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Abstract: Electrocardiogram (ECG) biometric recognition has gained considerable attention, and various methods have been pro-
posed to facilitate its development. However, one limitation is that the diversity of ECG signals affects the recognition performance. To
address this issue, in this paper, we propose a novel ECG biometrics framework based on enhanced correlation and semantic-rich embed-
ding. Firstly, we construct an enhanced correlation between the base feature and latent representation by using only one projection.
Secondly, to fully exploit the semantic information, we take both the label and pairwise similarity into consideration to reduce the influ-
ence of ECG sample diversity. Furthermore, to solve the objective function, we propose an effective and efficient algorithm for optimiza-
tion. Finally, extensive experiments are conducted on two benchmark datasets, and the experimental results show the effectiveness of

our framework.
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1 Introduction

Recent years have witnessed the surge of biometrics,
such as fingerprints, faces, irises, and voices. Electrocardi-
ogram (ECG) is also regarded as an inherent liveness bio-
metric traitl!l] with the advantage of being captured from
a living individual. Most pioneering methods are designed
to extract discriminative features from ECG signals based
on fiducial or non-fiducial. For example, 19 stable fidu-
cial features/? related to interval, amplitude, and angle
were computed from each heartbeat. The non-fiducial
methods usually used wavelet features(3], statistical fea-
tures, or autocorrelation (AC) features!* 5. Besides, sever-
al works with sparse representation(68 and dimensional-
ity reduction, e.g., principal component analysis (PCA), ker-
nel PCA (KPCA), linear discriminant analysis (LDA)-11],
have also shown the success in ECG biometrics.

Although previous research works have gained prom-
ising performance, one limitation is that the existing
methods cannot comprehensively exploit the diverse in-
formation among the ECG. During the collection, ECG
signals are easily affected by changes in physiological and
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psychological activity, such as emotional factors, diets,
diseases, electrode position, and other factors[!2], causing
the diversities between heartbeats of homologous samples
to be large while heterologous samples are smaller. Hence,
it is necessary to alleviate the impact of diversity and
learn a discriminative feature representation to improve
the recognition performance.

Motivated by the success of matrix factorization in
other tasks, several promising methods[!3 !4 based on
matrix factorization for ECG biometrics have been pro-
posed. Wang et al.[l3l proposed a multi-scale differential
feature with collective matrix factorization to generate a
robust ECG representation. Li et al.['l opted graph regu-
larized non-negative matrix factorization and sparse rep-
resentation to obtain non-fiducial features. Huang et al.[!”]
designed a multi-feature collective non-negative matrix
factorization model. However, most matrix factorization
methods for ECG biometrics aim to learn the latent dis-
criminative representation without fully exploring the
correlation between the base feature and latent represent-
ation to alleviate the impact of sample diversity.

In this paper, we focus on exploring the ECG sample
diversity by taking advantage of matrix factorization to
learn a latent representation. There are two problems to
be considered. The first is how to minimize the sample di-
versity to improve recognition performance and the
second is how to construct a strong correlation between
the base feature space and the latent space to enhance
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the discriminative capability of learned representation.

To handle the above issues, we propose a novel frame-
work, termed enhanced correlation and semantic-rich em-
bedding matrix factorization for ECG biometrics. In spe-
cific, to acquire similar representations for homologous
samples of the same subject and push away the represent-
ations of heterologous samples from different subjects, we
introduce the pairwise similarity among all samples into
our framework. For deep mining and accurately embed-
ding of the intrinsic information of the base feature, we
construct an enhanced correlation between the base fea-
ture and the latent representation. To further enhance
the discriminative capability of the learned representa-
tion, we make orthogonal constraints on it. Finally, a
novel optimization algorithm is proposed to learn our
model. The main contributions of this paper are summar-
ized as follows:

1) A new framework is proposed to effectively learn
the latent representation of ECG signals. In this frame-
work, pairwise similarity, label vectors, and base features
work seamlessly and collectively to ensure high-quality
latent representation.

2) To optimize the proposed novel objective function,
an effective learning algorithm is presented. Through this
algorithm, we could accurately and quickly solve the loss
function.

3) We perform extensive experiments on two bench-
mark datasets and the experimental results demonstrate
the effectiveness of our method.

The remainder of this paper is organized as follows.
Related work is presented in Section 2. The details of our
proposed method and matching procedure are presented
in Section 3. Section 4 shows the experimental results and
the conclusions are presented in Section 5.

