in the
class-balanced batches B, formed with real instances obtained using the class-rebalance strategy. Fy and Dyg denote the generated
fault instances and instances of normal working states in generated fault batch By, respectively. m, d1, d2, d3 are the parameters of the

convolution kernels. R1, R2, and Rg3 are the fault representations.

eraged in each channel, and the averaged feature maps
are taken as the inputs of the auto-encoder module. The
dot in a circle after the Convld, as shown in the middle
part of Fig.4, means the operation of multiplying along
channels. After the feature extractor, the extracted fea-
tures are cast into the final feature embedding space with
the feature mapping module. The feature mapping mod-
ule can be a fully connected layer only. The features of
different faults and normal states are projected into sep-
arate feature clusters.

Generally, the task of fault diagnosis is to identify the
deviations from normal working states. Because of some
large feature deviations, the minor feature deviations
might be suppressed to small values after the normaliza-
tion operation, which are too small to be detected. To
highlight those slight deviations, a designed transforma-
tion function is added after the feature extractor, shown
as the circled symbol F in Fig.4. The function is

In(z+1), ifz >0
F(z)=1<0, ifr=0 (3)
—In(jz|+1), ifz<O.

Cluster loss. The proposed method is designed to be
trained on abundant generated faults rather than real
limited faults. With the pretrained model, the instances
of different faults can be cast into separate feature
clusters in the feature embedding space in Fig.4. To
make the distances between interclass features larger and
the distances between intraclass features smaller, cluster
loss is proposed, which is shown in Fig.5(b). Compared to
the triple loss in Fig.5(a), the intraclass instances shrink
together; meanwhile, the interclass instances are pushed
away from each other. Since the cosine similarity is used
as the model’s distance metric, the cluster loss L can be

calculated by (4) to (6). D(-) denotes the distance based
on cosine similarity. C denotes the categories within a
single training batch. nc denotes the total category num-
ber. ¢; denotes the I-th class. v is a predefined parameter.
xi, xj, and zy are the input instances.

ooy L f@) fy)
D(z;,x;) 2 (1 \f(%)”f(xj)') (4)

C
= o> (argmax (Dai, ;) -
cl

T, ect

argmin (D(z;,zx)) + a) (5)
+

wiecl oy el

c
L=1L;+ L Z(argmax(D(xi,xj))Jr

n
C ol xi,xjed

8l
arg min (D(:ri,:rk))) (6)

zi€ct,xp gct

3.2 Training procedure with a class-rebal-
ance strategy

In order to train the model on a limited source data
set, a class-rebalance strategy is proposed, as shown in
Fig.6. It is prior knowledge that many faults in industri-
al processes are caused by deviations from normal work-
ing states in representative variables or latent features.
Therefore, this strategy is designed to generate potential
faults according to such prior knowledge.

Firstly, the instances with equal numbers from differ-
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ent faults and normal states are randomly selected from
the training set to construct class-balanced batches.
Then, data augmentation is used on these class-balanced
batches to generate potential fault instances for different
reasons and severity degrees. Specifically, the differences
between the real fault instances and the center of normal
instances are randomly scaled. Then, operations such as
dimension exchange and scaling along the time are per-
formed on these fault instances. The operations can be
expressed as

zg =g +y(xr — pi)) (7)

where x4 is the generated fault instance and z; is the
instance belonging to the real fault type in a class-
balanced batch. uj, denotes the statistical mean of normal
instances. v is a random amplitude, which can be set to
either constant 1 or follow the standard distribution U(0,
1). g(*) is the data augmentation operation, which can be
the operation of dimension exchange and scaling over
time. Since the strategy does not augment the real faults
with limited support instances, it alleviates the overfit-
ting problem suffered by traditional data augmentation
strategies.

During the fine-tuning step, the feature mapping mod-
ule is directly fine-tuned with the class-balanced batches
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that are selected from the real data set.
3.3 Online diagnosis with representations

The diagnosis result is decided by the average of the
feature similarity between the new instance and the sup-
port instances of different faults in the feature embed-
ding space. Since the features in the feature embedding
space are normalized, the similarity can be calculated by

(8).

