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Abstract: In the past decade, multimodal neuroimaging and genomic techniques have been increasingly developed. As an interdiscip-
linary topic, brain imaging genomics is devoted to evaluating and characterizing genetic variants in individuals that influence phenotyp-
ic measures derived from structural and functional brain imaging. This technique is capable of revealing the complex mechanisms by
macroscopic intermediates from the genetic level to cognition and psychiatric disorders in humans. It is well known that machine learn-
ing is a powerful tool in the data-driven association studies, which can fully utilize priori knowledge (intercorrelated structure informa-
tion among imaging and genetic data) for association modelling. In addition, the association study is able to find the association between
risk genes and brain structure or function so that a better mechanistic understanding of behaviors or disordered brain functions is ex-
plored. In this paper, the related background and fundamental work in imaging genomics are first reviewed. Then, we show the univari-
ate learning approaches for association analysis, summarize the main idea and modelling in genetic-imaging association studies based on
multivariate machine learning, and present methods for joint association analysis and outcome prediction. Finally, this paper discusses

some prospects for future work.

Keywords: Brain imaging genomics, machine learning, multivariate analysis, association analysis, outcome prediction.

Citation: M. L. Wang, W. Shao, X. K. Hao, D. Q. Zhang. Machine learning for brain imaging genomics methods: A review. Machine
Intelligence Research, vol.20, no.1, pp.57-78, 2023. http://doi.org/10.1007/s11633-022-1361-0

1 Introduction

In recent years, with the development of cognitive
neuroscience, neuroimaging has brought new vitality to
the study of the working mechanism of the human brain.
At the same time, with the development of noninvasive
brain imaging technology, researchers hope to gain new
insights into the imaging characteristics and molecular
mechanisms of the brain, as well as their impact on nor-
mal and disordered brain function and behavior. Com-
monly used brain imaging techniques include structural
magnetic resonance imaging (sMRI), functional magnetic
resonance imaging (fMRI), diffusion tensor imaging
(DTI), and positron emission tomography imaging
(PET). In addition, with the development of genetic tech-
nology, researchers can identify genetic markers associ-
ated with neurological and psychiatric diseases from a
more refined molecular level (such as single nucleotide
polymorphisms (SNPs)).

With recent technological advances in acquiring mul-
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timodal brain imaging data and high-throughput genom-
ics data, brain imaging genomics is emerging as a rapidly
growing research field. Hariri and Weinberger[ll proposed
the concept of imaging genomics or imaging genetics,
which performs integrative studies that analyse genetic
variations, such as SNPs, as well as epigenetic and copy
number variations (CNVs), molecular features captured
by various omics data, and brain imaging quantitative
traits (QTs), coupled with other biomarker, clinical, and
environmental datal? 31,

As an emerging data science, brain imaging genomics
has achieved rapid growth, which is greatly attributed to
the public availability of valuable imaging and genomics
datasets. Due to the open-science nature of the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) project[4],
hundreds of publications using ADNI imaging genomics
data have been produced in the past decade, yielding in-
novative machine learning methods and novel biomedical
discoveries. Similar to the ADNI, an increasing number of
landmark studies are producing big data, including multi-
dimensional imaging and omics modalities, making them
available to the research community. These include the
Enhancing Neuro Imaging Genetics through Meta Ana-
lysis (ENIGMA) Consortiuml), Philadelphia Neurodevel-
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opmental Cohort (PNC)Il and Parkinson's Progression
Markers Initiative (PPMI)[7.

Brain imaging genomics mainly uses brain imaging
technology to evaluate the genetic influence on individu-
als by using brain structure and function as phenotypes,
and explores how genes affect the neural structure and
function of the brain, as well as the resulting neurologic-
al pathology. Studying the association between genetics
and brain structure and function, and building a visible
bridge between “genes and brain”, can better reveal the
pathogenesis of neuropsychiatric diseases®10l. Imaging ge-
nomics can also identify biological indicators or en-
dophenotypes of a brain disease, which provides a more
accurate method for predicting and diagnosing the dis-
ease. Specifically, most researchers consider SNPs as gen-
otype data for association analysis. In the acquisition of
endophenotypic data, researchers mostly use brain ima-
ging data (i.e., MRI) in clinic for analysis. For example,
sMRI, an imaging technique that measures the structural
organization of the brain, can quantify abnormalities in
morphology (i.e., gray matter volume). fMRI scans have
been shown to be effective in revealing functional con-
nectivity patterns of the brain. Based on different modal-
ities of brain imaging technology, at present, imaging ge-
nomics mainly focuses on the association analysis between
gene SNPs and brain structure, function, and connectiv-
ityl11-14],

Early imaging genomics approaches consisted of uni-
variate paired statistical analysis methods, where mul-
tiple tests are employed to find the association between
SNPs or genes and complex diseases or measurable quant-
itative traits (QTs). Genome-wide association study
(GWAS) uses the whole genome high-throughput sequen-
cing technology to classify the sequence variation in the
genome of the research object, and finally selects signific-
ant SNPs via the biostatistics methods and bioinformat-
ics methods!!%], Since the first GWAS research paper on
age-related macular degeneration published in Science in
20050161 this method has been used in the analysis of psy-
chiatric disorders[!7. GWAS has played a great role in the
study of imaging genetics, but there are also some prob-
lems, such as strict multiple correction, so that many
small effect variants cannot pass the correction level. In
addition, GWAS can only obtain a single degree of associ-
ation between genetic variation and traits, and cannot
well explain the complex molecular mechanisms of the
brain.

In recent years, with the rapid development of ma-
chine learning in academia and industry, researchers have
tried to use these data analysis tools to solve some prob-
lems in many fields. In the association analysis of ima-
ging genetics, in addition to univariate statistical analys-
is, the multivariate machine learning model is the most
widely used, and it has identified disease-sensitive ima-
ging and genetic biomarkers. Internationally, some schol-
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ars have also written a review of related methods in ima-
ging genetics. For example, Medland et al.['8! have raised
the problems and challenges of using traditional univari-
ate statistical models to process large-scale genome-wide
brain imaging association analysis, reviewing the re-
search results in different central databases. Liu and Cal-
hounl!¥) summarized the application of other multivariate
methods such as independent component analysis in ima-
ging genetics. Thompson et al.20] focused on the associ-
ation analysis between genetics and brain structure con-
nectivity and functional networks. Based on the above re-
view works, this article is devoted to providing compre-
hensive and up-to-date coverage of machine learning
methods in brain imaging genomics. Fig.1 is adopted to
present a schematic of the topics covered in brain ima-
ging genomics. One of the main goals of imaging genom-
ics based on machine learning is to realize association
analysis studies for understanding mechanisms and path-
ways. We group these imaging genomics based on ma-
chine learning methods into two categories. The first cat-
egory mainly uses regression models to identify complex
multi-SNP and/or multi-QT associations. Most of the re-
gression models discussed earlier can be described using
the regularized loss function framework. A sparsity-indu-
cing regularization term is often included in these models.
The motivations are twofold. First, it is reasonable to hy-
pothesize that only a small number of markers are relev-
ant in the resulting imaging genomics association. The
sparsity term can help identify these relevant markers.
Second, the sparsity constraint can reduce the model
complexity and subsequently reduce the risk of overfit-
ting. In addition to regression models, another category of
prominent methods developed for brain imaging genom-
ics studies are correlation models, such as sparse canonic-
al correlation analysis (SCCA)223 and parallel-inde-
pendent component analysis (pICA)[24 25, Similar to the
regression model discussed earlier, the sparsity is encour-
aged in these correlation models to reduce model com-
plexity and the risk of overfitting, as well as identify rel-
evant biomarkers. Overall, this article is focused on the
three types of learning problems as follows. First, we will
show the limitations of the univariate imaging genetics
association analysis and show the univariate learning ap-
proaches for correlation analysis. Second, we will present
the problem of multivariate imaging genetics association
analysis and summarize the main idea and modelling in
genetic-imaging association studies based on multivariate
machine learning. Third, we will review methods that are
used to predict an outcome of interest by combining both
imaging and genomics data, and methods for joint associ-
ation analysis and outcome prediction. Finally, some un-
solved problems in genetic imaging and future research
directions are prospected.

