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Abstract: Glaucoma is a prevalent cause of blindness worldwide. If not treated promptly, it can cause vision and quality of life to de-
teriorate. According to statistics, glaucoma affects approximately 65 million individuals globally. Fundus image segmentation depends
on the optic disc (OD) and optic cup (OC). This paper proposes a computational model to segment and classify retinal fundus images for
glaucoma detection. Different data augmentation techniques were applied to prevent overfitting while employing several data pre-pro-
cessing approaches to improve the image quality and achieve high accuracy. The segmentation models are based on an attention U-Net
with three separate convolutional neural networks (CNNs) backbones: Inception-v3, visual geometry group 19 (VGG19), and residual
neural network 50 (ResNet50). The classification models also employ a modified version of the above three CNN architectures. Using the
RIM-ONE dataset, the attention U-Net with the ResNet50 model as the encoder backbone, achieved the best accuracy of 99.58% in seg-
menting OD. The Inception-v3 model had the highest accuracy of 98.79% for glaucoma classification among the evaluated segmentation,
followed by the modified classification architectures.
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1 Introduction

Glaucoma is the second most prevalent eye disease
globally, and it can potentially lead to lifelong blindness.
World Glaucoma Association estimated that around 80
million individuals have glaucoma worldwide by 2022. By
2040, the number of cases is expected to have risen to
111.8 millionl!. Despite the absence of signs in the initial
stages, the disease affects the shape of the optic nerve
head, harms nerve cells, consumes nerve fibers, and fi-
nally leads to irreversible blindness. Glaucoma is known
as the “thief of sight” because it causes permanent vision
loss. It is critical to discover the condition early to assist
individuals in treating it and preventing it from progress-
ingl2l.

Over the last two decades, a range of techniques for
medical image segmentation have been developed5. Im-
age segmentation aims for pixel-level classification, which
breaks down an image into subgroupslfl. Deep learning
(DL) approaches have made substantial progress in a
variety of medical image analysis applications in recent
yearsl™ 10l Accordingly, several studies have addressed
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glaucoma analysis using convolutional neural networks
(CNNs)[11-13], DL approaches based on fully convolution-
al networks (FCNs), such as U-Net, have been explored
in a series of studies using fundus images for various of
image segmentation tasks, with DL models employed to
extract features for classification[14].

U-Net was introduced for segmenting biomedical im-
ages with small datasets(!?. It is a convolutional model
and consists of two types of segmentation models,
namely, traditional U-Net and attention U-Net. The tra-
ditional U-Net architecture has an encoder path for ex-
tracting features and a decoder path for image restora-
tion. The Attention U-Net architecture is based on the
same concept as the traditional U-Net architecture. At-
tention U-Net focuses on different forms and sizes of tar-
get structures on its own. On the other hand, batch nor-
malization (BN) is not a feature of both paths, resulting
in model overfitting[!6: 171. As a result of these limitations,
we developed a method for segmenting fundus images
combining attention U-Net with CNN architectures,
which subsequently be utilized for classification to pro-
duce promising glaucoma detection results.

This paper proposes a computational model to seg-
ment and classify retinal fundus images for glaucoma de-
tection. We aim to enhance the performance of optic disc
segmentation (ODS) and optic cup segmentation (OCS),
and provide a better framework for glaucoma identifica-
tion with promising results. We begin by designing and
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developing an attention U-Net with several backbones.
Then we utilize three modified CNN architectures as the
backbones, that is, Inception-v3, visual geometry group
19 (VGG19) and residual neural network 50 (ResNet50).
In recent years, CNN based models such as Inception-
v3, VGG19, and ResNet50 have produced impressive out-
We fine-tuned
these models for the segmentation process in this study.

comes in medical image analysis[l8 19].
The Inception-v3 modell%, has shown high-performance
gain on CNNs. This model utilizes computing resources
efficiently with a minimal increase in computational load.
Additionally, it can extract features from data at varying
scales with different convolutional filter sizes. The
VGG19 model?!] was built as a deep CNN with 19 layers.
It outperformed baselines on many tasks and is still one
of the most commonly used vision models. This arrange-
ment of convolution and max pool layers follows consist-
ently throughout the whole architecture. In the end, it
has two fully connected layers followed by a softmax for
output. On the other hand, ResNet50[(22], is a fast-per-
forming model. It can train many layers without increas-
ing the training error percentage. Additionally, this mod-
el can handle the vanishing gradient problem using iden-
tity mapping.

This study proposes an attention U-Net architecture
by merging transfer learning with fundus images. We
evaluate the models from different perspectives such that
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segmentation only and segmentation followed by classific-
ation using Inception-v3 architecture, as our previous res-
ults have shown better accuracy with the modified Incep-
tion-v3[12l. Joining attention U-Net with three different
CNN architectures and highlighting the optimum models
is the novelty of this study. The conclusions of this study
will aid researchers and developers in the same sector.

In this paper, Sections 2—5 explore the related works,
detail the design of the attention U-Net model for ODS
and OCS, provide the outcomes, and wrap up the paper
and discussion, respectively.

2 Background and related studies

2.1 U-Net architecture

The traditional U-Net architecture is based on a CNN
approach that has expanded with minor CNN architec-
U-Net localizes and detects
boundaries, as it classifies each pixel. The U-Net con-

ture changes. Generally,
tains two essential parts: a contraction path and an ex-
panding path. As demonstrated in Fig.1, the contracting
path (encoder) on the left is the general convolutional
procedure for extracting the factors in the image. The
contracting path includes two convolutions, including rec-
tified linear unit (ReLU) activation and max pooling for
downsampling. In the downsampling step, feature chan-
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nels will be doubled. The expanding path (decoder) on
the right comprises transposed 2D convolutional layers
(fully connected layers) that allow for localization. As a
result, the feature channel size will be decreased to 50%
of the initial size in the upsampling procedurel!®. Figs.2
and 3, represent the contraction path and the expansive
path, respectively. During the expanded path, the image
will be enlarged to its original size.