2 Related work

ECG is a physiological signal generated from the con-
traction and the recovery of the heart. Generally, there
are two main types of ECG acquisition settings for ECG
biometrics, i.e., on-the-person and off-the-person. On-the-
person acquisition usually uses multiple electrodes at-
tached to the skin surface, such as medical datasets MIT-
BIH arrhythmia database (MIT-BIH)[8l. For off-the-per-
son datasets, they usually acquire ECG signals using dry
button electrodes held by the subjects in contact with
their finger, wrist, and so on, such as check your biosig-
nals here initiative (CYBHiDB)[!M. Specifically, off-the-
person acquisition addresses the reduced acceptability
and comfort, and it has lower signal-to-noise ratios, which
means considerably more noise influence.

The ECG signal is a cyclic repetition of five fiducial
points, i.e., P, Q, R, S, and T waves. And the existing
ECG biometric recognition methods can be roughly di-
vided into three categories, i.e., fiducial methods, non-fi-
ducial methods, and deep learning-based methods. For
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the fiducial methods, features are extracted employing
the fiducial points of heartbeat, such as amplitudes, time
duration, QRS complex, angles, slopes, areas, etc. Some
methods(20-2%] extract a class of features from dominant fi-
ducial points of the ECG waveform. Non-fiducial meth-
ods do not use the fiducial points to generate the feature
set, but focus on the whole signal or segmented by a slid-
ing window. Some previous works have shown the suc-
cess using the Gaussian modell28], statistical features27),
one-dimensional multi-resolution local binary patterns
(IDMRLBP)28] discrete wavelet transformation (DWT),
and kernel methods(? to extract non-fiducial features.

With the popularity of deep neural networks, some pi-
oneer works/30 31 adopting DNN for effective feature rep-
resentations, have been proposed. Salloum and Kuol32 ad-
opted the LSTM-based RNN for ECG biometrics without
any feature extraction. Zhao et al.33 integrated a general-
ized S-transformation and CNN for human identification.
Labati et al.34 extracted significant features from one or
more leads using a deep CNN. Especially, deep learning-
based models can directly deal with ECG signals with
blind segmentation rather than handcrafted features, and
they can perform significantly better than most non-deep
methods. However, most of them are time-consuming and
lack interpretability. Thus, we mainly focus on how to ef-
ficiently refine the reliable base feature for ECG biomet-
rics in our paper.

3 Proposed method

3.1 Notations

Assuming that the training set is formed by n
samples, the base feature extracted from the ECG signal
is represented by X = [x1,®2, - ,x,] € R™*", where m
is the dimensionality of the base feature space.
L € {1,0}°*" is the label matrix, where c¢ is the number
of subjects. L; ; = 1 if the j-th sample belongs to the i-th
subject and L;; =0 means the opposite. || - [|r is the
Frobenius norm, and I denotes an identity matrix.

3.2 Constructing enhanced correlation

Given the base feature matrix X, we want to refine it
to learn more powerful representations. The most intuit-
ive way is to use the matrix factorization technique to re-
move the redundant information in X and provide the
low-rank vectorial representations. We can formulate the
operation as follows:

min | X = Py V5 +n| Pyl (1)
Vo

where V is the latent representation matrix, ||Py|/% is
regularization term, and 7 is a trade-off parameter that
controls it.
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Meanwhile, we could learn a projection matrix Px
to map the original base feature to the latent V', and the
following formulation can be derived as

in [V = Px X%+ Px]f}. (2)
X

By combining the above two equations, we could ex-
tract more information from X and learn a more accur-
ate V', and the idea is similar to the auto-encoder. Here,
to enhance the recognition ability, we let Px = Pg and
denote the projection matrix as P. Then, the optimiza-
tion problem is formulated as

2
win 0V — PX[}+5 X - PTV| +nIPI3 (3)

where 6 and J§ are trade-off parameters and the projection
P is an enhanced correlation between the base feature
and the latent representation.

3.3 Preserving semantic-rich information

The diversity of ECG signals is a primary factor af-
fecting the recognition performance, and how to capture
more semantic information is another essential problem.