2 Univariate analysis method

The statistical analysis of single-genetic variables usu-
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Fig.1 Schematic of topics covered in brain imaging genomics. The goal is to present association analysis in imaging genetics based on

machine learning.

ally adopts the Pearson'’s chi-square test for the experi-
mental group and the control group as the allele detec-
tion method. That is, to confirm whether the locus is as-
sociated with a genetic risk factor by analysing whether
there are statistical differences between the correspond-
ing genomic loci of a group of patients with various dis-
eases and a group of normal controls. Imaging genetics
analysis based on univariate statistical methods can use
linear regression and analysis of variance models as allele
association analysis methods[26l. In addition, for the mul-
tiple univariate models, firstly, p x ¢ linear regression
models (y; = Bjkxk, where p is the gene feature dimen-
sion and ¢ is the imaging feature dimension) are fitted.
Then, p x ¢ null hypotheses (Ho : 8jx = 0) are tested. Fi-
nally, the p-values are sorted to select the smaller p-val-
ues. For example, in 2009, Potkin et al.27l performed a
genome-wide association study (GWAS) on patients, nor-
mal controls, and imaging phenotypes. That is, the effect
of SNPs on quantitative phenotypes of brain areas can be
calculated by a generalized linear model, which is con-
structed by imaging phenotypes, disease diagnosis and
gene data. The expression is as follows:

Y =bo +b1SNP + boAPOFEe4 + bsgender + byage +

bsdiagnosis + be SN P X diagnosis + € (1)

where Y denotes the neuroimaging QT, b; represents the
coefficient of each variable, and SNP X diagnosis
represents the interaction relationship. The p-value
obtained is the association result between SNP and
QTE,

In the univariate imaging genetics association analysis,

according to different scales[?8], we summarize as follows:
for the genetic level, it includes 1) candidate genetics/
SNPsk29-32] 2) related biological functions characteristic
pathways/networksB3-35 3) whole genomel2”> 36-39. For
the brain imaging level, it includes 1) individual regions
of interest (ROI)E7 29, 33, 36] 2) multiple ROIB0: 34, 37,
3) whole brainBl 32 35, 38, 39] Whether it is the association
analysis between candidate genetic locus SNP and
neuroimagingl4? (cerebrospinal fluid[4!l, cognitive scorel2],
and any other QT), or the association analysis between
whole genome and neuroimaging or even the association
analysis between whole genome and smaller voxel-wise
brain imaging, linear regression and analysis of variance
can solve the problems of imaging genetics association
analysis at different scales. In addition, some researchers
have released relevant statistical analysis software, such
as Plink[43].

GWAS genetic statistical analysis needs to find the
association with disease phenotypes from millions or even
tens of millions of SNPs. Although the Bonferroni correc-
tion can be used to strictly control the significancel44 45],
this strategy will lead to many small effect variations that
cannot pass the correction level, and multiple such small
effect variations may act together to have a great impact
on the traits. The application of univariate analysis meth-
ods in imaging genetics has a more intuitive explanation,
and can simply and quickly detect the association
between a single SNP and a single QT. However, due to
the high-dimensional characteristics of data variables, a
large number of multiple comparisons eventually make
the statistical test results not significant, and the above
test method is based on a strict hypothesis. That is, ge-
netic loci or imaging characteristic variables are statistic-
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ally independent, while the important information of the
association between variables is ignored. Therefore, for
high-dimensional features, the univariate approach still
has some limitations in dealing with the problem of ima-
ging genetics association analysis.

3 Multivariate analysis method

Following the univariate voxel-wise genome-wide asso-
ciation analysis (vGWAS)BI, Hibar et al.l46: 47l proposed a
multivariate voxel-wise gene-wide association study (vGe-
neWAS), which solves the problem of variable collinear-
ity by principal components regression (PCReg) to all
SNPs in a genome. Specifically, principal component ana-
lysis (PCA) was first used to obtain the mutually ortho-
gonal factors that maximize the variance on the SNP re-
gression variable set. Then, the standard partial F-test
was used on these orthogonal factors. Finally, following
the related work proposed by Stein et al.39 in 2010, the
same genetic and brain imaging dataset were used to
group SNPs and detect the association between grouped
SNPs with voxel-wise imaging. Experimental results show
that this method achieves better association performance
and reduces the number of statistical tests. Therefore, in
order to enhance the ability to detect the association
between genetics and quantitative traits (QTs), some re-
searchers have used multivariate methods to address the
association of multi-genetic or multi-locus combined ef-
fects in imaging genetics!!% 48], Recently, research on ma-
chine learning based imaging genetics has attracted much
attention, which aims to identify the association between
genetics and imaging features by using regression models.
We can use different criteria to divide these methods in-
to regression models (including multivariate genetic-uni-
variate imaging regression, multivariate imaging-univari-
ate genetic regression, and multivariate genetic-multivari-
ate imaging regression) and correlation models (i.e., mul-
tivariate genetic-multivariate imaging correlation). In the
next subsection, several classic and state-of-the-art associ-
ation models will be introduced by the above division
strategy.

3.1 Regression models

3.1.1 Multivariate genetic-univariate imaging reg-
ression

We usually use a sparse regularized regression model
to realize multivariate genetic-univariate imaging regres-
sion. The main motivation is twofold. First, assuming
that only a few markers are associated with imaging gen-
omics, sparse terms assist to identify these related mark-
ers. Second, sparse constraints can reduce the complexity
of the model and the risk of overfitting. In [49, 50], re-
gression models based on L1 norm penalty constraints
have been successfully applied to multivariate genetic
data analysis. They aim to identify sparse SNP loci that
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are highly associated with specific brain regions. These
models provide a general technical framework to deal
with the small sample regression problem of detecting
and identifying high-dimensional genetic SNPs. However,
the constraints based on the L1 norm do not fully con-
sider the structural relationship between the feature vari-
ables, therefore the optimal regression results cannot be
achieved in theory. Considering the spatial structure rela-
tionship between SNP features, Silver et al.b1-33] pro-
posed the group sparse model or fusion sparse model to
select SNP loci in the same group or adjacent feature
variables, and the models based on group sparsity or fu-
sion sparse are as follows:

> e

H}jHHy—Xw||§+>\Z|wi—wj| (3)

i<j

where these two equations are utilized for identifying a
set of SNPs from X and predicting a single imaging
phenotype y. In (2), w; in the group sparsity term
represents all the SNP loci features belonging to the
group G(i), and the goal is to control the selected loci to
include the characteristics of clustering. For example,
there will be a linkage disequilibrium (LD) effectl54
between gene loci, that is, SNPs linked on different genes
will appear in the same LD block nonrandomly. This
provides domain knowledge for the feature selection
model based on group sparsity so that SNPs in the same
LD group can be detected simultaneously. In (3), the
fusion Lasso term can control the weight contribution of
adjacent position features w; and w; to be as similar as
possible, that is, the feature variables selected by the
fusion Lasso term have spatial continuity. The empirical
study was performed on an ADNI sample.

