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Abstract: As a fundamental task in computer vision, visual object tracking has received much attention in recent years. Most studies
focus on short-term visual tracking which addresses shorter videos and always-visible targets. However, long-term visual tracking is
much closer to practical applications with more complicated challenges. There exists a longer duration such as minute-level or even
hour-level in the long-term tracking task, and the task also needs to handle more frequent target disappearance and reappearance. In
this paper, we provide a thorough review of long-term tracking, summarizing long-term tracking algorithms from two perspectives:
framework architectures and utilization of intermediate tracking results. Then we provide a detailed description of existing benchmarks
and corresponding evaluation protocols. Furthermore, we conduct extensive experiments and analyse the performance of trackers on six
benchmarks: VOTLT2018, VOTLT2019 (2020/2021), OxUvA, LaSOT, TLP and the long-term subset of VTUAV-V. Finally, we dis-
cuss the future prospects from multiple perspectives, including algorithm design and benchmark construction. To our knowledge, this is
the first comprehensive survey for long-term visual object tracking. The relevant content is available at https://github.com/wangdong-

dut/Long-term-Visual-Tracking.
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1 Introduction

Visual object tracking is a fundamental and essential
task in computer vision, and it has many practical applic-
ations, such as smart surveillance and autonomous driv-
ing and so on. Many attempts and efforts have been car-
ried out in recent decades. Benefiting from the develop-
ment of deep learning, the visual tracking field has de-
veloped quickly and achieved remarkable success.
However, most existing tracking algorithms and bench-
marks focus on short-term tracking, which effectively
deals with the appearance and motion changes of an al-
ways visible target in a short period of time, typically
20-30 seconds. Relatively less attention has been paid to
long-term tracking.

The long-term tracking task aims at tracking the spe-
cific target in videos with minute-level or even hour-level
duration, which is closer to practical application. The tar-
get can suffer more sophisticated and severe challenges
than in short-term tracking. Besides, the task needs to
handle frequent target disappearance and reappearance in
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tracking scenes due to out of view or full occlusion. The
re-detection ability is essential. Several recent studies
have shown that short-term trackers perform poorly on
very long sequencesl!3l. Short-term trackers are more
likely to drift and fail in long-term scenes due to tem-
plate contamination, localization error accumulation over
a long time, and lack the re-detection ability to tackle the
target disappearing issue. Fig.1 visualizes some represent-
ative challenging scenes in long-term tracking. In the first
row, the target disappears from the bottom of view and
reappears from the top-left. In the second and third rows,
the target is fully occluded by the background and re-
appears after occlusion from another region of view. In
the fourth row, the target suffers huge appearance vari-
ations due to the changes in the angle and distances of
observation.

The long-term tracking field is still on the initial step
of study. Kalal et al.[4l proposed the earlier framework of
“tracking-learning-detection” with 10 sequences for evalu-
ation in 2011. Because of a dearth of mature datasets,
there are few works on tracking focusing on the long-term
property. Until 2016, a larger long-term dataset
UAV20Ll! was proposed. Since then, another three
benchmarks including OxUvAPl, LTBB: 6l and TLP? have
been presented. The visual object tracking (VOT) com-
petition also introduced the long-term tracking challenge
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Fig.1 Visualization of some representative challenging scenes in long-term tracking. The tracked target is in the green bounding box.
The white arrow indicates the approximate direction of target's movement, while the dotted line denotes the direction of the target
about to disappear. The red arrow indicates the direction of reappearance. Better viewed in color and in zoom.

from 2018, which inherits the dataset and evaluation pro-
tocol from [3]. With the increasing richness of the long-
term benchmarks and the growing concern on the long-
term tracking task, many excellent works have
emerged(7 10l and achieved good performance on bench-
marks in recent years (e.g., Fig.2).

Many works have reviewed the short-term
trackers(12-14], However, although a variety of long-term
tracking algorithms have been proposed, there has been
no work to make a comprehensive and in-depth survey of
the algorithms, evaluation benchmarks and detailed per-
formance analysis. In this work, we revisit existing long-
term tracking algorithms from unified views and com-
pare them on popular benchmarks. Our main contribu-
tions are summarized as follows.

Comprehensive review of long-term tracking
algorithms from various aspects in unified views.
We collect existing long-term tracking algorithms and
categorize them based on two views: framework architec-
tures and utilization of intermediate tracking results. The
long-term tracking benchmarks with corresponding evalu-
ation protocols are also described in detail.

A comprehensive evaluation of popular long-
term trackers on popular benchmarks. We collect
representative long-term trackers and evaluate them on
six benchmarks for comparison. We further analyse the
advantages and drawbacks of different frameworks with
the speed and accuracy results of experiments.

Prospective discussion for long-term tracking.
We discuss the potential directions for long-term track-
ing from views of algorithm design and benchmark con-

struction, which may provide possible guidance to re-
searchers.

The rest of the paper is organized as follows. In
Section 2, we introduce the development of short-term
tracking and previous relevant summative works about
long-term tracking. In Section 3, we describe our categor-
ies of existing long-term trackers with detailed analysis.
The introduction of long-term tracking benchmarks with
corresponding evaluation protocols is presented in Sec-
tion 4. A comparison with short-term tracking bench-
marks is also analysed in this section. In Section 5, we re-
port the experimental results of representative long-term
trackers on several benchmarks. Finally, we provide dis-
cussions about further directions of long-term tracking in
Section 6 and conclude the paper in Section 7.

2 Background

2.1 Development of short-term tracking

Visual object tracking aims to predict the specific ob-
ject in the following video frames, given the state of the
tracked object in the first frame. The state is always the
coordinates of axis-aligned boxes. Tracking methods can
be divided into two types according to the average length
of videos and sequence properties such as target visibility:
short-term tracking and long-term tracking. The short-
term tracking is the basic form of tracking and attracts
the most attention during the development of visual
tracking. Numerous methods have been proposed to im-
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D Groundtruth

Long-term tracking results (Siam R-CNN)

Fig.2 Tracking results of Siam R-CNN[' on sampled long-term videos. The score in the top right corner represents the prediction

score of target presence. Better viewed in color and in zoom.

prove the performance.

The short-term tracking has experienced two main-
stream frameworks, including the discriminative correla-
tion filter (DCF) and the Siamese network. In 2010,
Bolme et al.[!% introduced the DCF method with fast pro-
cessing in the Fourier domain into the visual tracking.
The algorithm achieves high-speed and good accuracy.
Subsequently, more extended works based on DCF have
made attempts to improve the performance. Henriques et
al. propose CSK[6] exploiting the properties of the circu-
lant matrix to obtain the approximate dense sampling of
the cyclic shift instead of sparse sampling. KCF[I7 real-
izes an efficient combination of multi-channel features
and utilizes the kernel method, achieving a high speed
and a significant performance promotion. In SAMF[8l
and DSSTY, the multi-scale estimation mechanisms ap-
plied to the traditional DCF algorithm are introduced to
deal with scale estimation. Danelljan et al.[2 attempt to
add a spatial regularization to the learned filter to elimin-
ate the boundary effect. Based on [20], C-COT?! and
ECO[2] convert discrete position estimation to continu-
ous position estimation, and attempt multi-level and
multi-resolution features fusion for better performance.