Undoubtedly, homologous samples of the same sub-
ject should have as similar latent representations as pos-
sible, while the representations of heterologous samples
from different subjects should be pushed away. To fulfill
this purpose, we first define the pairwise similarity among
all samples from label information S = GTG and G is a
2-norm column normalized label matrix, with its j-th
column defined as G.j = L.;/ || L+;|. Notably, we do not
generate S in advance and directly use it in optimization
because its size is n X n which may cause large complex-
ity. However, for a better understanding of our paper, we
still use S in the following. With the defined similarity
matrix, we could use the inner product to preserve it with
latent representations:

min [|S — VIV (4)

which has a symmetric form with respect to V.

Then, we intend to move a step further towards pre-
serving semantic-rich information. Similarly, the matrix
factorization technique helps

g vl g

where W is the projection matrix, and L is the label
matrix. The above equation means that the learned latent
representation could contain the information of the label
matrix.

As both (4) and (5) try to preserve the semantic in-
formation of samples, we try to reformulate them into

one equation:

min s —VIWIL|L 48|V - WIL|[ + v W]
(6)

where «, B and ~ are parameters. Since (5) makes V
equal to WTL, we could replace one V in (4) with
wWTL.

3.4 Overall objective function

By combining (3) and (6), the overall objective func-
tion can be given as follows:

2 2
min o HS - VTWTLHF+,6 HV _ WTLHF-F’Y W%+

P,W,V
2 Ty 2
oIV - PXI}+6|X - PV +nlPI}
st. vvT =nI,, V1,=0, (7)

where I, € R™*" denotes the identity matrix, r is the
dimension of the latent representation, 1, is all ones
column vector, and 0, is all zeros column vector. Here,
we further impose the orthogonality and balancedness
constraint on V' to enhance the discriminative capability
of the learned representation. Note that, although (7)
involves the large n x n pairwise similarity matrix S, we
in fact use GTG instead of S in optimization to avoid
the square complexity of memory and time.

3.5 Optimization

To solve the optimization problem in (7), we propose
an alternating optimization algorithm by the following
steps.

Step 1. Update P. When V and W are fixed, (7)
can be rewritten as

2

min 0V — PX|% +5 HX - PTVH +allPI%. (8)
F

We set the gradient of the objective function with re-

spect to P to zero, and the solution of P can easily be
obtained as follows:

P=0+6VXTOXX"+ (6 +nI)". (9)
Step 2. Update W. We can hold the other vari-

ables unchanged to learn W. The objective function can
be rewritten as

2 2
min aHSfVTWTLH +,6’HV7WTLH W,
F F

Analogous to P, we set the derivative of the objective
with respect to W to zero, and the closed-form solution
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of W can be obtained
W = ((a+ B)LLY + 1) " («LS™VT + sLVT). (11)

Step 3. Update V. To learn the latent representa-
tion V| by holding the other variables unchanged, the ob-
jective function to solve V' can be rewritten as

2 2
min aHS—VTWTLH +/3HV—WTLH +
\%4 F F
2 T2
0|\V—PX|\F+5HX—P vHF

st. VvV =nl,, V1,=0,. (12)

To solve the above problem, we first transform (12)
into a matrix trace form with the constrains of
vvT = nl,, and it can be rewritten as

max Tr(((6+6)PX + oaWTLST + pwTL)vT)
st. Vvt =nI,, V1,=0,. (13)

We define Z = (0 + 6)PX + aWTLST + pgWTL, J =
I, — (1/n)1,1}. The problem can be solved by using the
eigendecomposition in ZJ Z7T as follows:

217" = [qQ Q] [ ZI 2 ] @ Q]T (14)

where Q € R™" is the corresponding eigenvectors,
Q e R™*("") is the matrix of the remaining r — 1’
eigenvectors, corresponding to zero eigenvalues. 2 €
R™ " is the diagonal matrix of positive eigenvalues, and
r’ is the rank of ZJZT. Then we can obtain an
orthogonal matrix Q € R"*("""") by conducting a Gram-
Schmidt process on Q Furthermore, we define
U=JZ"QQ "? and a random orthogonal matrix
UeRC) If v=r, U, Q, and Q are empty.
Ultimately, the optimal solution for (13) is obtained as
follows:

v-vilQ Q|[v T]. (15)

By the above steps, we can update all the variables
and repeat the process iteratively until the objective func-
tion converges. Finally, to show the overall view of the
optimization, we summarize it in Algorithm 1.
Algorithm 1. Optimization algorithm
Input: Base feature matrix of training data X,
parameters «, (B, 6, §, n, v, and the total iteration
number ¢.