S = S @) ) = @) (8)

z;€ct

where s'

denotes the average of the similarity from
instance x to the support instances of fault ¢ in feature
embedding space. n' denotes the number of the support
instances belonging to c. ,ul denotes the average feature

! and it can be

of support instances belonging to c¢
referred to as the representation of c’.
The diagnosis result ¢ is the fault ¢! with the highest

similarity smax-.

{c = |$max = arg max (f(x)T,ul) } . (9)

clec
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4 Simulation on Tennessee-Eastman
process

4.1 Data set

In order to verify the effectiveness of the proposed
method in the fault diagnosis for new scarce faults, the
Tennessee-Eastman processi®3 is used in simulation,
which is a typical benchmark for evaluating fault detec-
tion and diagnosis methods for industrial processes. The
process includes five units (a condenser, a compressor, a
reactor, a cooler, and a striper). There are 53 monitored
variables involved, and 21 faults can be simulated with
the programB4. Simulations are conducted in mode one
and the simulation for each fault lasts for 600 hours (fault 6
ends at 7.1 hours). The sampling period is three minutes.
The simulations involve 52 variables used for monitoring
the working states of the chemical processi3] (except the
agitator setting, which is a constant value of 100) and
eight types of faults. The descriptions of the faults are
shown in Table 1. A total of 52 sensor data can be
5 1’52]) at
the time ¢. All the records are segmented by the sliding

sampled as the data vector X; (X¢ = [z1, z2, -

window with a length of 72 minutes and a sliding step of
six minutes. Hence, the instance S:; collected at time ¢
contains 24 consecutive data vectors [Xi—23, Xi—22, ",
X¢]. The initial data set includes fault 1 to fault 3, as well
as the normal states. Each class has the first 3 000 con-
secutive instances. Faults 4 to 8 are the new faults. A test
set including 1 120 normal consecutive instances and 6 309
fault instances is built. There are 900 consecutive in-
stances for each fault except fault 6. There are nine in-
stances for fault 6. Since the durations of the faults are
different, two sampling settings are considered here. One
setting is the sparse random sampling within long faults

Table 1 Descriptions of chosen faults

No. Fault state Disturb

0 Normal /

A/C feed ratio, B composition constant Step chanee
(Stream 4) P &

2 B composition, A/C ratio constant (Stream 4)  Step change

3 D feed temperature (Stream 2) Step change
4 Reactor cooling water inlet temperature Step change
Condenser cooling water inlet temperature i

5 (Stream 2) Step change

6 A feed loss (Stream 1) Step change

7 C header pressure loss — Reduced availability Step change

8 A, B, C feed composition (Stream 4) Rar}dom
variants

The Tennessee-Eastman process produces two products from
reactants A, C, D, and another reactant E. B is inert. The details of
the process are described in [33].

existing procedures, which imitates multiple faults re-
cords with short recording procedures. The other is con-
secutive dense sampling within a single fault record. The
two sampling settings are called sparse sampling and
dense sampling in the following sections.

4.2 Parameters and details

Table 2 shows the settings of the proposed method
and the settings of its training procedure. For the pro-
posed model, the feature extractor is a 1-D CNN with
three convolution layers. Conv and Attention denote the
convolution module and the attention module in the fea-
ture extractor, respectively. Convld denotes a 1-D convo-
lution layer with kernels sized three and stride two. FC
denotes the fully connected layer. (a,b) attached behind
the Convld and FC are the layers’ input dimension a and
output dimension b, respectively. The LReLU represents
the leaky rectified linear unit activation function. The
feature mapping module is a fully connected layer with
input dimension 128 and output dimension 32. The pre-
training step lasts 900 batches. For each batch, 80 ran-
dom instances for the normal states and n types of real
faults are collected to generate a training batch with a
size of 80x(n + 1). For the fine-tuning step, the instance
number for each fault is the same as the number of sup-
port instances for each minority class. The fine-tuning
step only lasts for one training batch.