In addition, there is not only a flat spatial relation-
ship between SNP loci, but also a hierarchical relation-
ship in the actual gene structure. For example, in a cer-
tain pathway, the interaction of specific gene loci can af-
fect protein synthesis and functional transformation, and
some SNP loci under the same gene also have certain cor-
relations (such as LD). Therefore, making full use of the
prior knowledge of this hierarchical structure to perform
the imaging genetic analysis will often reduce the error in
the regression analysis and learn more explanatory fea-
ture patternsi57, as shown in Fig.2. As shown, the
model uses a tree-guided sparse learning (TGSL) method
to identify the association between genotype and pheno-
type. When constructing a tree structure, the SNP loci
are used as leaf nodes, the LD block and the gene block
are used as intermediate nodes, and all genes in the path-
way are used as the final root nodes. The structure tree
has d layers and each layer has n; nodes. The node of the
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Fig.2 Tree-guided sparse regression model, which aims to
identify a set of SNPs for predicting a single imaging pheno-
typelss-57,

i-th layer is {G%,--- ,G},--- 7Gili}, and the tree-guided
sparse regression model is as follows:

d ng
rr,gnlly*leli+Azza}\lwc,~;\lz (4)

i=1 j=1

which also aims to identify a set of SNPs for predicting a
single imaging phenotype y. a;v is the weight of any node
G;— predefined accordipg to prior knowledge. Wei is the
weight of any node G’ in the learned tree structure. It is
worth noting that when the weight of a node is zero, its
child nodes are all zero, that is, all the features of the
subtree have nothing to do with the regression task and
are not selected. Compared with the traditional Lasso
method, the SNPs obtained by the optimization of the
model have smaller errors in predicting the gray matter
volume of the brain, and these SNP loci associated with
MRI brain regions have a hierarchical clustering. The
empirical study was performed on an ADNI sample to
identify sparse SNP patterns at the block level to better
guide the biological interpretation.
3.1.2 Multivariate imaging-univariate genetic reg-
ression

In research on machine learning based imaging genet-
ics, most of the works have focused on discovering and
detecting multivariate SNP loci associated with imaging
phenotypes. However, few studies have explored how
SNP values change when phenotypic measurement vari-
ables change, that is, using multivariate imaging to re-
gress univariate genetic features. For example, Shen et
al.B8 proposed a task-related time series multivariate
sparse regression model based on the group structure in-
formation between prediction variables. The model is as
follows:

T
S [lwk B+ Te (W)
t=1

()

T d
mwi/nzt: 1Y =X W24+ M ;

where brain imaging data is X = {Xi, X, -+,
Xr} € R"XT SNP datais Y = {y1,92, - ,yn} € R"XC,
and wF represents the k-th row of the coefficient matrix
W: at time ¢. Tr(-) is the trace of the matrix. The tensor
coefficient matrix is W = {Wy, Wa,--- , Wr} € R¥XXT,
The tensor coefficient matrix reveals the time series of
brain imaging QTs. When ¢ =1, the algorithm is the
association between time series imaging MRI and risk
genes, as shown in Fig.3. It can be found, through the
joint constraints of feature weights in multiple regression
tasks and multiple time points, task-related longitudinal
imaging phenotype markers can be selected. This model
performs a new perspective from phenotype to genotype
analysis to study the impact of individual genes on
changes in brain structure and function. The empirical
study was performed on an ADNI sample.
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Fig.3 Task-correlated longitudinal sparse regression model,
which aims to study the impact of individual genes on changes in
brain structure and function/38]

In addition, in univariate genetic-multivariate ima-
ging association analysis, most studies focused on the
single modal imaging phenotype QT. In order to study
the association between genetics and multimodal brain
imaging QTs, Hao et al.’® 9 realized the association ana-
lysis between multimodal imaging QTs Y and candidate
risk gene loci x by introducing the group sparse regulariz-
ation term to construct the diagnosis-guided multimodal
(DGMM) regression model (see Fig.4) as

M
mwi/nZHm—memHg +)\12 Zw?j +X2R(w)  (6)
m v J

where W = [wvem, WrpG, Wavas] € RY*3 (j=411,2,3},
t={1,---,q}) is the association weight matrix of
multimodal imaging QTs (VBM, FDG, AV45, where
VBM is voxel-based morphometry obtained by prepro-
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Fig. 4 Multi-modality association modell58: 59, The goal of the
regression model is to realize the association analysis between
multimodal imaging QT's and candidate risk gene loci.

cessing structural magnetic resonance imaging data. FDG
is the fluorodeoxyglucose positron emission tomography.
AV45 is the F-18 florbetapir PET scans amyloid
imaging.) and candidate risk gene APOE e4. The second
term is the group sparse regularization term. R(w) is the
Laplacian regularization term. This method realizes the
feature selection of multimodal imaging biomarkers
associated with risk genes through a generalized linear
regression function. The multimodality association
method can identify robust consistent brain regions and
has strong antinoise ability compared with the single-
modality association method. Therefore, this method can
be applied to the association analysis between other risk
genes and multimodal imaging QTs. The empirical study
was performed on an ADNI sample, where the response is
the APOE e4 SNP and the predictors include three
modalities of ROI measures: 1) VBM measure from
structural MRI, 2) FDG measure from PET, and 3)
AV45 measure from PET. For example, Wang et al.[60]
presented a diagnosis-aligned multimodal (DAMM)
strategy for the regression of a candidate risk gene APOE
e4 z on multimodal imaging QTs Y;, (VBM measure from
structural MRI and hypergraph-based clustering coeffi-
cient measure from fMRI) as follows:

M
mmi/nz & — Ymwml|3 + M Ri(w) + AaRa(w)  (7)

where R;(w) is the same group sparse regularization term
as (6) so as to jointly select a few features associated with
risk SNP loci in multimodal brain imaging QTs. Ra(w) is
the graph Laplacian regularization term to fully use the
information between different modalities. The model uses
structural voxel information and network connection
information as an intermediate feature of bridging risk
gene locus and disease status to find the disease-specific
associations between the risk SNPs and the brain
network. It is worth noting that this work is an initial
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attempt to explore the relationship between connectivity
traits and genetic variation. The empirical study was
performed on an ADNI sample, where the response is the
APOE e4 SNP and the predictors include two modalities
of ROI measures: 1) VBM measure from structural MRI
and 2) hypergraph-based clustering coefficient measure
from fMRI.
3.1.3 Multivariate genetic-multivariate imaging reg-
ression

The above multivariate analysis of SNP loci is only
aimed at the regression of imaging univariate features,
and can not make full use of the correlation among ima-
ging multivariate features. In recent years, methods have
been introduced for the analysis of high dimensional ge-
netic and imaging data able to cope with multivariate ge-
netic input and multivariate imaging output. Some re-
searches have used sparse regressionl6l to discover a low-
dimensional subset of genetic data significantly associ-
ated with the imaging QT in the original high-dimension-
al datal8l. For example, Vounou et al.[62 proposed a
sparse reduced-rank regression (SRRR) model as follows:

min |V = XBAT[: + M Al + 2Bl (8)

where W = BAT and W denote the product of a matrix
B € p xr and a matrix A € ¢ x r. The major goal of the
model is to find the minimization of the rank of W. The
L1 norm is imposed on A and B to sparsely select
features. Fig.5 presents a visual framework of the sparse
reduced rank regression model. The empirical study was per-
formed on an ADNI sample.