In the deep learning era, the short-term tracking has
made greater progress mainly based on the Siamese net-
work. The pioneering works based on the Siamese net-
work are SINTI23 and SiamFC[24, which train a similar-
ity metric between the target exemplar and candidate
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search regions offline. Li et al.?%] present a unified archi-
tecture of Siamese feature extraction and anchor-based
region proposal subnetworks including the classification
and regression branch with high speed. Based on [25],
more variants with anchor-free architecturel26-29 emerge
and make better performance. An extra discriminative
training strategy is also designed in [30]. In
SiamRPN++B1 and SiamDW1B2, efforts are made to ex-
ploit the potential of deep backbone network for better
tracking performance. Danelljan et al.33 34 propose a dis-
criminative learning network with online update to com-
bine the DCF idea with the Siamese network architec-
ture, achieving excellent performance. More works/35: 30
follow the pipeline and make greater success. Recently,
many works such as TransTB7 and STARKDBS! explore
the great power of transformer-based architectures and
also achieve excellent performance.

2.2 Previous summative and related works
about long-term tracking

Some studies conclude partial representative long-term
trackers from the view of datasets or evaluation proto-
cols. Such as in [3, 6], new challenging benchmarks with a
new evaluation protocol for long-term tracking are pro-
posed with a summary of evaluated trackers. Besides,
Karthik et al.39 propose novel evaluation strategies fo-
cusing on long-term aspects such as re-detection, recov-
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ery and reliability and make an in-depth analysis of
trackers from a long-term perspective.

Relatedly, Kuipers et al.40 propose a small dataset
containing different categories including the full-out-of-
frame-occlusion challenge. In the multi-model tracking
domain, a long-term visible-depth (RGB-D) dataset
CDTBM! is presented with periods of target absence. Qi-
an et al.l42 propose a deep depth-aware long-term track-
er with a depth-aware correlation filter utilized for re-de-
tection. Kart et al.[43] utilize view-specific DCFs to local-
ize the target after out-of-view rotation or heavy occlu-
sion with target appearance changes from the 3D motion.
However, there is no systematic and complete summary
of long-term visual tracking. Therefore, we aim to con-
duct a comprehensive survey on this field.

3 Long-term visual tracking

This section provides an overview of long-term track-
ing from two perspectives: framework architectures and
utilization of intermediate tracking results. The overall
taxonomies are shown in Fig. 3.

3.1 Framework architectures

In this section, long-term trackers are categorized
based on the framework architectures: local-global track-
ers and global trackers. Local-global trackers can be
viewed as an extension of short-term trackers, which are
usually composed of three parts: The local tracker (re-
sponsible for local mode), the detector (responmsible for
global mode) and the verifier module that interact

between local trackers and detectors. The local tracker, a
component played by the short-term tracker, focuses on
the robust target model facing normal challenges and is
responsible for searching in local region inherited from the
last frame. The detector is responsible for searching tar-
get candidates from the whole image when the target is
lost. For effective collaboration, the verifier module
provides strategies such as scoring for switching or com-
municating between two modules. While for global track-
ers, they generally have only one target-specific detection
module equipped with other spatial-temporal postpro-
cessing methods, and then the most likely candidate of
the target in every frame will be selected to constitute the
tracking results of a sequence.

3.1.1 Local-global trackers

Local-global trackers can fully benefit from the pro-
gress of the local tracker, which is the essential module in
all components. From the view of the local tracker com-
ponent, local-global trackers can be further divided into
three categories: H-tracker, D-ON-tracker and D-OFF-
tracker. From the view of the detector component, local-
global trackers can be further divided into two categories:
CGA-detector and DSS-detector. From the view of the
verifier component, local-global trackers can be further
divided into two categories: local-verifier and other-verifi-
er. The detailed explanations of abbreviations are presen-
ted in Table 1.

H-tracker. Various traditional hand-crafted features
are presented before the deep learning era, such as HOG
features and scale-invariant feature transform (SIFT) fea-
tures. In earlier works, there exist keypoints methods us-
ing L-K optical flow in [44] and median flow in [4].

—>| Framework architecture |—>|

Global trackers[lﬂ. 11,71, 78-80, 82-85]

H-tracker! 44-47.49. 51,53,54,56,57] |

D-OFF-tracker!s 5 30.32. 55,59 |

D-ON-tracker!” % ¢ 6% 701 |

Local-verifier!s: 7- 8 30-32.47.49, 58, 62, 70] |

——I Local-global trackers

-
|
|
-
|

Other-verifiert 9 44-46. 51.52,54.56,57] |

Long-term tracking

-
-

CGA-detector!d 30-32.44, 51,53, 54,58, 62, 73] |

DSS'deteCtOr[4’ 5,7,8,45,46,47, 49, 52, 56, 57, 59, 70] |

—

Update Via Self-evaluaﬁon Criteria”‘ 7,44-47,49, 51, 52, 54, 56-58, 62,70, 71, 73, 79] |

Utilization of

intermediate tracking

4—| Update via external-evaluation criterial® *”! |

results

Motion and appearance matchingl!® 1. 80.82.85] |

Fig. 3 Taxonomies and corresponding algorithms of long-term tracking
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Table 1 Detailed explanations of abbreviations

Abbreviations

Explanations

H-tracker
D-OFF-tracker
D-ON-tracker
CGA-detector

DSS-detector

Local-global trackers with a local tracker using hand-crafted features
Local-global trackers with an offline local tracker using deep features

Local-global trackers with an online local tracker using deep features

Local-global trackers with the candidate generating algorithm as the detector

Local-global trackers with dense or sparse sampling in detector module

Local-verifier

Other-verifier

Local-global trackers with the local tracker as the verifier

Local-global trackers with other manners as the verifier

However, due to the weak representation ability, these
trackers cannot deal with the complicated challenges. The
short-term tracker with online update can capture the ap-
pearance variations of the target better when facing the
long-term property than trackers without update. Except
for some early works, such as [45], which utilizes online
support vector machine (SVM) with HOG features to be
responsible for searching in the local region, the discrim-
inative correlation filter (DCF) is the most popular
choice. Traditional DCFs learn a filter online as the dis-
criminative template to model the target and perform
correlation operations between it and the search region;
then, the best response is regarded as the location of the
target. Many works adopt variants of DCF trackers as
the short-term tracker. In [46], two regression models
based on DCF are utilized to estimate translation and
scale separately with HOG features. Wang et al.l47) adopt
Staplel*8l as the short-term tracker with HOG and color
features. Fan and Lingl49 utilize fDSST[BY to locate the
center and scale of the target. Hong et al.l’ll combine
KCF[7 and DSSTY to obtain more discriminative abil-
ity in the local search region, with HOG and SIFT fea-
tures. A modified KCF is also utilized in [52] and similar
idea is performed in [53]. In [54], a fully correlational
long-term tracking framework is proposed, and the short-
term tracker is designed based on CSR-DCF[3 with
HOG and colornames features. Wang et al.[6l employ the
support vector correlation filter with HOG features as the
short-term tracker. Tang and Lingl57 select DSST[9 as
the short-term tracker with contour features as a con-
straint.