Output: Projection matrix P.
Procedure:

Randomly initialize P, W, V;

for i = 1 to t> do
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Update P with (9);
Update W with (11);
Update V' with (15);
end for
Return: P.

3.6 Convergence analysis

To further comprehend our method, we give a theoret-
ical convergence analysis for our model. Denote
L(P,W,V) as the whole objective function. As shown
before, there is a closed-form solution for each variable in
the corresponding sub-problem, and we have L(P™*,
WL yirl) < p(ptL Wit vty < o(PtHL Wt vt
< L(P', W' V') which illustrates that the objective loss
is monotonously decreasing in each iteration. In addition,
L(P*, W' V") is bounded below owing to its three posit-
ive terms. According to the bounded monotone conver-
gence theoremf3, our method will converge to a local op-
timal solution. We will plot the convergence curves for
better demonstration in our experiments.

3.7 Matching

After the training procedure, the projection matrix P
can be learned, which is used to reconstruct the discrim-
inative representations for query samples and enroll
samples, represented by PXaey and PXewoll respect-
ively. In the matching stage, for each heartbeat vector of
the query samples, y = PX1““"Y. We can compute the
Euclidean distance among y and enroll samples y; =
PX;"m” (j=1,---,c) as a measure of their similarity,
where c is the number of subjects. If the distance between
y and y; is the smallest, the query sample y belongs to
the jth subject:

‘ 3 . —
Subject(y) = arg_min /(y —y;)*. (16)

4 Experiments

4.1 Datasets and experimental settings

CYBHIDB[!! is acquired from the palms and finger-
tips, which is regarded as a challenging off-the-person
dataset. In this paper, we used the signals in the long-
term, and it contains 63 healthy participants, collected
from two sessions with three-month intervals, and we
called them T1 and T2, respectively. MIT-BIH!8] is one
of the most widely used datasets for ECG biometrics, and
it is available in the PhysionetB¢ repository. It contains
48 two-channel ECG recordings from 47 subjects.
Physikalisch-Technische Bundesanstalt (PTB) diagnostic
ECG database (PTB)B7 includes 549 recordings from 290
subjects collected using conventional 12 leads together
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with the 3 Frank leads. In this paper, we choose 248 sub-
jects whose range is longer than 100s, and each subject
has one recording.

In the heartbeat segmentation stage, we detect the R
peak with Pan-Tompkinsi®], taking 299 sampling points
forward from the R peak and 300 sampling points back-
ward, and a total of 600 sampling points as a heartbeat
on CYBHiIDB. For MIT-BIH, we take 100 sampling
points before the location of R and 159 sampling points
after the location of R, with 260 sampling points in one
heartbeat. For PTB, there are 460 sampling points in one
heartbeat. Then we extracted IDMRLBP as a base fea-
ture, which served as the input of our framework. Each
individual has nine homologous samples in the training
set and five homologous samples in the testing set. The
dimension of the latent representation r is set to 90 and
600 in MIT-BIH and CYBHiIDB, respectively. The trade-
off parameters, «, 3, 6, §, n, and v are selected by a val-
idation procedure in the experiment. The convergence of
the optimization algorithm is also validated in the experi-
ments.

4.2 Evaluation metrics

We employed the widely used criteria equal error rate
(EER) to evaluate the performance in verification mode
and EER is the point where false rejection rate (FRR) is
equal to the false acceptance rate (FAR). For the identi-
fication mode, the accuracy is used as the evaluation cri-
teria, which is the percentage of correctly identified test-
ing samples.

4.3 Comparison with state-of-the-art

We compared the performance of our method with
several state-of-the-art methods on MIT-BIH, including
non-deep methodsl4 15 39 and deep learning-based meth-
odsl32: 40, 411 For all baselines, the results are copied from
their original papers. The experimental results are sum-
marized in Table 1, and we have the following observa-
tions: 1) Our method outperforms all non-deep baselines
in MIT-BIH, demonstrating its effectiveness for ECG bio-

Table 1 Performance analysis on MIT-BIH

metrics. One reason is that our model can better extract
semantic information because of the elaborate design of
semantic-rich information preserving. The other reason is
that our model constructs an enhanced correlation
between the base feature and latent representation, rein-
forcing the discriminative capability of learned represent-
ation. Therefore, compared with other traditional non-
deep methods, it is able to generate a more discriminat-
ive representation. 2) Compared to deep-learning meth-
ods, our model achieves comparable performance. The
deep modelll uses 1D-CNN together with attention Bi-
LSTM for identification, where it achieves satisfying per-
formance at the cost of much more training time. Espe-
cially, our method is superior to these two deep
baselines3% 401 on both accuracy and EER. Therefore, our
method can achieve competitive or even superior perform-
ance on ECG biometric recognition.