Generally, the U-Net architecture offers promising res-
ults for images segmentationl4 7> 14, Considering the seg-
mentation methods, semantic image segmentation aims to
assign a label to anything with a class of an image repres-
enting a pixel. This task is known as a dense prediction
since it performs estimation for every pixel in the image.
Additionally, the targeted output is not merely labels and
bounding box parameters in semantic segmentation. The
result is a high-resolution image classified into a different
class with each pixel. Skip connection brings redundant
low-level features from the encoder path to the decoder
path, and it is derived from the first layers and includes
more spatial information, however feature information in
the initial layers is limited(23]. Therefore, it is a consider-
able disadvantage of this U-Net.

However, the challenge of the traditional U-Net archi-
tecture is that both encoder and decoder parts consist of
plain convolution, and it can be performed less efficiently
for some complicated medical imaging tasks. As the solu-
tion to this issue, researchers have used variants of U-
Nets as follows.

1) Replace the plain convolutional backbone with an-
other model such as deep recurrent residual convolution,
DenseNet, and inception block. For instance, the recur-
rent units unfold to a predefined time step making the
network deeper at each layer and increasing the field of
view in the lower layers of the neural network. Thus,
these blocks aid in extracting crucial features such as pre-
cise low-level boundaries for segmentation. Hence, accur-
ate feature extraction increases the performance.

2) Modify the skip connections between two paths,
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employing a dense skip pathway that decreases the se-
mantic gap between two paths. Generally, dense skip con-
nections deduct the semantic gap between encoder and
decoder features before concatenation and forward differ-
ent scale information to the decoder, aggregating differ-
ent scale features to enhance the segmentation accuracy.
Thus, these pathways accumulate features coming from
multiple scales and apply concatenation. Additionally, ex-
tracting the advanced features in the segmentation tasks,
recovering the lost fine details of foreground objects, and
ensemble multi-depth output to ensure better accuracy is
the other solution for that issue. Hence, embedding multi-
depth models and an ensemble of outputs taken from
varying depths improves the performance.

Although the increase in the network depth causes im-
proved performance, the U-Net architecture endures a
vanishing gradient problem. Such issues can be ad-
dressed using different activation functions such as ReLU,
exponential linear units (ELU), and applying batch nor-
malization between the layers. However, applying more
deep layers increases the complexity and consumes more
time for the training process. Identity mapping and skip
connection in each considered model can be considered as
solutions to that issue. Moreover, combining DL models
with the original U-Net architecture leads to improved
performance. For instance, residual units aid in training,
whereas recurrent and residual convolutional layers im-
prove feature representation for segmentation duties. It
permits the construction of more efficient U-Net architec-
tures for medical image segmentation with the same
range of network parameters and increased perform-
ancel?4, 25, Furthermore, in related studies, a study with a
dense-inception block has been used to combine an Incep-
tion-ResNet module and a U-Net architecture for feature
extraction. In addition, a new convolution structure with
a residual module that improves feature quality has been
replaced with an inception module, to gain more semant-
ic information by expanding the network width[20l. Thus,
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U-Net is commonly employed in the segmentation of
medical images(27> 28],

2.2 Related studies

Several studies have addressed fundus image segment-
ation and classification for glaucoma identification[”> 14],

For instance, an optic disc (OD) and optic cup (OC)
segmentation based study is addressed by Tabassum et
al.%l They used a cup disc encoder-decoder network
(CDED-Net) with three datasets namely, DRISHTI-GS,
RIM-ONE and REFUGE. Eight convolutional layers with
four blocks made up this modified U-Net. In the encoder
route, each block contains a batch normalization layer.
The path in the decoder is made up of four convolutional
blocks. DRISHTI-GS has shown 99.71% and 99.66% ac-
curacy for OC segmentation and OD segmentation, re-
spectively.

In another study, Jin et al.39 designed an encoder-de-
coder network structure called the aggregation channel
attention network architecture. The aim of using an en-
coder is to gradually shrink the feature map’s spatial size
while capturing complex semantic features. The decoder
recovers the object’s features and spatial dimensions while
retaining additional spatial data. They employed the
DenseNet block to obtain more significant advanced se-
mantic features and performed an aggregation channel at-
tention upsampling (ACAU) module to retain more spa-
tial information in the decoding path. The DenseNet
block comprises a dense block for varying feature resolu-
tions, and the transition comprises 4 DenseNet blocks.
The decoder path is made up of four aggregate channel
attention upsampling modules that keep the encoder’s
high-level features while preserving the spatial resolution
of the feature map. The OD segmentation using the ag-
gregation channel attention upsampling network (ACAU-
Net) has shown a lower overlapping error of 0.046 9.

Moreover, Civit-Masot et al.3ll developed a cloud-
based U-Net architecture to perform cup and disc seg-
mentation. The recommended design consisted of two
convolutional layers. Both encoder and decoder path-
ways employ the ReLU activation function and dropout
layers. To produce networks with acceptable perform-
ance, they merged several publicly accessible datasets, in-
cluding RIM-ONE V3, DRISHTI, and DRIONS. This
method performs well on both segmentation types obtain-
ing a 95% of Dice coefficient (DC).

In addition, an attention U-Net with pre-trained mod-
els for ODS and OCS is presented by Zhao et al.ll6l An
attention gate is placed between the U-Net encoder and
the decoder to focus on the target area. After network
training using the DRIONS-DB dataset to obtain the en-
coder’s weights, the DRISHTI-GS dataset was used to
train it to further alter the weights. As a result, the
DRISHTI-GS dataset obtained the best results for the
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DC, Jaccard coefficient (JC), sensitivity, specificity, and
accuracy of 96.38%, 93.01%, 94.88%, 99.93%, and 99.75%,
respectively, for OD segmentation.