D-OFF-tracker. The offline-trained deep Siamese
network achieves excellent performance in the short-term
tracking field without updating the object model. There-
fore, they are widely adopted as the local tracker com-
ponent in long-term tracking. In [5, 58], SiamFC[24 is ad-
opted as the local tracker to perform tracking in the loc-
al search region. Gavves et al.l®9 utilize SINT[23] as the
local tracker for local tracking. Zhu et al.B% extend
DasiamRPN with an increasing search size when failure
occurs, and in [30], the tracker outputs reliable scores be-
nefiting from a reduction of the imbalance of training
data distribution especially for semantic distractors.
Zhang and Pengl3? also extend SiamDW with larger re-
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gion for re-detection of the target after failure. Yan et
al.Bl utilize SiamRPN[3 with lightweight MobileNets60l
and an offline-trained verification network as the robust
local tracker, ensuring the balance of speed and accuracy.
D-ON-tracker. The MDNetl6!, which is a deep on-
line update tracker based on candidate region classifica-
tion, is a good choice to be adopted as the local tracker.
Zhang et al.ll perform target-aware feature fusion to fuse
the features of the template and search region with Mobi-
leNets(6% as the feature extractor, then a combination of a
region proposal network and a MDNet-based(6!l online
verification network are utilized to track the target in a
local region. Wu et al.[62] propose a combination of Siam-
RPN and the online-updated MDNetl6!] as the base loc-
al tracker. Besides, benefiting from the strong feature rep-
resentation ability of deep learning(6%, 63, 64 the combina-
tion of the DCF idea and deep networks is realized[33733],
In ATOMB3], a two-conv-layer network with the similar
thoughts of traditional DCF is designed to make an on-
line-updated localization. DiMPB4 improves the target
classification branch in a Siamese way with a discriminat-
ive loss function for distinguishing the target from back-
ground, and a powerful optimization strategy is also
presented to ensure rapid convergence. This series of vari-
ants has been also the popular choice to play the role of
local tracker65-67), Dai et al.l¥l adopt a combination of the
online tracker DiMPB4 and the refined module Siam-
Mask(68] for bounding box regression as the local tracker.
Zhang et al.[% adopt ATOMB3] as the basic local tracker,
and equip the tracker with squeeze-and-excitation net-
works to highlight more useful features and the reloca-
tion module to improve the scale adaptive ability. Choi
et al.["l improve SuperDimp! with additional background
augmentation for more discriminative feature learning
during online update as the local tracker.
CGA-detector. The detector is the core module to
distinguish the long-term and short-term tracking in most
cases. The module provides candidate search regions,
bounding boxes, or keypoints in the whole image or a lar-
ger region from the global view when tracking fails in the
local search region. Detectors based on the target candid-
ate generating algorithms provide accurate candidate

L https://github.com/visionml/pytracking.
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bounding boxes directly, similar to object detection. In
[44, 51], keypoints detection is performed for later match-
ing. Liao et al.l33 utilize EgdeBox[™ algorithm adjusted
for the visual tracking task and optimize the generated
candidates via a passively updated DCF tracker. Liu
et al.["3 also propose an instance-specific proposal gener-
ator to exploit the prior distribution information of the
target based on EgdeBox[™ algorithm. Wu et al.l62] ap-
ply the flow estimate module by PWC-Net[™l first and
then perform Gaussian sampling or GA-RPNI[™! to gener-
ate candidate boxes for classification, while the search re-
gion increases gradually until the entire image if the con-
dition of refound is not met. Lee et al.[8] propose to cor-
relate the features of the whole image and template ex-
tracted by VGGNetl63, and then the top N coarse posi-
tions of the candidates which have similar semantic
meanings with the target are collected for further verifica-
tion. Dai et al.l¥ perform a cascade of faster R-CNNI0
and SiamRPN/7 to get the candidate boxes for the target.
In some works, a gradually increasing or fixed larger
search region is adopted instead of the entire image, and
the short-term tracker with the region proposal subnet-
work is directly utilized to provide one or more target
candidatesB932. In particular, in [54], a modified DCF
with alternating direction method of multipliers (ADMM)
optimization is exploited which allows itself to search in
an area with size unrelated to the object.

DSS-detector. Dense or sparse patch sampling is the
more common method to provide initial candidate re-
gions in the global search region. No extra target-generat-
ing networks are needed to provide potential target can-
didates. The scanning window, a dense sampling strategy
is widely employed, followed by the random fern classifi-
er, SVM, or online cascaded classifier[4 45 46, 52, 56] ITn MB-
MD!7, a sliding window strategy is utilized to provide all
possible search regions for the subsequent verifying net-
work. In PTAV#I sliding windows in an increasing re-
gion are utilized, and the Siamese network is followed to
determine the detection result. An additional region pool-
ing layer is employed to make the process simultaneous.
However, heavy computational burden can be brought by
dense sampling methods. More region filtering or sparse
strategies are utilized. In [47], the sparse coding scheme
based on reconstruction error is applied first to discard
most of the false candidates, and then candidate selec-
tion through a particle filter is applied for accurate tar-
get localization. Yan et al.l8l realize fast and effective
searching by applying an offline-trained skimming mod-
ule. The skimming module is performed fast to select re-
gions which are densely sampled with sliding windows,
and then the top-K candidate regions are obtained for
further verification in local regions. Two candidates are
provided by motion estimation and pixel-wise color score
map in a larger search region in [57]. For the latter, the
search region is divided into six patches to find the best
location of target. A random window strategy is utilized

directly in [70], and multiple frames can approximately
realize searching in the entire image. In SiamFC+RI, a
simple re-detection strategy which considers a search area
at a random location in each frame is utilized until the
maximum score is over the predefined threshold. In [59],
a hierarchical global search strategy of three levels is ad-
opted for better performance.