Table 2 Network parameters and training settings

Preprocessing

Data segmentation: Sliding window with sliding Step 2
Signal denoise: Wavelet filtering

Model parameters

Conv 1: {Convld (52, 64) LReLU}

Attention 1: {FC (64, 16) LReLU FC (16, 64)
Sigmoid}

Conv 2: {Convld (64, 96) LReLU}

Feature s ¢t ontion 2: {FC (96, 12) LReLU FC (12, 96)

extractor . .
Sigmoid}
Conv 3: {Convld (96,128) LReLU}
Attention 3: {FC (128,16) LReLU FC (16,128)
Sigmoid}

Feature

mapping {FC(128, 32)}

module

Training settings

Adam optimizer, initial training step: 0.001, sample number: 80, max
iteration: 900, a in cluster loss: 0.01, v in cluster loss: 0.001, fine-
tuning training step: 0.000 1, fine-tuning iteration: 1

4.3 Comparison study

In this section, comparison simulations are conducted
for various few-shot settings. The support instance num-
ber Ns of new faults for both sampling settings above
varies from 3 to 50. The data augmentation method
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FAGAN[ and two methods based on feature similarity
named FSM3[27 and PNCI28] are selected as the comparis-
on methods. The PNC denotes the prototypical network
with the cosine similarity metric. The simulations for
each setting are repeated 40 times, and the average dia-
gnosis accuracies for the eight faults are given in Table 3.
Fig.7 provides the distributions of diagnosis accuracies of
the methods above for dense sampling settings. Moreover,
the average diagnosis accuracies of each fault with five
support instances for dense sampling settings are given in
Table 4. The results under faults 1 to 3 are the average
diagnosis accuracies. The 1-D CNN denotes a basic 1-D
CNN classification network.

For FAGAN, the model's generative network is estab-
lished on a 1-D CNN rather than a multilayer perceptron
network. Moreover, its fault attributes refer to the origin-
al paper(27l. To achieve a reasonable comparison, the fea-
ture extractors of 1-D CNN, PNC, FSM3, and the dis-
criminator in FAGAN have the same architectures as the

Machine Intelligence Research 20(4), August 2023

proposed method.

Since the instances of normal states and faults 1 to 3
are sufficient, the diagnosis accuracies for the three faults
are generally high for all methods, ranging from 87.8% to
100.0% in Table 4. Moreover, compared with the support
instances for sparse sampling settings, the support in-
stances for dense sampling settings are more similar to
each other. Therefore, similar support instances lead to
models’ lower diagnosis performances than the diagnosis
performances for sparse sampling settings, as given in
Table 3.

Tables 3 and 4 show that 1-D CNN has low diagnosis
accuracies for the five new faults. Similar results are
shown in Fig.7(a). The results indicate an invalid learn-
ing of the new faults for 1-D CNN. FAGAN performs well
when the support instances are sufficient, as shown in
Fig.7(b). However, FAGAN fails to learn the patterns of
fault 5 and fault 8 with few support instances. Hence, it
has extremely low diagnosis performance on the two

Table 3 Average diagnosis accuracies for different sampling settings (%)

Type Sparse sampling Dense sampling
N 3 5 10 20 50 3 5 10 20 50
1-D CNN 53.8 57.0 65.4 71.0 75.2 52.2 51.2 58.9 62.1 68.9
FAGAN[4 71.7 73.7 78.6 88.6 95.7 71.1 72.0 74.4 79.4 84.8
FSM3[27] 65.6 64.3 64.4 63.5 62.7 65.6 63.5 63.8 64.0 65.0
PNCI28] 75.5 76.4 77.9 7.7 79.1 72.9 75.1 75.0 75.5 75.0
Proposed 86.5 90.5 91.9 93.9 94.7 81.8 82.8 83.1 85.0 88.9
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Fig. 7 Distributions of diagnosis accuracies for the five new faults for dense sampling settings in comparison simulations with different

methods

@ Springer



X. Xu et al. / A New Diagnosis Method with Few-shot Learning Based on a Class-rebalance Strategy for Scarce - 591

Table 4 Diagnosis details with five support instances for a
dense sampling setting (%)