Furthermore, Sevastopolsky[32l suggested a modified
U-Net combining deep learning for OD and OC segment-
ation on fundus images. They have looked at two options
for pre-processing OD and OC segmentation. First, the
altered U-Net contains the fewest convolution filters, res-
ulting in fewer parameters and a quicker training time.
This suggested method performs well on OD segmenta-
tion, obtaining DC, intersection-over-union (IoU) of 95%
and 89%, respectively, for the RIM-ONE V3 dataset.
However, considering the results of optic cup segmenta-
tion, this method is not ideal for cup segmentation.

3 System design and implementation

3.1 Process view

The high-level view of the proposed methodology is
represented in Fig.4. Our approach mainly consists of
data pre-processing, augmentation, attention U-Net archi-
tecture-based segmentation, DL-based classification, and
model evaluations. Different pre-processing and feature
extraction techniques have been used in the domain of
medical image analysisi333%, The following subsections
describe the whole process in detail. The pipeline shown
in yellow, which occupies only the classification process to
obtain the output, is based on our previous workl!2],

Our segmentation and classification process is based
on three models: Inception-v3, VGG19, and ResNet50.
We have selected these models due to the in-built fea-
tures in those architectures. For instance, Inception-v3
uses the inception module to aid in the extraction of more
detailed features from the supplied image. Furthermore,
the VGG19 architecture consists of small kernels and al-
lows us to learn more complex features.

The reason behind selecting the ResNet50 architec-
ture is the vanishing gradient problem. It includes skip
connections that serve as gradient superhighways, allow-
ing the gradient to flow freely. It allows gradients to
spread to deeper layers before becoming attenuated to
tiny or zero levels. Another issue with training deeper
networks is that the optimization is done on a large para-
meter space, resulting in naively adding layers and in-
creasing training error. Residual networks enable the
training of deep networks by creating the network using
residual model modules.

3.2 Segmentation process

3.2.1 Dataset details

We employed two publicly available datasets for the
segmentation process, RIM-ONEBS and ACRIMAB7. The
RIM-ONE dataset has three versions, and the first and
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second versions include 169 and 455 monosporic fundus
images, respectively. The third version contains 318 ste-
reoscopic images categorized into four categories: normal,
moderate, early, and deep. We treated all three classes as
glaucoma since the deep, early, and moderate classes are
all associated with glaucoma. Thus, the RIM-ONE data-
set consists of 942 fundus images with 399 glaucomatous
and 543 normal subjects. The ACRIMA dataset consists
of 396 glaucomatous and 309 normal cases.

Each fundus image must have a mask for implement-
ing the attention U-Net architecture. However, optic disc
masks are available only in the RIM-ONE version 1 data-
set, and optic disc and cups masks are consistent in RIM-
ONE version 3. Therefore, we manually constructed
masks of the remaining dataset images to fulfil the seg-
mentation procedure8l. We split the images into a
70:15:15 ratio as the training, testing and validation sets
during the U-Net segmentation process. Due to a short-
age of OD and OC ground truth images, the ACRIMA
dataset can only be used for classification techniquesl37.
As a result, no segmentation experiments have been con-
ducted using the ACRIMA dataset(4 38, 39,

3.2.2 Pre-processing and augmentation techniques

We used two pre-processing techniques, contrast lim-
ited adaptive histogram equalization (CLAHE) and a me-
dian filter, for the segmentation process. CLAHE is a
well-known pre-processing technique that improves im-
age quality and contrastl4?). On the other hand, since
noise destroys the quality of the images, the median fil-
ter technique is used to reduce the noise while keeping
the image's edge features[9.

Augmentation techniques to handle the data imbal-
ance issue, data overfitting, and enhance the number of

images available in the dataset. We employed six aug-
mentation techniques: rotation range of 10 degrees, zoom-
ing range of 0.1, shearing range of 0.2, horizontal flip,
height shift range, and width shift range of 10% for both
datasets. Moreover, two augmentation techniques were
employed for both datasets, namely, a brightness range of
1 and a contrast range of 2, to address the data imbal-
ance problem. After splitting both sets into a 70:15:15 ra-
tio, the images of the training, testing and validation sets
of the RIM-ONE dataset consist of 4512976 and 970
fundus images. The ACRIMA dataset contains 3 193 724
and 718 images from the training, testing and validation
sets, respectively. Table 1 shows the data distribution of
the training and testing sets after the pre-processing pro-
cess.

3.2.3 Proposed attention U-Net architecture

Studies with segmentation have focused on fully con-
volutional networks (FCN). Based on the FCN architec-
ture, the U-Net architecture is adequate for binary image
segmentation, making it suitable for biomedical image
segmentation[l6l. The attention U-Net architecture is sim-
ilar to the standard U-Net architecture, however, it has
been significantly adjusted to obtain the significant out-
comes. Other than the encoder and decoder paths, each
level of the attention U-Net contains an attention gate
(AG) at the skip connection.

In the proposed model, we substituted the original en-
coder of the standard U-Net with pre-trained networks,
namely VGG19, Inception-v3, and ResNet50 as back-
bones independently, in the contraction path, to discover
the best segmentation performances. The view of the pro-
posed attention U-Net is shown in Fig.5, where the back-
bone is replaced using the pre-trained Inception-v3,
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Table 1 Data distribution
Training set 70% Testing set 15% Validation set 15%
Dataset
Glaucoma Normal Glaucoma Normal Glaucoma Normal
RIM-ONE 2232 2280 480 496 480 490
ACRIMA 1590 1603 372 352 366 352
Input (128x128%3) Output (128x128x%3)
(128x128%128)
[ (128x128x16)
(64x64x32)
(32x32%64)
mmm 3%3 conv2D +
BN + ReLU
(16%16%128) wmmm Concatenate
== Transpose conv
== [x] conv2D +
(8x8x256) sigmoid
B Attention gate
Fig. 5 Proposed U-Net architecture
. a=0ca(Wy (e1(Wi X + W, g +by)) + bo) (3)
VGG19, and ResNet50 models. Convolutional, upsam- = 02(We \O1{Wa 99710y )

pling, and concatenation are used in all three networks.
Each convolution layer is followed by a batch normal-

ization layer and a ReLU activation layer. Furthermore,

the ReLU activation function is given in (1), where  rep-

resents the input to a neuron.
ReLU(z) = max(0, 1). (1)