We also conducted the experiments on the challen-
ging off-the-person dataset CYBHiDB in two situations,
i.e., within-session and across-session. The experiments in
within-session situation use training data and testing data
in the same session. For the across-session situation,
training data and testing data come from different ses-
sions, where the training data come from the T1 session,
while testing data come from the T2 session or training
data are from T2 and testing data are from the T1. The
baselines for CYBHIDB include non-deep methods/3: 7: 42, 43]
and deep method[44. The experimental results are sum-
marized in Tables 2 and 3. For all baselines, the results
are those reported in previous workl”l. From Table 2, we
can observe that our model achieves the best accuracy in
the within-session for identification mode. For the verific-
ation mode, our model achieves competitive EER results.
The baselinel”l obtains a better EER because it fused
three features (shape, 1dlbp, and wavelet). The deep
learning method# gets satisfying EER in verification
mode, while the accuracy in identification mode is insigni-
ficant and time-consuming. For the across-session situ-
ation, the experimental results are summarized in
Table 3. It is worth noting that our model achieves satis-
fying performance on both accuracy and EER. The main
reason is that our model can preserve semantic informa-

Table 2 Within-session analysis on CYBHiDB

Dataset Method EER (%) Accuracy (%)
Hejazi et al.[ - 98.2
Wang et al.l!5] 2.73 94.68
MIT-BIH Salloum and Kuol32 1.37 99.08
Dar et al.[39] - 93.1
Abdeldayem and Bourlail40 - 96.5
Wu et al.[41] 0.02 99.7
Ours 1.06 99.1

EER (%) Accuracy (%)
Dataset Method
T1 T2 T1 T2
Chan et al.B3l 10.58 11.34 89.16 88.45
Huang et al.[7] 1.26 2.28 97.43 95.32
Islam and Alajlan2l  5.45 6.53 93.52 91.41
CYBHiDB

Odinaka et al.[43] 3.12 4.53 95.51 93.26
Da Silva Luz et al.[44] 1.85 3.35 97.12 94.95

Ours 3.17 3.70 98.4 96.8
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Table 3 Across-session analysis on CYBHiDB Table 4 Performance analysis on PTB
Method Training Testing EER (%) Accuracy (%) Dataset Method Accuracy (%)
T1 T2 20.47 76.11 Huang et al.[7] 98.02
Chan et al.l3l
T2 T1 18.29 79.38 Zhao et al.[33] 98.62
T1 T2 10.26 87.75 W et al. 4] 08.86
Huang et al.[7] PTB
T2 T1 11.14 86.24 -
Huang et al.[45] 98.19
T1 T2 15.23 82.49 .
Islam and Alajlan(42] Louis et al.[6] 98.18
T2 T1 14.78 83.83
Ours 98.59
T1 T2 14.04 83.23
Odinaka et al.[43]
T2 T1 13.18 84.35 account both performance and efficiency, our proposed
T1 T2 12.78 85.46 method may be the most practical.
Da Silva Luz et al.[44]
T2 T1 12.83 84.46 ol e N
4.4 Parameters sensitive analysis
T1 T2 6.17 92.86
Ours . . .
T2 T1 5.86 96.03 In this section, we conducted experiments to analyze

tion well and enhance the correlation between the base
feature and latent representation. In this respect, it fur-
ther corroborates the effectiveness of our approach.
Besides, we conducted experiments on PTB, and the
baselines include deep learning-based methods®3 41 and
non-deep methods[™ 45, 46], Experimental results are sum-
marized in Table 4. For all baselines, the results are those
reported in previous work[4’l. From Table 4, we can ob-
serve that our method outperforms all non-deep baselines
and achieves comparable accuracy compared with deep-
learning methods. In other words, our method outper-
forms (or is in part with) existing methods. Taking into

the sensitivity of parameters including «, 3, 0, §, 1, and
~v. We recorded the accuracy on MIT-BIH and CYB-
HiDB by varying all of them in the range of [0.001, 1000],
and the results are plotted in Fig.1. We can observe that
some parameters are not sensitive, and we set «, [, and ~y
to 1. When the value of n increases from 0.001 to 1, the
accuracy is generally maintained satisfactory. For the
parameter 6, the performance improves when it ranges
from 0.1 to 1. Furthermore, our model achieves the best
results when § ranges from 0.01 to 1. Thus, we set n =1,
0 = 0.1 and 6 = 0.1 in our experiment, respectively.