Local-verifier. The verifier is in charge of selecting
the real target candidate and determines mode control
such as the mode switching between the local and global,
supplemented by strategies such as thresholds of external-
module scores or existing scores from other two modules.
In [7, 8, 30—32, 49, 58, 62], the local tracker is directly ap-
plied to every candidate search region, generating the box
with the best confidence score. A threshold or reliability
condition is designed based on the output similarity maps
or scores to switch between local and global modes. Such
as in [58], Lee et al. select the best candidate in the glob-
al mode depending on the local tracker and define mul-
tiple criteria to verify whether the final candidate is the
target. The ratio of current maximum value and the aver-
age of recent responses’ maximum value provided by the
local tracker is utilized to activate the detector. Similar
ideas also exist in [5, 47, 70].

Other-verifier. Other manners of verifier include the
following. In some works, the module works mainly by a
classifier. Kalal et al.l utilize a cascaded classifier to veri-
fy the presence of target, and the P-N ferns are designed
and updated online, which select training data provided
by tracker for detector and initialize the tracker when it
fails using the detector. In [46], an online random fern
classifier is trained online with the local tracker for tar-
get verification. Similar situations exist in [45, 52, 56].
In [44], global search is employed to establish matches of
keypoints based on appearance purely for a static model,
and static-adaptive correspondences make complement-
ary work. In [51], templates in short-term and long-term
stores are utilized separately, then the algorithm selects
the better of the two results from the tracker and detect-
or based on indicators of occlusion and confidence. In [57],
results from the short-term tracker and the detector are
selected by elaborated decision-making. In [54], the track-
ing uncertainty estimation is designed to activate the de-
tector working in parallel with the local tracker. LTMU/
applies the external RT-MDNet!™ to every candidate box
to score the probability of a real target of a real target, as
shown in Fig.4. When the target found by the short-term
tracker is in low verification, the detector will launch.
When the most possible candidate box reappears, it will
be utilized to reset the local tracker.

3.1.2 Global trackers

Global trackers perform as a target-specific detector
within the whole image in every video frame. They can
treat every frame as an independent input to get one or
more target proposals. For multiple target proposals, they
are usually associated with spatial-temporal cues between
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Fig. 4 Flowchart of LTMUD! algorithm

frames to select the best one and then constitute continu-
ous tracking outputs in a video sequence. In [71], edge-
based detection is adopted to get proposals for the target,
and an online SVM classifier is trained to score the pro-
posals. Then all proposals are selected with classification
scores and proper temporal constraints. In [78], multiple
keypoint-based methods inside a fallback model are set as
the detection model, and the algorithm learns to select
good samples with a growing and pruning approach to
update the object model for better detection. In [79], an
online SVM with HOG features is used as a detector to
provide proposals every frame, and then a dynamic pro-
gramming is performed to solve the shortest path prob-
lem for tracking. The data selection strategy from self-
paced learning is also utilized to re-learn the detector.
Tracklet dynamic programming also exists in [11], and
the tracker is designed as a Siamese two-stage detection
network based on the faster R-CNNI™ architecture to
provide target proposals. Dave et al.80 convert a cat-
egory-specific object detector into an object-specific de-
tector based on the mask R-CNNBIU architecture, and
propose a lightweight strategy for computing discriminat-
ive target templates end-to-end for handling distractors
efficiently. Zhang et al.82 also equip the target-specific
Siamese detection network with re-identification associ-
ation. A similar process exists in [83] and [84] but no tem-
poral cues are utilized. The candidate with the top classi-

align

Weight

; Feature
sharing

modulation

fication score will be selected directly as the target.
Huang et al.33] construct a target-specific object detector
based on faster R-CNNI70] architecture, and design convo-
lutional modules to learn how to modulate features of
search regions with target template extracted by region of
interest (ROI) alignl®!, as shown in Fig.5. Choi et al.[4
adopt an anchor-free detection architecture instead, and a
fine-matching stage with context embedding is added to
improve the ability to distinguish distractors and the tar-
get. Li et al.B% also detect target candidates via pro-
posed two-stage tracking component based on faster R-
CNNI76l, and a CNN-based trajectory prediction module
is proposed to exploit the target’s temporal motion in-
formation for the suppression of distractors. KeepTrack(10]
achieves excellent performance via elaborate target candi-
date association to suppress the distractors. The target can-
didates can be located via the similarity response map.

3.2 Utilization of intermediate tracking
results

A great challenge in long-term property is that the
tracked object may undergo more complicated target
variations and interference during long-time duration.
The only template of the first frame applied in offline-
trained trackers makes long-term tracking particularly
challenging. Except for some algorithms which adopt a

Feature
modulation
Regression
‘%l ROI align head
—=
A Classification
head

Fig. 5 Flowchart of GlobalTrack[83] algorithm

@ Springer



C. Liu et al. / Long-term Visual Tracking: Review and Experimental Comparison 519

completely offline-trained network and do not exploit ex-
plicit historical information except for the local search re-
gion inheritance from last framel> 8 3032, 83, 84 in more
cases, the intermediate tracking results are utilized to en-
hance trackers for better tracking performance in sub-
sequent frames.
3.2.1 Update via self-evaluation criteria

For long-term tracking, trackers with update can cap-
ture the variations of target better. Tracking results of in-
termediate frames can be utilized to finetune the object
model or enhance the template memories so that the
tracker will capture richer visual information about the
target in subsequent frames. Such as in early work[44l, the
adaptive model updates every frame with image patches
with the position of the last frame. However, if the up-
date is inappropriate, it may cause tracker’s performance
degradation. So, most trackers exploit self-evaluation cri-
teria with tracking outputs to assess the reliability of cur-
rent training samples. These criteria include the confid-
ence score provided by classifiers, the peak-to-sidelobe
rate (PSR) or the maximum of similarity response
mapl4 7, 46, 49, 52, 62, 70, 71, 7] the ratio of the current to the
recent averaged responsel® 36 the ratio of numbers of
keypoints in and out of box[5!, and other combinations of
different observations of current tracking resultsi47: 57; 58, 73],
Zhu et al.["!l online update the object model concentrat-
ing on hard false-positives supplied by proposals during
tracking to suppress distractors. In [4], P-N learning acts
as a filtering module for better samples to train the de-
tector and tracker online. In [46], a k-nearest neighbour
(KNN) classifier is used to filter samples for online train-
ing. Liu et al.[® propose a novel adaptive updating
strategy to prevent model degeneration caused by incor-
rect update. The state prediction strategy is designed
based on motion cues to guide the update in [45]. Besides,
in [51, 58], the memory model is separated into short-
term and long-term stores inspired by the Atkinson-Shif-
frin memory model (ASMM), and the update standard is
set separately.
3.2.2 Update via external-evaluation criteria