ROIs LD blocks

l‘l!||"’l]||<v||||\|||

= X + Error
nxgq nxp
Imaging QTs Genetics

Fig. 5 Sparse reduced rank regression model. The goal is to
identify a set of SNPs from X to predict a set of Alzheimer's
disease (AD)-related imaging QT Y62,

After that, Vounou et al.[02l improved their previous
work. Specifically, first, the discriminant analysis method
was used in the structural brain imaging QTs to find the
discriminant multivariate biomarker as the phenotype,
and the existing SRRR model was then used for genome-
wide association analysis, which finally achieved good res-
ults(63l, Subsequently, Silver et al.l4 presented a path-
ways sparse reduced-rank regression (P-SRRR) method,
which integrates the pathways group lasso with adaptive
weights (P-GLAW) idea into the SRRR method, i.e.,
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in||Y — XBAT|2 B
rfr‘l’lgll IIF+A£§d9H gll 9)

where G is defined as the grouping structure of B. This
model identifies a set of SNPs from X, so that a set of
AD-related imaging QT Y can be predicted. The pathway
knowledge is utilized to group the SNPs for the sake of
selecting features at the pathway level. The empirical
study was performed on an ADNI sample.

In addition, some work considers multivariate multi-
task regression models52. For example, Wang et al.[6%
proposed a group-sparse multi-task regression and fea-
ture selection (G-SMuRF'S) strategy (see Fig.6):

K
min [V = XWE+0 Y /DY wd ) [y
i J

k=1 €T g
(10)
where the second term considers the linkage disequili-
brium (LD) structural relationship between SNP loci,
embedding the prior information of the grouping
relationship of SNPs, so that SNPs in the same LD group
are detected simultaneously. The third term uses the
same L21 norm in (6) as a regularization term, which is
also used to jointly select a few features associated with
risk SNP loci in multimodal brain imaging QTs. The
empirical study was performed on an ADNI sample,
where 1224 SNPs from 37 AD genes were used to predict
ten VBM measures and SNPs were grouped by LD
blocks.
3.1.4 Discussions
In addition to regularized multivariate regression mod-
els in brain imaging genomics, many Bayesian algorithms
have been presented. For instance, motivated by G-
SMuRFSI®5], a Bayesian group sparse multitask regres-
sion (BGSMTR) model was constructed to identify mul-
tivariate genetic-multivariate imaging regression associ-
ations, and the group structure (e.g., LD blocks and
genes) within the SNP data was simultaneously em-
braced. Compared with G-SMuRFS, which only provides
a point estimate of the regression coefficients, the BGS-

Genetics

MTR follows full posterior inference such as interval es-
timates for the regression parameters. This model can be
viewed as an expansion of the Bayesian group lassol66: 67]
for accommodating multivariate responses and variable
selection at the SNP and gene levels. In [68], a Bayesian
generalized low-rank regression (GLRR) model was built
to analyze high-dimensional imaging responses and cov-
ariates, which uses a low-rank representation for approx-
imating the high-dimensional weight matrix. This GLRR
model was further extended into a Bayesian longitudinal
low-rank regression (L2R2) form [69] to examine genetic
effects on longitudinal imaging responses.

The methods introduced in the above three subsec-
tions are collectively referred to as multivariate regres-
sion models. We only introduce some typical examples.
Table 1 summarizes the multivariate regression methods
used in the studies discussed in recent years. Such ap-
proaches are devoted to revealing complex imaging gen-
omics associations between multivariate SNP data and
imaging QT data. They share a common rationale: these
methods all utilize a regularized regression model to
identify the association between SNPs and imaging QTs.
It should be noted that two common advantages are in-
cluded in these models: 1) the regression coefficients dir-
ectly capture the association between SNPs and imaging
QTs, which is easy to interpret; 2) the genetic markers
and imaging markers obtained by using a single model do
not require multiple test corrections, increasing detection
power. However, due to the high dimensionality of the
data, there is an increased risk of overfitting these mod-
els. In order to remedy such deficiency, various regulariz-
ation forms are added to reduce model complexity and
biologically meaningful structures are introduced to de-
crease the risk of overfitting. For example, sparsity can
simplify complexity models (i.e., G-SMuRFS and SRRR)
by using the L1 or L21 norm. Biologically meaningful
structures (i.e., LD and pathways) could be achieved via
adopting group lasso or group L21 norm (i.e., P-GLAW
and P-SRRR). Additionally, the low-rank constraint can
be used as a regularization term (i.e., task-correlated lon-
gitudinal sparse regression (TCLSR) model, temporal
structure autolearning (TSAL) model, and joint projec-
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Fig. 6 Group-sparse multi-task regression and feature selection strategy, which is a structured sparse model(6]
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Table 1 Example studies using multivariate regression, which aim to reveal complex imaging genomics associations between
multivariate SNP data and imaging QT Data

Related studies Method category

Dataset Year Publication

P-GLAW Multivariate genetic-univariate imaging regression
TGSLI56,57] Multivariate genetic-univariate imaging regression
TCLSRI[™ Multivariate imaging-univariate genetic
DGMMI8:59  Multivariate imaging-univariate genetic

DAMMIG0] Multivariate imaging-univariate genetic

SRRR/[62] Multivariate genetic-multivariate imaging regression
P-SRRRI64] Multivariate genetic-multivariate imaging regression
G-SMuRFSI%]  Multivariate genetic-multivariate imaging regression
TSALI™ Multivariate imaging-univariate genetic

JPLSRI™2 Multivariate genetic-multivariate imaging regression
S-SRRRI[73] Multivariate genetic-multivariate imaging regression
GRS-SRRRI™  Multivariate genetic-multivariate imaging regression

RGRS-SRRRI™! Multivariate genetic-multivariate imaging regression

ADNI 2012 Statal Applications in Genetics and

Molecular Biology

ADNI 2019 IEEE/ACM Transactions on
Computational Biology and Bioinformatics

ADNI 2012 Bioinformatics

ADNI 2016 Neuroinformatics

ADNI 2019 Bioinformatics

ADNI 2010 Neurolmage

ADNI 2012 Neurolmage

ADNI 2012 Bioinformatics

ADNI 2018 Journal of Computational Biology

IEEE Transactions on Biomedical
Engineering

ADNI 2019

ADNI 2016 Medical Image Computing and Computer-

Assisted Intervention (MICCAI)
ADNI 2017 IEEE Transactions on Big Data

ADNI 2018 Neuroinformatics

tion learning and sparse regression (JPLSR) model),
which has a strong ability to handle spatial or temporal
correlations and decrease model complexity.