Faults 0 1to3 4 5 6 7 8

1-D CNN 99.7 100.0 40.0 0.3 20.0 20.3 9.0

FAGAN [14] 99.9 100.0 99.9 1.1 90.0 984 5.0

FSM3 [27] 72.7  87.8 859 30.0 59.4 41.6 123
PNC [28] 781 972 974 30.1 88.6 76.1 14.9
Proposed 93.5 99.6 99.2 41.8 92.5 100.0 39.0

faults, as given in Table 4. When the support instances
are similar, the instances generated by FAGAN overem-
phasize the biased distributions of the few support in-
stances, which worsens the overfitting problem. When the
number of support instances is 50, the average diagnosis
accuracy drops from 95.7% to 84.8% for FAGAN. The
PNC has good performance when the support instances
are extremely rare. However, since the networks are
trained on the initial data set only, the performances of
both metric-based methods FSM3 and PNC have few im-
provements when the support instances increase, as
shown in Figs.7(c) and 7(d). The proposed method per-
forms the best for most simulation settings.

The t-SNE (t-distributed stochastic neighbor embed-
ding)B9 is one of the most widely used feature visualiza-
tion algorithms. With t-SNE, the distributions of fea-
tures in feature embedding space can be visualized with
the 2-D vectors projected from the features with 32 di-
mensions. PNC, FSM3, and the proposed method have
similar classification mechanisms. They identify new in-
stances by comparing feature similarity between these in-
stances and existing data classes in feature embedding
spaces. The fault features calculated by the three feature-
based methods are investigated by t-SNE. Fig.8 provides
visualized feature distributions of the tested instances of
faults 0 to 3 and fault 5, which are calculated by PNC,
FSM3, and the proposed method with the same five sup-
port instances of fault 5. The visualized feature distribu-
tions of fault 5 in Figs.8(b) and 8(c) partly overlap with
the visualized feature distributions of fault 0. For PNC
and FSM3, the overlapped distributions of fault 0 and
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60 G 75

i o Class_3
40 < Tams |
s s

anchor
20 0
0 —25
-20 =50
=75

—40

—60 —40 20 0 20 40 60 80
(a) Proposed method

—60 —40 20 0 20 40 60 80
(b) FSM3

fault 5 confuse these models’ identification for both fault
classes and lead to lower diagnosis performance, as shown
in Table 4.

Besides, support instances located at the border of the
distributions can lead to serious misdiagnosis of the in-
stances. Compared with Figs.8(b) and 8(c), the proposed
method can provide a clearer visualized feature distribu-
tion of fault 5, as shown in Fig.8(a). Despite the random
nature of locations for the support instances, the pro-
posed method can provide more distinguishable represent-
ations with clearer feature distributions. As a result, the
proposed method performs best in most cases.

Then, ablation simulations are conducted for the
dense sampling settings to compare the effectiveness of
each module. Simulations for each setting are repeated 15
times, and the average results are given in Table 5. The
CNN in Table 5 denotes the 1-D CNN trained with the
cluster loss function. Compared with the diagnosis ac-
curacies of 1-D CNN with the traditional cross-entropy
classification loss function in Table 3, the 1-D CNN with
cluster loss function performs much better. The diagnosis
accuracies of 1-D CNN rise from the range of 51.2% to
68.9% to the range of 74.2% to 79.1% for the dense
sampling settings. As given in Table 5, the data augment-
ation module can effectively improve the diagnosis per-
formance of the model. The diagnosis accuracies are fur-
ther raised to the range of 78.0% to 85.5%. The class-re-
balance module selects instances with an equal number
for each fault in class-balanced batches. The operation
highlights the instances of new faults, whereas it has a
more severe overfitting problem when the model’s gener-
alizability is insufficient. Although the individual class-re-
balance module is not effective with cluster loss, it im-
proves the model’s diagnosis performances on the basis of
data augmentation. Since the proposed model with the
class-rebalance module cannot cluster the feature of each
fault with a single instance, the average diagnosis accur-
acy of the model is slightly inferior to the model with the
data augmentation module only for the set with a single
support instance. However, it outperforms the rest of the
simulation settings.