At each level of the attention U-Net architecture, an
attention gate allows two inputs: gating signal (g) and
skip connection (z). The spatial information is fulfilled by
a gating signal that originates from the next lower layers.
Skip connections are consistent with good feature repres-
entation. As a result, the sum of the z and ¢ signals re-
tains good feature and spatial information. Fig.6 repres-
ents the attention gate, where X is the feature map of the
encoder path. The output of the attention gate (X') is
defined in (2), and the attention coefficient vector « is
stated in (3), where o1 and o2 coordinate with ReLU and
sigmoid activation function, respectively. W, and W,
define the linear transformation, b, and by demonstrate
the bias. We obtained the output of the attention gate by
taking the dot product of the feature map of the encoder
path and the attention coefficient vector.

X'=X «a (2)
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The first CNN design utilizes an inception-v3 encoder
as the U-Net encoder. It is made up of convolutional lay-
ers and max-pooling layers. Inception modules were util-
ized to replace each convolutional layer in the original U-
Net, including 3x3 convolutions, 1x1 convolutions, and
3x3 max-pooling. The VGG19 encoder was used in the
second attention U-Net architecture and it made use of
convolutional and max-pooling layers. The filter size will
be doubled following the max-pooling layer. ResNet50 is
the final CNN architecture, and it consists of residual
blocks with skip connections and skip connections that
handle the vanishing gradient problem. The ResNet50 ar-
chitecture comprises residual blocks.

3.3 Classification process

We fed the segmented results through a classification
process utilizing three separate modified CNN architec-
tures, namely Inception-v3*, VGG19*, and ResNet50%,
from our previous work[12l. The primary objective of this
classification step is to obtain highly accurate results.
Thus, we used the segmented images obtained from the
ResNet50 backbone, which gives the highest accuracy of
the segmentation process, as the input images for the
classification process. We split the segmented image set
into a 70:15:15 ratio. Overall, there are 2 722 training im-
ages, 583 testing images and 583 validation images in the
image set.
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The modified Inception-v3* model has an additional
three layers instead of the top dense layers. For instance,
the global average pooling (GAP) layer, was used to min-
imize the parameters. A dense layer with 512 units and a
softmax layer were added. Two neurons were used in the
softmax layer for the normal and glaucoma classes. Fi-
nally, we applied a dropout layer with 0.7 rates to de-
crease the model overfitting. Furthermore, the vanishing
gradient problem was addressed by the auxiliary classifi-
er of the Inception-v3 model. They have utilized a high
learning rate with the Adam optimizer to train the mod-
el. The modified Inception-v3 architecture is shown in
Fig.7.

Moreover, for the modified VGG19*, which consists of
19 layers, we added additional convolution layers as the
final three blocks as shown in Fig.8. The last three newly
added layers are inserted after the GAP layer: a dropout
layer with a 0.5 rate, a dense layer (256 units) with a

ReLU activation function, and finally, softmax layer with
two outputs.

Finally, Fig.9, shows the modified ResNet50* archi-
tecture used for the classification process. It incorporates
a few skip connections to combat the vanishing gradient
problem that occurs when a large number of layers are
used, allowing it to cling to data from two layers. Ini-
tially, we proceeded by changing the final two dense and
softmax layers. The fully connected layer is then re-
placed by a 256-unit fully connected dense layer in the
same pre-trained networks.

4 Results and analysis

4.1 Evaluation metrics

The image segmentation and classification were evalu-
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ated using the widely used performance metrics DC, JC,
accuracy, sensitivity, and specificity, as given in (4)—(8),
respectively. The DC is calculated by dividing the num-
ber of active pixels at the intersection of the actual and
predicted masks by the total number of active pixels in
both masks. Furthermore, sensitivity is critical in medic-
al field-based research since it reflects the percentage of
diseased individuals that the model is capable of detec-
tingl41],

In this study, the terms true positive, false positive,
false negative and false positive denoted by TP, FP, FN
and FP, respectively, are described as follows.

True positive (TP). Predicted as positive and the
actual outcome is also true. The model identifies the
OD/OC correctly, and the ground truth mask is also the
same.

True negative (TN). Predicted as unfavourable,
but the actual outcome is true. The model identifies the
OD/OC incorrectly, and the ground truth mask does not
correctly identify the OD/OC.

False positive (FP). Predicted as positive, but the
actual outcome is not valid. The model identifies the
OD/OC correctly, but the ground truth mask does not
correctly identify the OD/OC.

False negative (FN). Predicted as unfavourable,
but the actual outcome is true. The model identifies the
OD/OC incorrectly, but the ground truth mask is cor-
rectly identified as the OD/OC.

2xTP
(2xTP)+ FP+FN

Dice coefficient (DC) =

Jaccard coefficient (JC) = % (5)
Aceuracy = 75 IF:CJIj I TT"]]\\; +FN ©)
Sensitivity = % (7)
Speci ficity = % (8)
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Cross-entropy loss (CE) is a widely used loss function
in classification problems. It displays the difference
between two probability distributions as in (9), where b is
the binary indication (0 or 1) that represents the sample's
class, and a signifies the sample's predicted probability
between 0 and 1. In some image segmentation problems,
the background comprises a significant portion while the
object consists of a small portion. Thus, the loss function
should be utilized properly[42 43,

CE =CE., = —(blog(a) + (1 —b)log (1 —a)). (9)

Furthermore, the confusion matrix displays the num-
ber of correct and incorrect predictions for each class.
The confusion matrix is organized in a tabular format,
with the four values divided into two categories: actual
and predicted.