3.2 Correlation models

3.2.1 Multivariate genetic-multivariate imaging co-
rrelation

In imaging genomics research, multivariate regression
models have been able to solve the problem of feature se-
lection. For multi-output variable features, the multi-task
regression modell63 76 can consider the covariance struc-
ture relationship among multiple regression output vari-
ables. However, the high-dimensional regression output
will generate high computational time costs and the mul-
tivariate output structure is complex. The model that
simply considers the group constraints of multiple regres-
sion tasks for association analysis is often too strict. In
order to fully consider the covariance structure between
two variables, Liu et al.[’"> 78 proposed using the parallel
independent component analysis (PICA) method to ana-
lyze the association mechanism between genetic and ima-
ging data, so as to find the most relevant independent
component of the two modal data. However, this method
does not restore the contributing SNPs and important
brain regions, resulting in the loss of reasonable biomark-
er interpretation of these components. Another bimul-
tivariate model, such as canonical correlation analysis
(CCA)[™. 801 or partial least squares regression least
squares region (PLS)BL 82 can find the linear combina-
tion of two group variables respectively, so that the cor-
relation or covariance between genetics and imaging data
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is the largest. This model can better solve the problem of
multivariate genetic-multivariate imaging association ana-
lysis compared with the regression model. However, in
high-dimensional data, feature variables often have noise
and redundancy, that is, not all SNP and QT character-
istic variables are associated. Therefore, in order to select
a small number of relevant genetics and imaging features
with explanatory significance, the sparsity is introduced
into the classical bimultivariate correlation analysis,
namely SCCAR!"23] and sparse partial least squares re-
gression (SPLS)®3 84, Similar to the mentioned-above re-
gression methods, the regularization is also encouraged in
these correlation models. On the one hand, as is known,
only a small amount of markers are relevant in the ima-
ging genomics association, which can be effectively identi-
fied by the regularization terms. On the other hand, the
regularization is capable of reducing the model complex-
ity, so that over-fitting is avoided. Here, denote X €
R"™*? as the genetic data with p variables on n subjects,
and Y € R"*? as the imaging data with ¢ variables on n
subjects, where all columns of X and Y have been nor-
malized with zero mean and unit variance. As the most
popular bimultivariate correlation models for brain ima-
ging genomics, the SCCA and its expansion with various
regularizers can be expressed by

k
maxut X Y — Z AiRi(u,v)
w i=1

st. [ Xull} = [Vl = 1. (11)

The goal is to find a linear combination of the SNPs
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Xu and a combination of the imaging QTs Ywv for the
sake of maximizing the correlation (i.e., u'XTYw
s.t. | Xull3 = |[Yv||3 = 1) on the condition of one or more
regularization forms R;(u,v). For instance, the tradition-
al SCCA model introduces Ri(u) = ||ul|1 and R2(v) =
||[v]]1- There are other regularizers, such as incorporating a
group/network structure or other prior knowledge in
brain imaging genomics data, to complete different tasks.
In what follows, several classic and state-of-the-art stud-
ies using these regularized SCCA strategies will be intro-
duced, which are widely utilized to identify complex mul-
tivariate genetic-multivariate imaging correlations. It can
be divided into prior knowledge-induced SCCA models,
and sample correlation-induced SCCA models according
to their distinct regularization terms.

By introducing the sparsity into multivariate genetic-
multivariate imaging association analysis, the model can
automatically select relevant sparse SNP and QT feature
variables from high-dimensional bimultivariate. However,
a major problem of SCCA is that the model still does not
fully consider the structural relationship between charac-
teristic variables, that is, a lot of prior information is not
used in the establishment of the model. For example,
SNP loci in the same LD block may have some common
characteristics, and the brain needs multiple brain re-
gions to work together to complete a certain function.
Therefore, in the research of multivariate genetic-mul-
tivariate imaging association, in order to make up for the
shortcomings of traditional SCCA, many scholars have
expanded and improved the SCCA model by using vari-
ous priori information as regularization terms(®>89. For
example, a structure-aware SCCA (S2SCCA) modell®)
was built via adding the following two group L1 norm
terms into (11) i.e.,

Ri(u) = |lugll2 (12)

g€G1

Ra(v) = Y lvgll2 (13)

geG2

where the LD blocks are employed for the construction of
the SNP grouping structure G1 in (12). In (13), the ROIs
are utilized for forming the voxelwise imaging QT
grouping structure G2. The goal is to identify multi-
variate genetic-multivariate imaging associations between
APOE SNPs and the voxelwise QTs by using the prior
knowledge as regularization terms. The empirical study
was performed on an ADNI sample to identify multi-
SNP-multi-QT associations between the voxelwise QTs
and APOE SNPs.

In addition, Yan et al.l8] presented a knowledge-
guided SCCA (KG-SCCA), as shown in Fig.7. This mod-
el uses group sparse regularization constraints to embed
the LD block grouping prior information SNP loci into

LD blocks Network-guided constraint

Wi B A

Genetics

Imaging

Fig. 7 Schematic of KG-SCCA, which aims to identify multi-
variate genetic-multivariate imaging associations between
APOE SNPs and the voxelwise QTs(®5]

(11) and the expression is as follows:

Ri(u) = Z /Z € Gi)u? < cs (14)

where the feature variables in the L2 norm constraint
group have the same weight contribution as much as
possible, that is, SNP loci in the same LD block are more
likely to be selected in association analysis. The L1 norm
selects the few LD blocks with strong correlation by
constraining the sparsity between groups. At the same
time, the model also introduces the brain function
network information as the prior knowledge of the feature
similarity in brain region. In other words, when the
connection weight in the brain network is high, the two
brain region nodes have similar characteristics (gene
expression is highly correlated), and the expression form
of regularization constraints is as follows:

Ro(v) = >

(4,7)EE,i<j

T(wiz) X [lvi — sgn(wi;)vsllz < ea (15)

where v; and v; represent the feature weights of any two
nodes on the brain network respectively. sgn(w;;) is the
sgn of the correlation between v; and v;. When sgn(w;) is
positive, there is a positive correlation between v; and v;.
When sgn(w;;) is negative, there is a negative correlation
v; and v;. 7(w;;) is the connection intensity between wv;
and v;. The higher intensity of 7(w;;) indicates that the
two brain region variables v; and v; tend to be selected
simultaneously. An empirical study was performed on an
ADNI sample to identify multi-SNP-multi-QT associ-
ations between amyloid imaging QTs and APOE SNPs.

Furthermore, some work considers bi-multivariate
multi-task prior knowledge-induced SCCA models. For
example, in [90, 91], a multitask SCCA (MTSCCA) was
presented for identifying bimultivariate associations
between SNP data and multimodal imaging data as fol-
lows:

@ Springer



66

M
max Y "y X ' Yiv; = Mi[|Ull21 = Xal|Ulgs,y = Asl|V [[21
u,v

j=1

st || X3 = || Yi5]3 = 1 (16)

where X € R™*? is SNP data and Y; € R"*? (5 € [1, M])
is the imaging data of M modalities. U = [u1, u2, -+ ,um|
,um). It is worth noting that the L21
norm regularization term is a “group-sparsity” regula-

and V = [v1,v2, -

rizer, which forces only a small number of features to be
selected from different modalities. The first regularization
is a L21 norm to select SNP features. The second one is
the group L21 norm that can select SNP features at the
LD block level. The third regularization is a L21 norm, so
as to select imaging features across all the modalities. A
fast optimization algorithm has been implemented and
applied to an ADNI sample to identify associations
between over 150000 SNPs from chromosome 19 and
ROI-based QTs from three imaging modalities (VBM,
FDG-PET, and Amyloid-PET).