Self-evaluation criteria have inevitable risks in bring-
ing noise and template contamination. To better evalu-
ate the trackers’ reliability, external networks are intro-
duced in some works to exploit the potential valuable se-
quential information. Dai et al.l) attempt to tackle the
update problem with an additional meta-learning module
using temporal information. The offline-trained meta-up-
dater is constructed with the LSTM network and re-
ceives sequential historical tracking observations as in-
puts. Then the network learns to integrate the geometric
cue, discriminative cue and appearance cue to output an
update indicator, which is tracker-specific. It plays an es-
sential role to determine when is the time suitable for
tracker update. A similar idea exists in [59], a decay re-
cognition network (DRN) based on LSTM is designed to
estimate the bias for model update in the next frame

from history similarity maps.
3.2.3 Motion and appearance matching

In some works, although the object model is not up-
dated with the time, historical motion and appearance in-
formation is also utilized to make the tracking results
more reliable. To suppress distractors better, motion in-
formation attracts attention. Dynamic attention guided
multi-trajectory analysis is utilized in [86]. Tracklet dy-
namic programming or motion prediction is utilized in [11,
85] as well. Additionally, historical appearance features
are also utilized in cascaded re-detection branches in [11].
In [80], temporal smoothness is incorporated to avoid
latching onto distractors, which needs historical target
proposals to build the motion connections. Multiple ob-
ject tracking (MOT) philosophy is utilized in [82] to make
target association and suppress distractors. KeepTrack!!0
follows a similar idea, matching the distractors frame-by-
frame and filtering them out.

4 FEvaluation benchmarks

With the development of long-term tracking, many
evaluation benchmarks have been proposed. The most
prominent differences between long-term benchmarks and
short-term benchmarks are the duration of videos and the
proportion of situations where the target is visible. In this
section, we summarize six popular long-term datasets and
compare them with the short-term datasets OTB-100[87)
and UAV123[ in Table 2.

4.1 VOTLT

In 2018, the VOT challenge first introduces long-term
tracking challenge. The dataset VOTLT2018[6%, which in-
herits the LTB35 datasetl3], contains 35 challenging se-
quences of diverse objects (e.g., persons, cars, motor-
cycles, bicycles and animals) with a total length of 146 847
frames and 433 target disappearances. Twenty sequences
among the dataset are obtained from the UAV20L[ data-
set tracked by low altitude drones. Each sequence con-
tains about 12 target disappearances, with an average
length of about 40 frames. The targets are all annotated
by an axis-aligned bounding box and each sequence is an-
notated by nine visual attributesl6l: full occlusion, out-of-
view, partial occlusion, camera motion, fast motion, scale
change, aspect ratio change, viewpoint change and simil-
ar objects. For evaluation, three measures are proposed:
Precision (Pr), Recall (Re) and tracking F-score. The Pr
and Re with threshold 7y are defined as follows[!:

=

Pr(r) = Z Q(A:(01),Gr) (1)

P te{t:A(04)70}

2

Re(T@):Ni > QA(6:),Gr) (2)

9 te{t:G#£0}
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Table 2 Statistics of popular long-term benchmarks and two short-term benchmarks: OTB100 and UAV123. The “Avg. absent” means
the average number of absences per track (or sequence). The “dur.” represents duration, which means the average duration per absence.
For the VOTLT dataset, we assume that the average length is converted via 30 fps approximately.

Name Track Num. Avg. length Avg. absent/dur. Min/Max frames Frame rate Absent label
VOTLT2018 35 139.8 s 12.37/40.6 frames 1389/29 700 - Yes
VOTLT2019 50 143.5s 10/52 frames 1389/29 700 - Yes
OxUvA 366 141.6 s 0.695/2.58 frames (dev) 900/37 440 30 fps Yes
TLP 50 484.8 s 6.32/64 frames 4 320/28 590 24/30 fps Yes
LaSOT (test) 280 81.6s 3.27/20 frames 1.000/9 999 30 fps Yes
Long-term subset of VTUAV-V (test) 74 179.4s 1.74/132 frames 27 213/493 30 fps Yes
UAV20L 20 97.8s -/- 1717/5527 30 fps No
OTB100 100 19.6 s -/- 71/3 872 30 fps No
UAV123 123 30.5s —-/- 109/3 085 30 fps No

where G: is the groundtruth of the target and A:(79) is
the bounding box predicted by the tracker, 6; is the
prediction certainty score at time-step f, T is a
classification (detection) threshold, Q(A:(79),G¢) is the
intersection over union (IoU) between the tracker
prediction and the groundtruth, N, is the number of
frames with G; # 0, N, is the number of frames with
existing prediction(63],

To combine precision and recall to a single metric, the
F-measure is defined by (3):

_ 2Pr(m9)Re(Ts)

Considering the influence of manual-set thresholds,
the highest score on the F-measure plot, named the F-
score, is defined as the rank metric of algorithms. Besides,
VOTLT challenge also proposes the re-detection evalu-
ation tested on artificial sequences generated from the ini-
tial frame, which aims to test the tracker’s re-detection
capability based on two criteria. The criteria include the
average number of frames required for re-detection
(Frames) and the percentage of sequences with successful
re-detection (Success). To emphasize the re-detection cap-
ability, the target appearance was kept constant.

In 2019, the VOTLT dataset extends to 50 videosll,
with the total length of 215 294 frames and an average 10
of long-duration target disappearances each sequence,
with each disappearance lasting for average 52 frames.
The evaluation protocol and attribute categories for se-
quences keep the same. The VOTLT202007 and
VOTLT2021B8 are the same as the VOTLT2019(66 in
both dataset and evaluation protocol. The VOTLT
benchmarks have the complete official evaluation toolkit
in Python for testing and evaluation.

4.2 OxUvA

The OxUvAll dataset comprises 366 object tracks
from 22 classes in 337 videos with two sets: development

@ Springer

(dev) of 200 and test of 166 tracks. It is worth noting
that the classes in the dev and test sets are disjoint,
which are chosen randomly. The dataset contains se-
quences with an average duration of 2.3 minutes with a
total frames of 1.55 million, labelled at a frequency of
1Hz. An average of 2.2 absent labels per track and more
than half of the videos with target disappearances exist.
For evaluation, the groundtruth for the test set is only
accessible via a rate-limited evaluation server?, which
helps avoid over-fitting hyper-parameters on the specific
dataset. There exist three major criteria to evaluate the
performance of different trackers: True positive rate
(TPR), true negative rate (TNR) and maximum geomet-
ric mean (MaxGM). The TPR measures the proportion of
present targets to targets reported present and located
correctly, and the TNR measures the fraction of absence
reported. To combine them into a single metric, the geo-
metric mean GM is defined as follows:

GM = JTPR x TNR. (4)

To be compatible with trackers that do not have the
ability to predict the absence of the target, the maxim-
um geometric mean, MaxGM, is defined as follows for
ranking algorithms/5):

MaxGM = max V(@ =p) x TPR)((1 —p) x TNR +p).
o (5)

For a given tracker, a larger MaxGM value means the
better performance.