80

- Class_0 - Class_0
. g%ass:é - g%ass:%
“lass “lass
o Class_3 60 - o Class_3
v E}as{g - E}assig
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(c) PNC

Fig. 8 Visualized feature distributions of faults 0 to 3 and fault 5 for dense sampling settings in comparison simulations with different
methods. The visualized distributions are calculated with t-SNE. Class ¢ denotes the instances of fault ¢ in the test set. Class 5 anchor is
the representation of fault 5. Class 5 _instances are the five support instances of fault 5.
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Table 5 Average diagnosis accuracies for the ablation test (%)

N 1 5 10 20
CNN 74.2 787 79.1 79.1
CNN + Data-rebalance 73.4 773 771 771
CNN + Data augmentation 78.0 83.0 85.5 85.0

CNN + Data-rebalance + Data

augmentation (proposed) 7T 849

86.0 86.6

4.4 Generalizability of the feature extract-
or

The generalizability of the proposed method is fur-
ther investigated in this section. 1-D CNN, PNC, FSM3,
and the proposed method are only trained on the initial
data set. The four models have feature extractors with
the same network architecture as well. The tested in-
stances of all faults are projected into the feature embed-
ding spaces of the four models. Fig.9 shows the visual-
ized feature distributions, which are calculated by t-SNE.
It can be seen from Fig.9(a) that the new fault features
extracted by 1-D CNN mix with other feature clusters ex-
cept for the features of fault 4. The feature distributions
show that the initial diagnosis model for 1-D CNN has
low generalizability for the new faults. In comparison, the

75

50 4

25

(a) 1-D CNN

-100 =75 =50 25 O 25 50 75 100

100

75 -0 25 0 25 50 75
(c) FSM3

Fig.9 Visualized feature distributions with t-SNE, class 0 denotes

fault 8.
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proposed method has much clearer feature distributions
for the new faults. Compared with Figs. 9(b) and 9(c), the
proposed method has the clearest feature distributions for
the new faults, as shown in Fig.9(d). Therefore, the pro-
posed method can diagnose the new faults more effi-
ciently.

4.5 Discussions

For real industrial processes, the initial data set can
hardly cover all possible working states. Moreover, since
the feature extractor’ parameters are fixed during the
fine-tuning step, it is more difficult for the model to learn
the features of new faults with new fault mechanisms.
Therefore, the balance strategy to deal with the “flexible-
stable” dilemma with limited instances will be developed
in the future.

Another limitation lies in the fine-tuning step for new
faults. Since the instances of new faults are extremely
rare, it is difficult to design a proper indicator to stop the
fine-tuning early.

5 Conclusions

In this article, a fault diagnosis method with few-shot
learning based on a class-rebalance strategy is proposed

80
60
40
20

80 —60 —40 —20 0 20 40 60 80
(b) PNC

-60 —40 -20 0 20 40 60 80
(d) Proposed method

the normal working state, Class_1 to Class_8 denote fault 1 to
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to diagnose the new scarce faults identified by experts for
industrial processes. The proposed model projects in-
stances of different faults into separate feature clusters in
a feature embedding space. The average feature of the
support instances for each fault is the fault representa-
tion. During the online diagnosis procedure, the diagnos-
is of new instances is decided by feature similarity
between instances and faults. A cluster loss is designed to
enhance the proposed model’s clustering performance in
As well,
strategy with data augmentation is designed to improve

feature embedding space. a class-rebalance
the diagnosis performance of the proposed model. The
simulations of fault diagnosis on the Tennessee-Eastman
benchmark were performed. The simulation results verify
the effectiveness of the proposed method.

In the future, the parameters’ updating strategy of the
feature extractor will be focused on enabling the feature
extractor to diagnose the faults with new fault mechan-
isms while maintaining good diagnosis performance for
existing faults.
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