In real biomedical studies, providing precise prior
knowledge is a difficult task. Therefore, the above expan-
ded forms of SCCA may be invalid once the biological
priori knowledge is unavailable or incomplete. In general,
the sample correlation was utilized rather than priori
knowledges to define the graph or network constraint.
Specifically, there are three types of regularizations used
in (11): 1) L1 norm for flat sparsity, 2) group L1 norm for
group sparisity, and 3) graph Laplacian-type norm to
jointly select features connected in a graph. For example,
in [92], a generic non-convex penalty based SCCA (GNC-
SCCA) was designed as follows:

R(u) = ZPMU u; |) (17)

where A and ~ represent nonnegative parameters, and
Py ,(] ui |) denotes a non-convex function. Seven non-
convex penalties were added into the L1l-based SCCA for
sake of reducing the estimation bias. An empirical study
was performed on an ADNI sample to identify multi-
SNP-multi-QT associations between voxelwise QTs and
163 SNPs from AD genes.

Since the SCCA has the powerful ability to identify
bi-multivariate relationships coupled with feature selec-
tion, it has become a popular tool in such field. The LO
norm is a sparsity-inducing tool, but it is a NP-hard
problem. In practice, the L1 norm or its variants are usu-
ally introduced to replace the L0 norm for the sake of in-
ducing sparsity. For instance, in [93], both truncated L1
norm penalized SCCA (TLP-SCCA) and truncated group
lasso SCCA (TGL-SCCA) were presented, which respect-
ively used truncated L1 norm and truncated group lasso
below:
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R(u) = iJT(\ u; |), where Jr(u;) = min (‘ i |,1)

(18)
R(u) =" J+(| Gi |), where J-(Gi) = min (@1)
- (19)

where 7 denotes a tuning parameter. Selecting an
appropriate value of 7, R(u) can achieve a balance
between the LO norm and the L1 norm. It should be
noted that, G denotes a subset of v at the k-th group
(k € [1, K]), and u represents the concatenation of all Gj.
An empirical study was performed on an ADNI sample to
identify =~ multi-SNP-multi-QT  associations  between
voxelwise QTs and 58 SNPs from AD-related genes,
where QT's were grouped by ROI and SNPs were grouped
by LD block.

In addition, inspired by GraphNet4, Du et al.[8 pro-
posed an absolute value-based GraphNet SCCA (AGN-
SCCA), where an extended version of GraphNet regular-
ization is added into the SCCA model. The forms of the
AGN regularizations can be described into

Ri(u) = u|" Ly | u | +B1lullx (20)

Ro(v) =| v " La | v | +B2lv]x (21)

where both L; and Ls denote Laplacian matrices of the
correlation matrices of X and Y. It should be noted that
the data-driven correlation is here employed as a graph
constraint, so that correlated features can be selected
together. Additionally, by the added absolute value
operation, both positively and negatively correlated
features are allowed to be jointly selected. An empirical
study was performed on an ADNI sample to identify
multi-SNP-multi-QT associations between ROI-based
imaging QTs and 58 SNPs from AD-related genes.

Furthermore, the sample correlation-induced SCCA
models are devoted to the association between the SNP
data and the imaging data of one modality at single time
point. Fortunately, these models have been extended to
focus on the longitudinal imaging data. For example, in
order to identify genetic associations with longitudinal
phenotypic markers, Hao et al.l%l designed a temporally
constrained group SCCA (TGSCCA) framework, which is
modelled as

T
max > X Yeve — Mflulls = Aol|V]l2
U,

t=1

T—1
As D llvers —vella
t=1
st || Xull3 = [[Yeve|3 =1 (22)

where both u and v; denote the weight vectors measuring
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the contributions of the SNP loci and imaging phenotype
ROIs at time-point ¢. vi+1 and v¢ are weight vectors at
adjacent time-points. A1, A2 and A3 are three regula-
rization parameters. As can be found, the fused Lasso
regularization is capable of constraining the gaps between
two successive canonical weight vectors from adjacent
time-points to be small, so that weight vectors become
smooth to select neighboring features together. An
empirical study was performed on an ADNI sample to
identify associations between 85 APOE SNPs and longi-
tudinal VBM QTs from 116 ROIs at four time points.
3.2.2 Discussions

Other bimultivariate correlation models are now dis-
cussed below. Fang et al.l%] designed a greedy projected
distance correlation (G-PDC) strategy for the examina-
tion of pairwise gene-region of interest (ROI) associations,
in which each gene and ROI contain a number of SNPs
and voxels, respectively. Distance correlation is used to
measure statistical dependence between two random vec-
tors (e.g., gene versus ROI), which can model nonlinear
relationships between them. Projected distance correla-
tion is prone to measure conditional dependence based on
distance correlationl®’. A gene-ROI pair is provided to
test their independence and control all the other SNPs
and voxels. Hao et al.l%8 proposed an analytical strategy
with three-way SCCA (T-SCCA) for exploring the in-
trinsic associations among genetic markers, imaging QTs,
and clinical scores of interest. Hu et al.l% designed a dis-
tance CCA (DCCA) algorithm by integrating distance
correlation into the SCCA model. This algorithm identi-
fied a set of original SNPs and a set of original imaging
QTs with the highest distance correlation, so as to re-
duce burden for multiple testing correction. An empirical
study was performed on the PNC data to examine the
pairwise association between 264 ROIs (containing
27 384 voxels) and 736 genes (containing 21 487 SNPs).
Wang et al.l00 proposed a multi-modality discriminant
SCCA method (MD-SCCA), where valuable discriminant
similarity information is incorporated into the SCCA
model to improve learning results. To be specific, the dis-
criminant similarity information between within-class
subjects was firstly obtained via the sparse representa-
tion. Then, a discriminant SCCA algorithm (D-SCCA)
was constructed by enforcing the discriminant similarity
information. Finally, the MD-SCCA method was em-
ployed to fully investigate the relationships among differ-
ent modalities of different subjects. To consider the un-
derlying complex multi-subspace structure of the original
data, Wang et al.191] utilized the self-expressiveness re-
flecting the similarity structure of the data for recon-
structing the original input before the association analys-
is. Concretely, the within-class similarity information was
firstly applied to the construction of self-expressive net-
works by sparse representation. The fusion method was
then used to iteratively fuse the self-expressive networks
from multi-modality brain phenotypes into one network.

At last, a practical solution was provided for construct-
ing and using the fused self-expressive network, so that
the association between single modality phenotype and
genotype could be mined by our method with L1 norm as
well as the association between multi-modality pheno-
types and genotype was explored by the form with the
L21 norm. In addition, the deep learning technique has
achieved great success in data-driven problems in biology
and medicine. For instance, Wang et al.[102 103] proposed
a novel deep self-reconstruction sparse canonical correla-
tion analysis (DS-SCCA) method for the identification of
genetic associations with functional connectivity pheno-
typic markers. They focused on identifying the connec-
tome, consisting of the brain region features and con-
nectivity features, of functional brain networks derived
from the fMRI data by realizing the relationships
between genetic variants (i.e., the single nucleotide poly-
morphism, SNP) and brain networks (i.e., quantitative
trait, QT). Furthermore, the main contribution of such
work was an initial attempt to discover how genetic
factors affect brain connectivity.