In a nutshell, although there are several parameters in
our framework, most of them are not sensitive and could

1.00 1.00 1.00 —
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2 0.97 2 0.97 5 oo N
9 v g Y 2 0.80
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51 51 3 0.70
< 0.95 —+MIT-BIH < 095 —+MIT-BIH < 065 ——MIT-BIH
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(a) a sensitivity analysis (b) f sensitivity analysis (c) n sensitivity analysis
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092 —e~ CYBHIDB-T1 03 —o—CYBHIDB-T1 0.60 —e~ CYBHIDB-T1
0.91 CYBHIDB-T2 02 CYBHiDB-T2 0.55 CYBHIDB-T2
0.90 0.1 0.50
10310210 10° 10" 102 10° 103102107 10° 10" 102 10° 103102107 10° 10" 10* 10°
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(d) y sensitivity analysis

(e) @ sensitivity analysis

(f) 0 sensitivity analysis

Fig.1 Balance parameter analysis
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be easily tuned in practice.
4.5 Time cost analysis

In this section, we summarize the feature extraction
time and matching time on MIT-BIH to verify the effi-
ciency of our method. The results are reported in Table 5,
and we compute the average feature extraction time per
sample and the average matching time per sample pair
repeated 20 times. Table 5 shows that our method con-
sumes less time no matter the process of feature extrac-
tion or matching procedure, and we can conclude that
our method is efficient.

Table 5 Comparison of time costs on MIT-BIH

Method Feature extraction time (s) Matching time (s)
Wang et al.[15] 0.008 0.002
Li et al.t0] 0.091 4 0.007
Ours 0.004 6 0.001 6

4.6 Ablation analysis

In this section, we conducted ablation experiments on
MIT-BIH to investigate the effectiveness of enhanced cor-
relation and semantic-rich embedding, separately. In par-
ticular, we design a variant of our method called OURS 1
by setting 6 =0 to validate the contributions of en-
hanced correlation. We design another variant of our
method called OURS_2 by setting 8 = 0 to eliminate the
influence of semantic-rich embedding. The experimental
results of our method and its variants on MIT-BIH are
reported in Table 6. From Table 6, it can be seen that
the accuracy of our method outperforms OURS 1 and
OURS 2, demonstrating the significance of the enhanced
correlation and semantic-rich embedding for ECG bio-
metrics.

4.7 Convergence analysis

In Section 3.6, we proved that the iterative optimiza-
tion is convergent, and we further conducted experi-

Table 6 Ablation experiments on MIT-BIH

Method Accuracy (%)

OURS 1 95.74

OURS 2 96.28
Ours 99.1

ments to investigate the convergence on two datasets.
Specifically, we recorded the accuracy as the iteration in-
creased, and the convergence curves are plotted in Fig.2.
As shown in Fig.2, the optimization algorithm converges
very fast, and the performance increases and tends to be
stable after several iterations within five iterations on two
datasets, thereby distinctly saving the time required for
training.

5 Conclusions

In this paper, we propose a new framework for ECG
biometrics based on constructing enhanced correlation
and embedding semantic-rich information. Firstly, the
correlation between the base feature and latent represent-
ation can be constructed, and we further enhance the cor-
relation by formulating the bidirectional projections with
one matrix. Secondly, we design an asymmetric loss func-
tion, which includes both the label matrix and the pair-
wise similarity among the samples, to embed the semant-
ic-rich information into the learning of latent representa-
tion for the ECG signal. Then, we combine both en-
hanced correlation and semantic-rich embedding together
to derive the final objective loss and propose an effective
algorithm to optimize it. Extensive experiments on two
widely-used datasets demonstrate that the proposed
framework outperforms the state-of-the-art. In future
work, we will explore online ECG biometrics to handle in-
cremental datasets with new instances.
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