4.3 LaSOT

Large-scale single object tracking (LaSOT)BY is a
high-quality benchmark, and consists of 1400 sequences
with 70 categories and more than 3.5M frames in total.
The dataset consists of two sets: training and testing sub-

2 https://oxuva.github.io/long-term-tracking-benchmark/
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sets, with 1120 videos and 280 videos, respectively. The
sequences provide various challenges including target dis-
appearing and reappearing in the view. Every frame is
annotated with an axis-aligned bounding box with an ab-
sent label, either out-of-view or full occlusion. Each se-
quence is labelled with 14 attributes, including illumina-
tion variation (IV), full occlusion (FOC), partial occlu-
sion (POC), deformation (DEF), motion blur (MB), fast
motion (FM), scale variation (SV), camera motion (CM),
rotation (ROT), background clutter (BC), low resolution
(LR), viewpoint change (VC), out-of-view (OV) and as-
pect ratio change (ARC).

For evaluation, one-pass evaluation (OPE)B7 is per-
formed. The precision, normalized precision and success
are three criteria. The precision is computed by compar-
ing the distance between tracking results and the
groundtruth in pixels. Considering the sensitivity of the
precision metric to target size and image resolution, the
normalized precision is utilized as in [90]. The success
metric is measured as the intersection over union (IoU)
between tracking results and groundtruth. The area un-
der curve (AUC) of the success plot is computed for the
success metric. The tracking algorithms are usually
ranked with the success metric.

4.4 TLP

The track long and prosper (TLP)R dataset consists
of 50 videos from real world scenarios, with a duration of
over 400 minutes, in total 676 K frames. The average
length of sequence in the TLP[ dataset is over 8
minutes. All videos are labelled with nine visual attrib-
utes: illumination variation, scale variation, deformation,
motion blur, fast motion, out of view, background clutter,
occlusion and multiple instances. Three criteria are adop-
ted to evaluate the algorithms: precision and success as
in [87] and longest subsequence measure (LSM). The dis-
tance threshold for precision metric is 20 pixels, while the
AUC of the success plot represents for the success metric.
The LSM metric computes the proportion of the length of
the longest successfully tracked continuous subsequence
to the total length of the sequencel?. A subsequence is
marked as successfully tracked, only if x% of frames with-
in it have IoU > 0.5, where x is a hyper-parameter and
usually fixed during evaluation. The tracking algorithms
are usually ranked with the success metric as well.

4.5 Long-term subset of VTUAV-V

The VTUAV-VBU is a large scale visible-thermal
(RGB-T) dataset captured by a professional UAV.
Among the multi-modal sequences, 74 long-term sequen-
ces with the visible modality RGB can also be evaluated
for long-term tracking. The OPE protocol is adopted to
compare the trackers.

4.6 Comparison and analysis

According to Table 2, sequences in common short-
term datasets only have an average duration of 20-30
seconds or even shorter, while typical long-term datasets
have a significantly longer average length of sequence,
with absent labels for every frame. Besides, target disap-
pearance and reappearance has a high frequency of occur-
rence. TLP[2 even has an average length with over 8
minutes. The average length of LaSOTI® exceeds short-
term datasets a lot but is not as long as TLPRL It is
worth mentioning that, LaSOTEY has abundant se-
quences with the OPE protocol, and it is also popular in
the short-term tracking field.

From the view of evaluation protocol, OPE evalu-
ation is more common(? 8% 9] which is the same as the
evaluation of short-term tracking. However, considera-
tions about the unique characteristics such as re-detec-
tion ability are not taken seriously. The OxUvAPl bench-
mark needs presence/absence predictions to determine
whether the predicted confidence of target presence and
rectangle will be used. VOTLTI®: 66 benchmarks also
design a metric taking the confidence of target presence
into consideration and a re-detection experiment.
However, the re-detection evaluation of VOTLT with the
artificial sequences is far away from real scenes which is
not suitable enough.

5 Experiments

In this section, we conduct experiments on six public
benchmarks and analyse the results of overall perform-
ance, attributed performance, and speed. Most of the se-
lected algorithms are representative, and have publicly
available implementations or tracking results. Some al-
gorithms give the reported performances on datasets or
these algorithms’ performance reports are collected on
corresponding benchmarks, we use them directly. For
some experiments that need to be performed newly with
publicly available implementations, we conduct experi-
ments on the device with a RTX TITAN GPU with
24 GB memory and a Intel i9-9900K CPU(@3.60GHz x
16). One thing to mention is that, UAV20L[! is a subset
of VOTLT dataset, so we do not evaluate trackers on it
additionally.

5.1 Experimental comparison on VOTLT
benchmarks

We select 21 trackers to perform an overall comparis-
on of the VOTLT2018[6% benchmark and 16 trackers for
the VOTLT2019 (2020/2021) benchmark. The detailed
results are shown in Table 3 and the left part of Table 4,
which are ranked based on the F-score. According to the
results, all of the top trackers are equipped with deep fea-
tures. Since VOTLT2018 is a subset of VOTLT2019
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Table 3 Experimental results on the VOTLT2018 benchmark

Tracker Feature type F-score Precision Recall
KeepTrack/0] Deep feature 0.713 0.727 0.703
LTMULI Deep feature 0.690 0.710 0.672
DMTrackl82] Deep feature 0.683 0.687 0.655
RLTDiMPI[7] Deep feature 0.681 0.671 0.692
Siam R-CNNI[1 Deep feature 0.671 0.667 0.675
SiamRPN++ (1 Deep features 0.626 0.644 0.608
SPLTH Deep feature 0.616 0.633 0.600
LTAIB0 Deep feature 0.612 0.612 0.612
MBMDI7 Deep feature 0.610 0.634 0.588
Dasiam-LT30] Deep feature 0.607 0.627 0.588
TACT®4 Deep feature 0.560 0.575 0.546
MMLTI58] Deep feature 0.546 0.574 0.521
flow-mdnet-rpn(62] Deep feature 0.541 0.610 0.486
GlobalTrack!83] Deep feature 0.523 0.560 0.491
FuCoLoT[54  Hand-crafted feature 0.480 0.539 0.432
CALTB7 Hand-crafted feature 0.41 - -
PT AV Hand-crafted/Deep 0.31 B B
feature
MUSTerl5Yl  Hand-crafted feature — 0.29 - -
TLDU Hand-crafted feature  0.27 - -
LCTH6 Hand-crafted feature 0.25 - -
CMTH4 Hand-crafted feature  0.22 - -

(2020/2021), we focus on the performance on the latter.

On the VOTLT2019

(2020/2021)

dataset, mlpL T8
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which fuses STARK[?8 and SuperDiMP gets the best
rank. KeepTrack LT ranks second. STARKBS and LT-
MU follow them with a narrow margin. Among the
trackers, mlpLTB8] LT DSE[S  Megtrackl6’ and
CLGSI7 are briefly described in VOT challenge competi-
tions. All the top trackers are equipped with deep fea-
tures. Trackers with various manners of intermediate
tracking results’ utilization[® 10 11, 38, 70, 82] exceed other
trackers(” 8 32 83, 84] with a relatively significant advant-
age, which demonstrates that these manners can tackle
with the challenges in long-term tracking scenes better.
Only target template of the first frame cannot work well
in the long-term task.