Table 2 summarizes bimultivariate correlation meth-
ods for the studies discussed earlier, which are devoted to
identifying multivariate genetic-multivariate imaging as-
sociations from high-dimensional imaging genomic data.
Similar to the regression models described earlier, the
sparsity is also encouraged in these correlation models to
reduce model complexity and the risk of overfitting, as
well as identify relevant biomarkers. Most of these meth-
ods are based on regularized SCCA. In these SCCA mod-
els, the L1 or L21 norm is employed for feature selection,
group L1 or L21 norm is used to select features at the
group level, and the graph Laplacian is utilized for graph-
guided learning. Note that the L21 norm is usually in-
cluded in multimodal and longitudinal SCCA methods to
select features across modalities or time points, and
fussed lasso or fused pairwise L21 norm is often used to
smooth neighboring weights along the temporal dimen-
sion. Here, we adopt these studies using these strategies
to identify complex multi-SNPCmulti-QT associations.
We will cover: 1) fundamental SCCA models (i.e.,
S2SCCA, KG-SCCA); 2) enhanced SCCA models (i.e., an
SCCA framework using a generic nonconvex penalty
(GNC-SCCA), TLP-SCCA, TGL-SCCA, absolute value-
based GraphNet SCCA (AGN-SCCA), FDR-corrected
SCCA); 3) multimodal and longitudinal SCCA models
(i.e., MTSCCA, TGSCCA); 4) other bimultivariate cor-
relation models (i.e., T-SCCA, MD-SCCA, FSN-SCCA,
FSN-GSCCA, DS-SCCA).

4 QOutcome prediction

In imaging genomics, how to integrate brain imaging
and genomics data for the prediction of outcomes of in-
terest, such as impairment score, disease stage, and pro-
gression status, is also an interesting topic. At present,
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Table 2 Example studies using bimultivariate correlation methods, which aim to identify multivariate genetic-multivariate imaging
correlation from high-dimensional imaging genomic data

Related studies Method feature Dataset Year Publication
S2CCABI Structure aware SCCA ADNI 2014  MICCAI
KG-SCCAI85] Knowledge-guided by LD block ADNI 2014 Bioinformatics
GNC-SCCA?2 Genetic non-convex penalty SCCA ADNI 2017 Scientific Reports
TLP-SCCA, TGL-SCCA3] Truncated L1 norm penalized SCCA, ADNI 2017  Bioinformatics

truncated group lasso SCCA

AGN-SCCAI86] Absolute value based GraphNet SCCA ADNI 2016  Bioinformatics
FDR-corrected SCCAI[104] Incorporation of FDR concept into SCCA PNC 2018  Transactions on Medical Imaging

MTSCCAP] Multi-task SCCA

TGSCCASI Temporally constrained group SCCA
T-SCCAE] Three-way SCCA

MD-SCCA[100] Multi-modality discriminant SCCA

FSN-SCCA, FSN-GSCCAI!01]  Fusion self-expressive network based SCCA, ADNI 2021

IEEE/ACM Transactions on
Computational Biology and Bioinformatics

ADNI 2021

ADNI 2017  Bioinformatics

ADNI 2017  Scientific Reports

ADNI 2021 IEEE/ACM Transactions on

Computational Biology and Bioinformatics

Transactions on Medical Imaging

fusion self-expressive network based group

SCCA

DS-SCCAL03] Deep self-reconstruction SCCA

ADNI 2022  Bioinformatics

most methods usually apply conventional learning meth-
ods or develop new learning models to combine imaging
and genomics data for outcome prediction(76: 105-109] For
instance, Dukart et al.l195] investigated the role of mul-
timodal imaging (FDG-PET, MRI, and Amyloid-PET),
neuropsychological, and genetic data as potential bio-
markers to identify mild cognitive impairment (MCI) pa-
tients that will suffer from AD in the future. To be spe-
cific, naive Bayes classifiers were firstly constructed for
distinguishing AD and CN participants by different com-
binations of the data modalities mentioned above. Then,
the learned classifier was applied to MCI cohort to pre-
dict AD conversion status. Related experimental results
indicated that 76% accuracy is obtained by FDG-PET
data and 87% is acquired via multimodal imaging and ge-
netic data. In [106], a composite imaging genetic score
was created to predict MCI conversion to AD. On the
imaging hand, a nonlinear pattern recognition method[107]
was firstly exploited for identifying AD-relevant volumet-
ric regions. Then, an imaging score for each individual
was obtained by applying a nonlinear support vector ma-
chine (SVM) to imaging measures from these regions. On
the genomic hand, this technique utilized a linear SVM
for classifying AD versus clinically normal (CN), so that a
polygenic AD-related genetic score for each subject was
exported. Finally, this technique created a composite ima-
ging genetic score to be a weighted sum of the imaging
score and the genetic score. Relevant results validated
that the proposed composite score can effectively im-
prove the prediction accuracy. Peng et al.l1%8 constructed
a structured sparse kernel learning (SSKL) model used
for AD prediction. In this model, each feature was ex-
pressed by a kernel and the modality information was ad-
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opted to group kernels, so that variables could be selec-
ted at both the feature and group levels. Furthermore, an
innovative structured sparsity regularization was added
for ensuring feature sparsity within each modality but en-
couraging nonsparse solution modality. The empirical
study provided promising results.

In addition, for sake of understanding the biological
pathway from genetics to brain structure and function,
and to cognitive, behavior, and diagnostic outcomes,
many studies have explored the associations among gen-
omics, imaging, and outcomes, and there are some meth-
ods for association analysis-based outcome predic-
tionl101, 110-114] at present. For example, a discriminative
SCCA model was constructed in [110] for the identifica-
tion of disease-relevant imaging proteomics associations.
Without SNP data, the protein expression data collected
from CSF and plasma was analyzed, as well as the rela-
tionship to imaging QTs and multiclass diagnostic labels
(CN, MCI, and AD) was studied. Furthermore, in [111], a
joint learning method was developed for diagnosis-relev-
ant imaging genomics associations, which combines both
SCCA and regression (SCCAR). Here, denote z as the
outcome data, and such method can be described into

max %”Z — Yl)”% — UTXTYU + MR (U) =+ )\QRQ(U)
st |Xul = Yol = 1. (23)

As can be known, the imaging component Yv was
jointly learned in order to predict the outcome z and cor-
relate with the genomic component. An empirical study
was performed on an ADNI sample.

Furthermore, in [112], a multi-task collaborative re-
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gression (MT-CoReg) algorithm was presented, which can
obtain outcome-relevant variables co-expressed in ima-
ging and genomics modalities. This algorithm can be seen
as a joint learning method via combining both SCCA and
linear regression, which also uses the imaging component
to predict outcome. Inspired by this work[!'2, Wang et
al.[l91] built the proposed fusion self-expressive network
SCCA (FSN-SCCA) association model and used the well-
known multi-kernel (MK)-SVM[I] for the classification
of significant memory concern (SMC), early mild cognit-
ive impairment (EMCI), late mild cognitive impairment
(LMCI), AD, and NC. Fig.8 shows a visual framework of
the joint proposed FSN-SCCA association model and the
well-known MK-SVM for outcome prediction. In experi-
mental results, this method respectively achieved 93.76%
and 73.85% for AD versus NC and EMCI versus LMCI
on the ADNI dataset, and the corresponding area under
the curve (AUC) values were 0.95 and 0.7.