4.2 Classification results

This section describes the performance metrics ob-
tained from the classification of the fundus images
without segmentation. These results are based on our pre-
vious work(2l, and are included as a summary together
with evaluation extensions for the completeness of the pa-
per. The modified architectures were used for the con-
sidered Inception-v3*, VGG19* and ResNet50*. We em-
ployed hyperparameter tuning to find the most effective
training settings. For the internal layers, the ReLU activ-
ation function is employed, and each model training
batch size is set to eight. The ADAM optimizer is used to
train the Inception-v3* model with a learning rate of 0.000 1.
The VGG19* and ResNet50* models are trained using
stochastic gradient descent (SGD) optimizer updates with
0.9 momentum and a learning rate of 0.001. Since the
goal is binary classification (glaucoma and healthy), we
used binary cross-entropy loss for each model. We trained
the data for 200 epochs during this comparative study.
Table 2 summarizes the obtained results. The highest
classification accuracy of 98.52% is given using the modi-
fied Inception-v3 model for the ACRIMA dataset. The
highest sensitivity value of 99.5% was also given by the
modified inception-v3 model.
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Table 2 Performance of CNN architectures for classification

Inception-v3* VGG19* ResNet50*
Performance metrics
RIM-ONE ACRIMA RIM-ONE ACRIMA RIM-ONE ACRIMA

Accuracy 96.56% 98.52% 94.95% 92.64% 95.49% 95.58%
Precision 97.22% 98.84% 95.37% 93.45% 96.50% 96.49%
Recall 98.31% 99.50% 97.98% 97.08% 97.59% 98.21%
Fl-score 97.76% 99.17% 96.65% 95.23% 97.04% 97.34%
Sensitivity 98.31% 99.50% 97.98% 97.08% 97.59% 98.21%
Specificity 90.90% 90.90% 86.13% 78.78% 88.88% 83.33%
Loss 0.060 1 0.0414 0.079 2 0.075 6 0.068 9 0.059 8

AUC 0.98 0.99 0.95 0.94 0.97 0.96

4.3 Segmentation results

We used several metrics to measure the performance
of the fundus image segmentation process. These results
are an extension of our previous work[!”). As mentioned in
the methodology, the three CNN architectures are trained
for 150 epochs with a 0.001 learning rate. The Inception-
v3 utilized an ADAM optimizer, and the other remaining
architectures employed SGD. Figs.10-13 represent the
training accuracy, validation accuracy, training loss, and
validation loss of OD and OC segmentation for the RIM-

RIM-ONE Inception-v3_ODS

RIM-ONE_VGG19_ODS

ONE and ACRIMA datasets. Considering a given figure,
the left (a), middle (b) and right (c) figures show the res-
ults obtained using the attention U-Net with Inception-
v3, VGG19, and ResNet50 architectures, respectively.
Thus, we have shown the acquired findings for both data-
sets individually for each architecture.

Accordingly, Figs.10(a)-10(c) show the OD segmenta-
tion of Inception-v3, VGG19, and ResNet50 on the RIM-
ONE dataset. Fig.10(a) shows the accuracy of 98.91% for
training and the accuracy of 98.65% for validation at the
end of 150 epochs. In Fig.10(b), VGG19 yielded 99.53%
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Fig. 10  Optic disc segmentation of (a) Inception-v3, (b) VGG19, (c) ResNet50 on RIM-ONE
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Fig. 11  Optic disc segmentation of (a) Inception-v3, (b) VGG19, (c) ResNet50 on ACRIMA
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Fig. 12 Optic cup segmentation of (a) Inception-v3, (b) VGG19, (c¢) ResNet50 on RIM-ONE
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Fig. 13  Optic cup segmentation of (a) Inception-v3, (b) VGG19, (c) ResNet50 on ACRIMA

training accuracy and 99.07% validation accuracy. The
training and validation accuracy given by the ResNet50
architecture were 99.89% and 99.58%, respectively. Ac-
cording to the training and testing results, these three
models perform well on the training and validation data.
Therefore, no clear signs of model overfitting were ob-
served.

Similarly, Figs.11(a)-11(c) show the OD segmenta-
tion of Inception-v3, VGG19, and ResNet50, respectively,
on the ACRIMA dataset. Fig.11(a) shows the accuracy of
98.26% and 97.91% for training and validation, respect-
ively, for 150 epochs. In Fig.11(b), VGG19 yielded
98.81% and 98.18% training and validation accuracy, re-
spectively. Furthermore, the ResNet50 model showed
training and validation accuracy of 99.84% and 99.26%,
respectively. Since the models performed well on the
training and validation data, there were no obvious indic-
ators of overfitting.

Moreover, Figs.12(a)-12(c) show the accuracy and
loss in the training and testing stages of the OC segment-
ation of Inception-v3, VGG19, and ResNet50, respect-
ively, on RIM-ONE. The Inception-v3 model gave the ac-
curacy of 97.05% and 96.39% for training and validation,
respectively, for 150 epochs. The training and validation
accuracy yielded by the VGG19 architecture for OC seg-
mentation was 97.12% and 96.70%, respectively. The Res-
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Net50 model showed 97.90% and 97.42% for training and
validation, respectively. Accordingly, the models perform
well on the training and validation sets and overfitting is
not observable.

Furthermore, Figs.13(a)-13(c) present the results of
the training and testing stages of the OC segmentation of
Inception-v3, VGGI19, and ResNet50, respectively, on
ACRIMA. The observed training and validation accur-
acy for each model is as follows. Inception-v3: 96.84% and
96.65%, VGG19: 98.05% and 97.35%, ResNet50: 98.41%
and 98.05%, respectively. Thus, the models perform well
on both training and validation data.