5.2 Experimental comparison on OxUvA
benchmark

We select 13 trackers to perform an overall comparis-
on of the OxUvA[] benchmark, as shown in the right part
of Table 4, ranked by MaxGM. As the results are evalu-
ated via submitting to a rate-limited evaluation server,
we just record the available performance reports of the
trackers from original papers. As shown in the right part
of Table 4, KeepTrackllV is significantly ahead of other
trackers. LTMUI is in the second place with excellent
performance. Similar to the performance on the VOTLT
benchmarks, a large proportion of trackers with various
manners of intermediate tracking results’ utilization per-
form better. However, the performance gap between dif-
ferent trackers is larger than on the VOTLT benchmarks.

Table 4 Experimental results on the VOTLT2019 (2020/2021) and OxUvA benchmarks

Dataset VOTLT2019(2020/2021) Dataset OxUvA
Tracker F-score Precision Recall Tracker MaxGM TPR TNR
mlpLTI88] 0.735 0.741 0.729 KeepTrack!10 0.812 0.796 0.828
KeepTrack LT3l 0.712 0.725 0.700 LTMUDI 0.751 0.749 0.754
STARK-ST10108] 0.701 0.702 0.701 Siam R-CNNI!1] 0.723 0.701 0.745
LTMUD] 0.697 0.721 0.674 LTAI®] 0.716 0.655 0.782
LT_DSEIs6] 0.695 0.715 0.677 TACTI84] 0.709 0.809 0.622
Megtrack(67] 0.687 0.703 0.671 DMTrack/®2] 0.688 0.686 0.694
DMTrack/32 0.687 0.690 0.662 SPLTI! 0.622 0.498 0.776
RLTDiMPI7] 0.681 0.667 0.695 GlobalTrack/®3] 0.603 0.574 0.633
CLGSI67] 0.674 0.739 0.619 MBMDI7] 0.544 0.609 0.485
Siam R-CNNI!] 0.664 0.654 0.673 SiamFC+RI] 0.454 0.427 0.481
SiamDW-LT[32 0.656 0.678 0.635 TLDM 0.431 0.208 0.895
TACTI8Y] 0.569 0.578 0.561 LCTI46] 0.396 0.292 0.537
MBMD7 0.575 0.623 0.534 EBTI™ 0.283 0.321 0
SPLT! 0.565 0.587 0.544 - - - -
GlobalTrack!83] 0.539 0.568 0.513 - - - -
FuCoLoT/54 0.411 0.507 0.346 - - - -
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5.3 Experimental comparison on LaSOT
benchmark

There are results of 11 long-term trackers and 8 rep-
resentative short-term trackers on the LaSOTI®) bench-
mark, as shown in Table 5. The results are ranked by
success score. The “S-T” represents short-term trackers,
and the “L-T” represents long-term trackers. As men-
tioned in Section 4.3, the LaSOT®! is a popular bench-
mark in both short-term and long-term tracking due to
its characteristics. KeepTrack[l0l with a large search re-
gion and target candidate association to suppress dis-
tractors achieves the best performance. STARK?8] with a
transformer-based architecture is only slightly behind,
with temporal information utilized as well. Top trackers
almost utilize the historical tracking results for object
matching or updating. The purely offline trackers without
historical results used like [8, 83, 84], have a relatively
unsatisfactory performance. From the view of framework
architecture, both the local-global trackers and global
trackers can achieve competitive performance. Attribute-
based performance is also shown in Fig.6. The attributes
of “Out-of-view” and “Full occlusion” are closely associ-
ated with characteristics unique to long-term tracking.
The performance is similar to the overall performance
above. KeepTrackll®! performs best on both attributes,
and STARKDS! is a little behind on the “Full occlusion”
attribute. KeepTrack!0, STARK[8 and Siam R-CNNI1
have comparable results on the “Out-of-view” attribute.

5.4 Experimental comparison on TLP ben-
chmark

The results on the TLP benchmark are shown in
Table 6 ranked by success scores. KeepTrack[l% gets the
top score leading with a significant advantage. Siam R-

Attribute based precision plot
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Table 5 Experimental results on the LaSOT benchmark

Tracker S-T/L-T Success Precision Norm. precision
KeepTrackll0 L-T 0.673  0.704 0.774
STARK-ST101038] S-T 0.671  0.722 0.769
Siam R-CNNI[1] L-T 0.648 0.684 0.722
RLTDiMPI[70] L-T 0.644  0.660 0.735
SuperDiMP S-T 0.640  0.659 0.730
TACTIS L-T 0.575  0.607 0.660

DMTrack[8?] L-T 0.574  0.580 -

LTMUPI L-T 0.572  0.572 0.665
DiMP[34] S-T 0.568  0.564 0.648
ATOMI33] S-T 0.518  0.506 0.576
Global Track!s3] L-T 0.517  0.528 0.597
SiamRPN++ [81] S-T 0.496  0.491 0.569
SPLTI8! L-T 0.426  0.396 0.494
MDNet[61] S-T 0.397  0.373 0.460
SiamFCI[24] S-T 0.358  0.341 0.449
PTAVH] L-T 0.250  0.254 0.274
LCTM6] L-T 0.221 0.190 0.209
TLDM L-T 0.210  0.174 0.193
fDSSTI50] S-T 0.203  0.184 0.208

CNNI ranks second. Compared with global trackers
without distractor-aware strategies(83 84, Siam R-CNNI]
and KeepTrack[!?l have an obvious advantages. This lead
may benefit a lot from tracklet dynamic programming or
target candidates association to suppress the distractors
in complicated scenes. Local-global trackers with online
update such as LTMU and RLTDiMPI[™ get obviously
better performance than offline trackers SPLTIE and MB-
MDY, indicating that an appropriate online update is es-
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Fig. 6  Attribute results on the LaSOT benchmark
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Table 6 Experimental results on the TLP benchmark

Tracker S-T/L-T Success Precision
KeepTrackl10] L-T 0.613 0.630
Siam R-CNN[Y L-T 0.601 0.630
STARK-ST101[8] S-T 0.577 0.594
LTMULI L-T 0.571 0.608
RLTDiMP!70] L-T 0.528 0.533
TACT4 L-T 0.523 0.545
GlobalTrack(83] L-T 0.520 0.556
MBMD7 L-T 0.492 0.502
SPLTHl L-T 0.416 0.403
TLDM L-T 0.122 0.116
LCTM6) L-T 0.101 0.071

sential for longer sequences. In addition, SuperDiMP and
STARKDBS! with no explicit re-detection also perform well
on LaSOT and TLP, which may indicate that they can
be good choices for further extension design in long-term
tracking.