Table 3 summarizes the example studies of combining
both imaging and genomics data for outcome prediction
or association analysis-based outcome prediction. It
should be noted that, most of the above-reviewed meth-
ods usually do not consider the imaging phenotypes asso-

ciated with the genotype in the clinical diagnosis. As can
be well known that not all the variations in the brain are
produced by genetic effects, and it is generally indeterm-
inate which imaging phenotypes are meaningful for AD
diagnosis and prediction. Relevant results presented that
the association analysis-based outcome prediction ap-
proaches are helpful to guide disease interpretation and
prediction.

5 Conclusions and future work

As an emerging frontier interdisciplinary field, ima-
ging genomics involves a variety of scientific and re-
search technologies such as neuroscience, imaging, genet-
ics, medicine, biostatistics, data mining, and machine
learning. Genomic and multimodal imaging data (includ-
ing longitudinal brain imagings at different time points)
also provide a rich data experimental platform for ima-
ging genomics research, so that the pathogenic mechan-
ism of the association between genes and brain structure
or function can be presented through imaging endopheno-
types with genetic properties. As a powerful tool of data-
driven association analysis, machine learning technology

Association

FSN-SCCA

Prediction

[
=t

MK-SVM

Joint proposed FSN-SCCA association model and the MK-SVM to outcome prediction!!01]

Fig. 8

Table 3 Example studies of integrating imaging and genomics data for outcome prediction or
association analysis-based outcome prediction

Category Related studies Method feature Year Publication
Integrate [105] Bayes classifier 2015 Journal of Alzheimer's Disease
imaging and
genomics data [106] Composite multivariate method 2012 Journal of Alzheimer’s Disease
for outcome  ggper 1o AD prediction using multimodal imaging and SNP 2016 ~ MICCAI
prediction

data
JCRMMLIS] Joint classification and regression framework for 2012 Bioinformatics
multimodal multitask learning
CaMCCol109] Cascaded multi-view canonical correlation 2017 Scientific Reports
Association DSCCAI!10] Discriminative SCCA 2017 The 22nd Pacific Symposium on
analysis-based Biocomputing
outcome () . .
prediction SCCAR! Combining SCCA and regression 2019 ISBI

MT-CoRegl!!2]
FSN-SCCA+MK-

svmiol SVM
[113] Genome-wide mediation analysis
[114] Bayesian model

Multi-task collaborative regression

Fusion self-expressive based network SCCA+MK- 2021

2018 Transactions on Medical Imaging

Transactions on Medical Imaging

2017 Human Brain Mapping

2016 Transactions on Medical Imaging
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can analyze the association between susceptible genes and
brain structure or function, and better reveal the mechan-
ism of brain cognitive behavior or related diseases by
fully exploring and utilizing the internal structural in-
formation of biomarker data such as genes and imagings.
This paper reviews the recent application of machine
learning-based association analysis algorithms in the field
of imaging genomics research. In this review, we used
three databases including PubMed, Scopus, and Web of
Science to select the reviewed papers. The “brain ima-
ging genomics (genetics)” was considered as the main
keyword for the selection, and the dates queries were
done in March 20, 2022. A large number of experiments
and reports show that some of the association results de-
tected by the model have also been verified in the biolo-
gical and medical fields.

In this paper, the structured multivariate imaging ge-
netic association analysis methods are all based on some
prior knowledge, that is, associations are made on relat-
ively related candidate gene sets or brain area sets. Al-
though theoretically, these methods in this paper can be
applied to whole-genome or whole-brain voxel analysis,
the computational efficiency is low. For the efficiency of
high-dimensional feature variable gene locus detection, in
addition to improving the efficiency of the algorithm it-
self, the calculation of big data can also be completed by
introducing a distributed parallel computing method[!16],
Therefore, it is necessary to further develop and con-
struct more efficient algorithm models or working frame-
works to study the imaging genetic association of genome-
wide and brain wide characteristic variables.

In fact, multivariate imaging genetic research based
on the structured constraint method is capable of achiev-
ing good results, since a large amount of prior knowledge
is embedded in the model of data analysis. For example,
as one of representative prior knowledges, LD can charac-
terize the simple structural relationship between SNPs.
On this basis, researchers can supplement the prior in-
formation and expand the model. At present, some work
has considered the use of prior knowledge of biological
characteristics with more genetic functions in model es-
tablishment and learning training, including gene onto-
logy (GO), function annotation, pathway analysis system
(such as KEGG (Kyoto encyclopedia of genes and genes),
pathway database or OMIM (online mendelian inherit-
ance in man) disease database)l'7l. Therefore, how to
design a model more suitable for practical application
problems for data analysis according to these prior know-
ledge (such as the mechanism involved in neural regula-
tion), that is, to realize the combination of hypothesis
driven and data-driven methods/!18], in order to obtain
better association results, is still a current research hot-
spot.

Although the association results of structured mul-
tivariate genetic-multivariate imaging correlation can ex-

@ Springer

Machine Intelligence Research 20(1), February 2023

plain genetic effects, there may be an interactive relation-
ship between multiple non-allelic genes among the same
trait, that is, the mechanism of epistasis is not very clear.
At present, there has been some work to study the inter-
action between SNPs on imaging QTs[!9. These meth-
ods are mainly based on traversal pairwise search meth-
ods. For example, Hibar et al.'20] used an iterative sure
independence screening (SIS) algorithm to achieve and
detect SNP-SNP interactions significantly associated with
a brain region trait. These ergodic searches carry a con-
siderable computational time cost, while some efficient
sparse modelsP® are expected to provide efficient learn-
ing algorithms for epistasis studies of multiple interac-
tions.

In the study of outcome prediction, most of the above
research on the genetic-imaging association based on su-
pervision information are only to study the mechanism of
brain cognitive behavior or disease generation and provi-
de basis for disease diagnosis and prediction[l01, 110-113]
Therefore, how to construct a multi-task unified model of
joint association, regression, and classification of genetics,
brain imaging, clinical scores, and diagnosis information
datalll2, 121 which can not only reveal the relationship
between genetics and brain imaging, but also realize the
diagnosis and prediction of diseases based on biomarkers.
It will also become the development direction of future
research in imaging genetics.

It is well-known that the deep learning has achieved
great success in data-driven problems in biology and
medicine. However, to the best of our knowledge, it has
not been extensively applied to brain imaging genomics,
which was partly caused by the limited sample size and
high dimensionality of the existing imaging and genomics
datasets. Recent studies have developed some deep learn-
ing based methods for outcome prediction by combining
both brain imaging genomics datall?2. Since deep learn-
ing has been achieving great performance in medical im-
age analysis[!23] and multiomics research124, we believe
that developing deep learning methods to solve pressing
problems in brain imaging genomics is a promising re-
search direction.

In this article, our work focuses on the main idea and
modelling in genetic-imaging association studies based on
machine learning. In our brief review, the goal of ima-
ging genomics based on machine learning is to realize the
association analysis study for understanding mechanisms
and pathways. At present, as the problem of data leak-
age in several imaging studies(12], another challenge in
brain imaging genomics is how to handle data leakage
leading to erroneous conclusions. Thus, data leakage in
brain imaging genomics will be an important step to real-
ize the association analysis study in order to identify
some significant genetic loci and imaging phenotypic
markers. Some sources of the data leakage, such as incor-
rect data split, late split, and the absence of an independ-
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ent test set, etc., have been studied as described in sever-

al imaging studies(?’l. However, systematic investigation

of various data leakage factors is an underexplored topic

and warrants further investigation.
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