Considering the model evaluation techniques, sensitiv-
ity and specificity measures the probability of a positive
and negative diagnostic test, respectivelyl44. As a result,
sensitivity is particularly essential in medical image ana-
lysis, since it indicates the percentage of participants who
have the disease that the model properly recognizes. We
have illustrated each CNN architecture’s DC, JC, accur-
acy (Acc), specificity (Spe), and sensitivity (Sen) for OD
and OC segmentation. Tables 3 and 4 show the ODS and
OCS results, respectively. The metrics are shown for both
the RIM-ONE and ACRIMA datasets, and for each mod-
el Inception-v3, VGG19, and ResNet50. Accordingly, Res-
Net50 on the RIM-ONE dataset obtains 99.58% and
97.42% accuracy for the OD and OC segmentation with
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Table 3 ODS results using attention U-Net with CNN backbones

Inception-v3* VGG19* ResNet50*
Performance metrics
RIM-ONE ACRIMA RIM-ONE ACRIMA RIM-ONE ACRIMA
DC 99.19% 98.85% 99.44% 99.00% 99.75% 99.54%
JC 98.41% 97.74% 98.89% 98.03% 99.51% 99.09%
Acc 98.65% 97.91% 99.07% 98.18% 99.58% 99.26%
Sen 99.01% 98.63% 99.38% 98.78% 99.75% 99.54%
Spe 96.81% 90.00% 97.46% 91.66% 98.69% 94.73%
Table 4 OCS results using attention U-Net with CNN backbones
Inception-v3* VGG19* ResNet50*
Performance metrics
RIM-ONE ACRIMA RIM-ONE ACRIMA RIM-ONE ACRIMA
DC 97.80% 98.16% 97.99% 98.55% 98.43% 98.93%
JC 95.69% 96.40% 96.06% 97.14% 96.91% 97.89%
Acc 96.39% 96.65% 96.70% 97.35% 97.42% 98.05%
Sen 97.49% 98.01% 97.74% 98.32% 98.37% 98.78%
Spe 91.27% 82.25% 91.81% 86.66% 92.98% 89.83%

the minor test loss. Furthermore, ResNet50 on the AC-
RIMA dataset achieves 99.26% and 98.05% accuracy for
OD and OC segmentation with less testing loss, respect-
ively.

Furthermore, Fig.14 shows the ground truth image

sample and the predicted image generated from the

(2)

(b)

trained model. Figs.15 and 16 show the confusion
matrices for OD segmentation of each architecture.
Figs. 17 and 18 depict the confusion matrices for OC seg-
mentation of each architecture based on the RIM-ONE
and ACRIMA datasets, respectively. Tables 3 and 4 state

the prediction results of segmentation that separates OC

(©)

Fig. 14 Original fundus image, ground truth image from the dataset, and the predicted image generated from the trained model: (a)

Fundus image; (b) Ground truth image; (c) Predicted image.
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Fig. 15 Confusion matrix of (a) Inception-v3, (b) VGG19, (c) ResNet50 for OD segmentation on RIM-ONE
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Fig. 17 Confusion matrix of (a) Inception-v3, (b) VGG19, (c) ResNet50 for OC segmentation on RIM-ONE
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Fig. 18 Confusion matrix of (a) Inception-v3, (b) VGG19, (¢) ResNet50 for OC segmentation on ACRIMA

and OD from the background of fundus images. In the
confusion matrix, the top left and bottom right sections
indicate true positives (TPs) and true negatives (TNs),
respectively. The top right and bottom left sections show
false positives (FPs) and false negatives (FNs), respect-
ively. Accordingly, all the models produced good results,
as they obtained higher values for TP and TN.

4.4 Segmentation followed by classifica-
tion results

As the main contribution of this paper, we have ob-
tained the performance metric for the complete glaucoma

classification pipeline with segmentation. As described in
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the methodology, we used the segmented images ob-
tained from ResNet50-based attention U-Net, which gave
the highest accuracy in the segmentation process. Then,
we classified those segmented images using the modified
Inception-v3*, VGG19*, and ResNet50*. Fig.19 shows
the classification results of the three models for the RIM-
ONE dataset.

The results are obtained using the same batch sizes
with different optimizers for each model on 150 epochs.
Fig.19(a) shows the classification results of the Inception-
v3 architecture. It obtained the accuracy of 99.42% for
training and the accuracy of 98.79% for testing at the end
of 200 epochs with less test loss. In Fig.19(b), VGG19
yielded 95.74% training accuracy and 94.85% testing ac-
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Fig. 19 Classification results of (a) Inception-v3, (b) VGG19, (c) ResNet50 models for the segmented images on the ACRIMA dataset

curacy. The training and testing accuracy given by the
ResNet50 architecture, was 96.24% and 95.71%, respect-
ively, as shown in Fig. 19(c).

However, as shown in Fig.19, the testing accuracy is
lower than the training accuracy in the initial epochs, and
the testing loss is larger than the training loss. The test-
ing loss evaluates how well the model fits new data,
whereas the training loss evaluates how well the model
fits the training data. The model has learned restricted
characteristics during the early epochs, and as a result,
initially, the performance is low. Since the training and
testing loss and accuracy curves are shown to overlap at
the end of the 150 epochs, it eventually indicates no signi-
ficant variance or overfitting.

Moreover, the confusion matrix of the Inception-v3*,
VGG19*, and ResNet50* models for the classification of
the segmented images is shown in Fig.20. Generally, a
summary of the prediction outcome of a classification
problem is shown in the confusion matrix. As can be ob-
served, the model produces more accurate predictions.

Furthermore, the three model's receiver operating
characteristic (ROC) curves are plotted in Fig.21. This
indicates a binary classification’s diagnostic ability for
changing discrimination thresholds or the likelihood of
picking a positive class over a negative class. From the
ROC curve, it can be observed that the curves are closer
to the top-left corner. This means that with a very accur-

ate test, the classifiers performed better. AUC, which rep-
resents the diagnostic predicting performance of the mod-
el, measures a classifier’s ability to discriminate between
classes.

Moreover, Table 5 represents the performances shown
by each architecture on the RIM-ONE dataset. Based on
each CNN architecture’s performance, Inception-v3 on
RIM-ONE achieves 98.79% accuracy and the least test
loss.