5.5 Experimental comparison on the long-
term subset of VTUAV-V benchmark

The results on the long-term subset of the VTUAV-V
benchmark are shown in Table 7 ranked by success score.
STARKZBSS! ranks first on the benchmark with a signific-
ant advantage. Some purely offline long-term trackers
such as GlobalTrack/®3 and SPLTB do not track well on
this benchmark. As the benchmark is newly proposed,
there is still much space for performance improvement.

Table 7 Experimental results on the long-term subset of the
VTUAV-V benchmark

Tracker S-T/L-T Success Precision
STARK-ST50[38] S-T 0.504 0.565
LTMUD! L-T 0.487 0.569
DiMP34] S-T 0.387 0.445
SiamRPN++ (1] S-T 0.360 0.415
SPLTI8I L-T 0.360 0.418
GlobalTrack/#3] L-T 0.329 0.377
SiamF C[2] S-T 0.238 0.288

5.6 Speed analysis

The speeds of long-term trackers are listed in Table 8.
All the results and settings are collected from original pa-
pers, and the ranking is based on the F-score of
VOTLT2018 except for STARKESl. According to Table 8,
most long-term tackers cannot achieve real-time speed on
GPU or just run at a speed near real time. FuCoLoT[54
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can run at 6 fps on CPU without need of GPU. However,
its performance is worse than that of deep-feature track-
ers. Dasiam-LTB0 ranks second, but its performance still
has a gap between the best trackers’ results. DMTrack/82l
balances speed and accuracy better. For some top-per-
formance trackers such as KeepTrackl0), LTMU! and
Siam R-CNNI[, there is an obvious gap between the
speed and real-time speed on GPU. STARKDB8! which is
not designed specifically for long-term trackers, also
shows great power in balancing speed and accuracy, and
we conjecture that the transformer-architecture contrib-
utes a lot.

Table 8 Speed analysis of representative long-term trackers

Tracker FPS Device Setting Platform
KeepTrackl!0) 12,7 GPU RTX 2080Ti Pytorch
STARK-ST101B8) 32 GPU  Tesla V100 Pytorch
LTMUL] 13 GPU RTX?2080Ti TensorFlow, Pytorch
DMTrack(®2) 31 GPU Titan XP Pytorch
RLTDiMP[  14.17 GPU GTX 1080Ti Pytorch
Siam R-CNN[I1 4.7 GPU  Tesla V100 TensorFlow
SiamRPN++ Bl 21 GPU  Titan Xp Pytorch
SPLTI 26 GPU GTX 1080Ti TensorFlow
LTA[B0 7 GPU - -
MBMDI[7 4 GPU GTX 1080Ti TensorFlow
Dasiam-LTB% 110 GPU TITA X Pytorch
TACTI4] 42 GPU RTX 2080Ti Pytorch

MMLTE8 6.15 GPU GTX 1080Ti Matlab R2017a

GloalTrack[s3] 6 GPU GTX 1080Ti Pytorch
FuCoLoTI54] 6 CPU Intel Corei7 Matlab
PTAVHI 27 GPU GTXTITANZ C++, Calffe

SiamFC+RI] 52 GPU - -

6 Future prospects

6.1 Algorithm design

Robust discriminative ability for long-term
tracking. The discriminative ability of the appearance
model is essential for visual tracking. Especially in long-
term tracking, due to the long duration, the target may
suffer from more severe variations or other challenges.
Meanwhile, in long duration, error accumulation will be
more distinct, so that failure may occur with a higher
probability than in short-term tracking. Some works ex-
plore the update strategy to reduce template contamina-
tion and enhance adaptation to specific sequence and the
discriminative ability. To reduce error accumulation, LT-
MU attempts to train a meta-updater network using
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historical tracking cues to predict whether the current
frame is suitable for update. Memtrackl®? utilizes a dy-
namic memory network which stores the target informa-
tion to maintain the variations of target appearance.
MUSTerl5] and MMLT/®8 set short-term and long-term
stores of the appearance model separately. Ensuring the
contiguity of correct tracking results while avoiding drift
to semantic distractors or interfered background in long-
term tracking is valuable. It is worth noting that the
transformer-based tracker(3¥ also achieves good perform-
ance without complicated extra settings specified to the
long-term property, which suggests that we can explore
the potential of more new techniques. Besides, as in-
spired in [93], more works bridging long-term tracking
and short-term tracking may also be worthy looking for-
ward to.

Re-detection against distractors for long-term
tracking. When failure occurs, the long-term trackers
need to search the possible regions or bounding boxes and
relocate the target successfully when the target reappears.
Different solutions are proposed such as designed metrics
or cascaded classifiers to verify the target presence, as de-
scribed in Section 3.1. However, a larger search region
can also introduce more distractors or background inter-
ference. Therefore, trackers also need to keep the track-
let avoiding drift when the target is under full occlusion
or out-of-view. Recently, some works have achieved excel-
lent performance in a sufficiently large search region with
target association strategy to suppress distractors(l0 82],
which is compatible with both short-term and long-term
tasks. They adopt the similar idea of data association in
the multiple object tracking task[®4 9l Siam R-CNNI]
adopts tracklet dynamic programming to build a distract-
or-aware model from a novel perspective for robust dis-
criminative ability. Li et al.85 exclude distractors with
temporal information proposed by the motion model. The
success rate of relocating the real target can be improved
by filtering out distractors. More attention can be fo-
cused on giving a more elegant solution for this issue.

Speed for long-term tracking. According to
Table 8, most state-of-the-art long-term trackers’ speeds
are slow or barely enough for real-time. Compared with
short-term trackers, strategies for avoiding drift and
searching in entire image may bring extra computational
burdens. Moreover, since it is closer to the practical ap-
plication, the speed of the algorithm should be higher.
How to balance the cost of time and the level of perform-
ance is an essential issue. However, little attention is paid
for it.

6.2 Benchmark construction

With the growing focus on long-term tracking, more
long-term algorithms have been proposed. However, the
large scale datasets designed specifically for long-term
tracking are not sufficient. As mentioned in Section 4.6,

some of the existing long-term evaluation protocols also
lack the consideration about the long-term tracking char-
acteristics. As the long-term tracking task is closer to the
realistic needs, more related sequences should be collec-
ted to enlarge the evaluation datasets.

7 Conclusions

In this study, we provide a comprehensive survey of
long-term visual tracking. First, we overview long-term
tracking algorithms from two perspectives: framework ar-
chitectures and utilization of intermediate tracking res-
ults. Then, we propose a detailed summary of existing
benchmarks with evaluation protocols and compare their
disadvantages and advantages. Subsequently, we com-
pare the speed of algorithms and evaluate long-term
trackers on six common long-term benchmarks, followed
by a detailed analysis of the results. Finally, we propose a
variety of perspectives for possible future directions, in-
cluding aspects of algorithm design and benchmark con-
struction.
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