5 Discussions

5.1 Study contributions

We presented an approach to segment the OD and
OC using attention U-Net with fundus images. We have
proposed three pre-trained CNN architectures to use U-
Net's encoder part as the attention. Furthermore, we
have employed different data pre-processing and data
augmentation techniques to overcome the model overfit-
ting and data imbalance issues. Furthermore, we exten-
ded this proposed approach for classification. We utilized
segmented images generated from the highest accuracy
model in the segmentation process. We obtained the ac-
curacy of 98.58% utilizing the modified pre-trained Incep-
tion-v3 model as the best result. The main contributions
of this study are as follows.
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Fig. 20 Confusion matrix of (a) Inception-v3*, (b) VGG19*, (c) ResNet50* for the classification with segmentation
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Table 5 Performance of CNN architectures for the
segmented images
Segmentation followed by CNN architecture
Performance
Inception-v3 VGG19 ResNet50
Accuracy 98.79% 94.85% 95.71%
F1-score 99.31% 97.03% 97.53%
Precision 99.41% 97.80% 98.21%
Recall 99.22% 96.27% 96.86%
Specificity 95.58% 84.93% 87.50%
Sensitivity 99.22% 96.27% 96.86%
Loss 0.0711 0.1007 0.081 3
AUC 0.99 0.95 0.98
1) This study explored literature related to retinal

fundus image segmentation and classification for glauc-
oma detection.

2) We applied data pre-processing techniques to en-
hance the quality of the images and remove unwanted

Machine Intelligence Research 19(6), December 2022

3) Our pre-processing approach addressed data over-
fitting and increased the algorithm's generalization using
the augmentation technique.

4) We designed and developed an attention U-Net-
based fundus image segmentation method employing
three CNN architectures, namely Inception-v3, VGG19,
and ResNet50.

5) We classified the segmented images and analyze the
accuracy of the classification results.

6) Our proposed approach is evaluated with different
metrics and showed good performance in both segmenta-
tion and classification of fundus images.

5.2 Solution assessment

We have compared our work with existing studies as
follows. Table 6 represents the comparison of the classific-
ation studies, Table 7 states the results comparison for
the segmentation process and Table 8 compares the res-
ults with the studies that have addressed both segmenta-
tion and classification for glaucoma identification.

In Table 6, we selected the related studies that have
used the same datasets namely RIM-ONE and ACRIMA,
and the same DL models namely Inception-v3, VGG19
and ResNet50, as per our proposed approach for consist-
ent comparison. As observed, utilizing the Inception-v3
model with the ACRIMA dataset, we were able to ob-
tain the best accuracy of 98.52%.

Table 8 compares previous studies, where perform-
ance of optic cup segmentation (OCS) and optic disc seg-
mentation (ODS) was calculated with performance
matrices such as DC, JC, accuracy, sensitivity, spe-
cificity and TL referring to transfer learning with pre-
trained weights. The main contribution of this research is
that the OD and OC segmentation employed attention U-
Net with different CNN architectures for two datasets. In
addition, we performed data augmentation techniques to

noise.
Table 6 Comparison with existing studies: Classification only
Study Dataset Model Modified layers Accuracy
[45] RIM-ONE Inception-v3 A global average pooling layer followed by a dense layer having 92.51%
128 ReLU activated neurons, a dropout of 0.7, and finally, a
softmax layer was added

[36] ACRIMA VGG19 Converted FC layers to GAP layer and added a softmax layer 90.69%
RIM-ONE Inception-v3 90.00%
ResNet50 90.29%
[38] ACRIMA Inception-v3 Added GAP layers and softmax layers 93.87%
RIM-ONE ResNet50 95.75%
Inception-v3 71.05%
ResNet50 92.11%
[46] ACRIMA Inception-v3 Added GAP layers, dropout and softmax layers 98.5%
RIM-ONE Inception-v3 92.2%
Proposed ACRIMA Inception-v3 Added GAP layers, dense layers, dropout layers and softmax 98.52%
work RIM-ONE VGG19 layers 92.64%
ResNet50 95.58%
Inception-v3 96.56%
VGG19 94.95%
ResNet50 95.49%
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Table 7 Comparison with existing studies: Segmentation only

Study Dataset Model Type DC (%) JC (%) Acc (%) Sen (%) Spe (%)
[16] DRISHTI-GS U-Net with ODS 92.64 86.3 99.48 95.51 99.62
RIM-ONE transfer learning OCs 79.01 65.30 99.11 86.59 99.36
ODS (TL) 96.38 93.01 99.75 94.88 99.93
OCS (TL) 87.93 78.46 99.53 87.65 99.77
ODS (TL) 94.01 88.70 99.61 92.36 99.86
OCS (TL) 83.97 72.37 99.69 81.33 99.87
[29] DRISHTI-GS Cup disc encoder- OCS 92.4 86.32 99.71 95.67 99.81
RIM-ONE decoder network ODS 95.97 91.83 99.66 97.54 99.73
(CDED-Net) OCS 86.22 75.32 99.61 95.17 99.81
ODS 95.82 91.01 99.56 97.34 99.73
[32] RIM-ONE U-Net with VGG16 ODS 94 N/A N/A N/A N/A
DRISHTI-GS architecture OoCs 94 N/A N/A N/A N/A
[31] RIM-ONE Generalized U-Net oDSs N/A N/A 94 N/A N/A
DRISHTI-GS OCs N/A N/A 94 N/A N/A
Proposed RIM-ONE Attention U-Net with ODS 99.75 99.51 99.58 99.75 98.69
work ResNet50 OCS 98.43 96.91 97.42 98.37 92.98
ACRIMA ODS 99.54 99.09 99.26 99.54 94.73
OCS 98.93 97.89 98.05 98.78 89.83
Table 8 Comparison with existing studies: Segmentation followed by the classification
Study Dataset Model Acc (%) Sen (%) Spe (%) AUC
[14] ORIGA U-Net with VGG19 95.54 N/A N/A N/A
U-Net with Deep
47 ORIGA, SCES 86 N/A N/A 98
47} Neural network (DNN) / /
48] ORIGA M-Net N/A N/A N/A 89
[49] REFUGE U-Net 90 85 91 N/A
Proposed Attention U-Net with Inception-v3 98.79% 99.22% 95.58% 99%
work ResNet50 based segmented VGG19 94.85% 96.27% 84.93% 95%
images from RIM-ONE ResNet50 95.71% 96.86% 87.50% 98%

address the class imbalance problem and avoid model
overfitting. Accordingly, the proposed attention U-Net-
based OD segmentation of ResNet50 as the backbone of
the RIM-ONE dataset obtained the highest accuracy of
99.58% among the other architectures.

Among the latest studies on OD and OC segmenta-
tion, many studies have accounted for the standard U-
Net architecture. However, the highest accuracy of
99.75% is shown using [16], on the DRISHTI-GS dataset
for OD segmentation. Then,
99.71% accuracy for OC segmentation and 99.66% accur-
acy for OD segmentation using the DRISHTI-GS dataset.
Furthermore, Sevastopolsky32 achieved 94% accuracy for
both OD and OC segmentation. Moreover, considering
the related studies shown in Table 6, few authors have
used the DRISHTI dataset, which consists of 101 images.
However, in this study, we considered RIM-ONE and
ACRIMA datasets with 942 and 705, respectively.

Moreover, Table 8 shows a comparison of our work

Tabassum/??! obtained

with the related studies that have used segmentation fol-
lowed by classification, to identify glaucoma using fundus
images. Classification performances were evaluated using
accuracy, sensitivity, specificity and AUC. Among the
considered deep learning models, the proposed Inception-
v3 based classification method obtained the highest ac-

curacy at 98.79%.

Among the latest studies on segmentation followed by
classification, the highest accuracy of 95.54% is shown
by [14], using U-Net with the VGG19 model on the ORI-
GA dataset. Moreover, Li et al.[4l obtained 86% accur-
acy for glaucoma classification by employing U-Net with
deep neural network (DNN). Fu et al.l8! showed an AUC
of 89% for M-Net based glaucoma classification on the
ORIGA dataset. Furthermore, Orlando et al.49 achieved
90% accuracy for segmentation followed by glaucoma
classification using the REFUGE dataset. Moreover, con-
sidering the related studies shown in Table 8, most au-
thors have used the ORIGA and REFUGE datasets. The
ORIGA dataset consists of a total of 650 fundus images
from 149 normal subjects and 501 glaucoma subjects. The
REFUGE dataset consists of a total of 1200 fundus im-
ages.

Consider the overall glaucoma identification studies
with segmentation and/or classification, stated in Tables 6—
8. The highest accuracy of 98.5% for classification only is
shown by Rehman et al.[46] using a modified Inception-v3
with the ACRIMA dataset. For the same dataset and a
modified Inception-v3, our approach shows 98.52% accur-
acy. For the segmentation followed by classification, Sud-
han et al.l4, showed an accuracy of 95.54% for the ORI-
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GA dataset using U-Net and VGG19. However, our ap-
proach has shown an accuracy of 98.79% for Inception-v3
based classification of the segmented images retrieved
from our attention U-Net with ResNet50 based model for
the RIM-ONE dataset.

Although our study shows a slight increase in accur-
acy compared to existing studies, considering the global
glaucoma affected population, this model can be benefi-
cial for identifying glaucoma patients. For instance, 4.13
million people had moderate to severe visual impairment
in 2020, while 3.6 million people were blind owing to
glaucoma. Thus, even a slight increase in accuracy in the
proposed computational model can assist in starting early
treatments and save many patients with the correct iden-
tification of glaucoma conditions.

5.3 Current challenges and future re-
search directions

Different types of challenges are associated with
fundus image processing using deep learning methods in
clinical practicel®?l. Considering the proposed study, the
main limitation of the segmentation process by employ-
ing deep learning or convolutional neural networks is the
requirement of large training data to increase OD and
OC segmentation performance. Another significant limita-
tion encountered during the model training was time and
resource consumption during the training process.

This study currently focused on classifying glaucoma
and normal subjects using different models based on deep
learning. The effectiveness and efficiency of the approach
can be further improved by designing optimization tech-
niques and fine-tuning the parameters. Moreover, incor-
porating explainability is a trending area in medical im-
age analysisll. The proposed solution can be extended to
a real-world usable tool with an interpretation of the pre-
dictions and the explanations of the process, in a way
that can be understood by humans. In addition, there are
different types of glaucoma such as open-angle, angle-
closure, normal tension, and secondary; thus a multiclass
classification approach can be used to identify the glauc-
oma category. Additionally, glaucoma has stages namely,
early, moderate, and deep, where we can apply different
analyses to the optic nerve of the fundus images. This
will help to identify the severity of the glaucoma condi-
tion using retinal fundus images. Therefore, the presen-
ted approach may be used as a support tool for glauc-
oma detection with real data in clinical practice.

6 Conclusions

Glaucoma is a potentially blinding condition that, if
left untreated, can result in visual loss over time. There-
fore, early treatment is significant to prevent vision loss.
Glaucoma treatment planning relies on images such as
retinal fundus and OCT scans acquired from the optic
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nerve. Computational models can be used as a second
opinion in the glaucoma diagnosis process to address the
issue due to misdiagnosis and provide a better solution to
classify fundus images. This paper proposed a segmenta-
tion and classification based approach to support glauc-
oma identification using retinal fundus images.

Using attention U-Net with different CNN based
backbones, this study offered a segmentation approach
for OD and OC segmentation of fundus images. We have
provided three pre-trained architectures, namely, Incep-
tion, VGG and ResNet, for the encoder part of attention
U-Net. We have applied different data augmentation
techniques and pre-processing techniques for each archi-
tecture. On the RIM-ONE dataset, attention to U-Net-
based OD segmentation of ResNet50 as the backbone
achieved an accuracy of 99.58% among other architec-
tures. Furthermore, this study performed the classifica-
tion process using segmented images utilizing three modi-
fied CNN architectures. The Inception-v3 model provided
the highest glaucoma classification accuracy of 98.79%
among the other CNN architectures.
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