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Abstract: Inspired by eagle eye mechanisms, the structure and information processing characteristics of the eagle's visual system are
used for the target capture task of an unmanned aerial vehicle (UAV) with a mechanical arm. In this paper, a novel eagle-eye inspired
multi-camera sensor and a saliency detection method are proposed. A combined camera system is built by simulating the double fovea
structure on the eagle retina. A saliency target detection method based on the eagle midbrain inhibition mechanism is proposed by meas-
uring the static saliency information and dynamic features. Thus, salient targets can be accurately detected through the collaborative
work between different cameras of the proposed multi-camera sensor. Experimental results show that the eagle-eye inspired visual sys-
tem is able to continuously detect targets in outdoor scenes and that the proposed algorithm has a strong inhibitory effect on moving

background interference.
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1 Introduction

With in-depth research on unmanned aerial vehicle
(UAV) technology, UAVs with robotic arms have gradu-
ally become a research hotspotll. The autonomy of an
unmanned aerial vehicle with a manipulator depends on
intelligent perception. Visual sensors are one of the main-
stream perception devices. Designing image acquisition
devices and image processing algorithms is a challenge.
At present, many studies have been carried out on the
target recognition technology of fixed platform manipu-
lators(? 3. However, for the manipulator grasping on the
UAYV, the requirement of visual target detection is higher.
Thomas et al.ll implemented an indoor image-based
autonomous grasping of micro aerial vehicles with a ma-
nipulator. However, the indoor background interference is
low, and the lighting conditions are suitable. The detec-
tion and relative position measurement of outdoor tar-
gets is a challenge.

In all animals, the eagle’s visual system is second to
none and has advantages such as high visual acuityldl.
The eagle has strong color perception and broad visual
fields and is sensitive to movement informationlfl. The
process of eagle hunting prey is similar to the process of

Manuscript received on January 17, 2022; accepted on May 30,
2022; published online on March 7, 2023

Recommended by Associate Editor Lu-Ping Shi

Colored figures are available in the online version at https://link.
springer.com/journal/11633

© Institute of Automation, Chinese Academy of Sciences and
Springer-Verlag GmbH Germany, part of Springer Nature 2023

the UAV platform with a robotic arm grasping target.
Therefore, the visual target detection process in the UAV
grasping task can learn from the biological mechanism of
the eagle. Various eagle-inspired studies on composite im-
age sensors have made some progress. Deng and Duanl”
designed a biological eagle-eye-based visual platform sim-
ulating the eagle's vision system for target detection.
However, the load capacity and available space of UAVs
are not sufficient for the device. Fu et al.lfl presented a
lightweight vision system based on an eagle-eye structure.
However, the system needs an additional servo control
module and image transmission module, and the image
processing process needs to be transferred to the ground
station. Therefore, a simple and efficient design is re-
quired for the vision devices used on the UAV platform
while simulating the eagle-eye's structural characteristics.

After image acquisition, detecting targets in unfamili-
ar environments has long been a challenge in computer
vision. In [9], the image was first decomposed into large-
scale perceptually homogeneous regions. Then, the target
saliency map was computed using feature similarity and
spatial difference based on global contrast cues. However,
these methods are affected by the background and can-
not filter out the disturbance of surface vegetation. Bon-
nin-Pascual and Ortiz/!% used intensity, color, and orient-
ation features to address defect detection problems. The
Camshift algorithm[lll was applied for a moving target to
detect and track a motion target in a continuous image
sequence. In an application, the UAV needs to determine
the position of the target to be captured during flight.
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During the movement of UAVs, the image background
changes constantly, which makes saliency detection diffi-
cult. Saliency detection mechanisms exist in biological
visual systems, which can achieve the preferential alloca-
tion of computational resources!!2. The saliency detec-
tion based on the deep learning method has a good effect,
but it is challenging to apply it on a microprocessor at a
UAVI13-15]

Inspired by eagle’s visual system, Duan et al.ll6] ap-
plied contrast sensitivity, eagle-eye vision adaptation and
other mechanisms to many applications, such as small
target detection and visual measurement. In [17], by imit-
ating the structure of the eagle eye and the biological
mechanism of visual information processing of the eagle’s
visual system, the problem of salient target detection in
the UAV platform grabbing task was solved. Li et al.ll8]
also presented an algorithm based on properties in the
eagle eye to solve the problem of autonomous landing of
UAVs on water.

In this paper, we present a biological eagle-eye in-
spired hardware and software integration system to solve
the target detection problem. The main contributions of
the paper are as follows:

1) A novel static and dynamic feature-based saliency
detection algorithm is designed. The saliency cues are cal-
culated based on the color attention mechanism and the
midbrain inhibitory circuit structure of the eagle.

2) An eagle-eye inspired multi-camera sensor is pres-
ented to simulate the double fovea structure on the ret-
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ina of the eagle eye, which is used for image acquisition.

3) According to the specialty of the multi-camera
sensor, a cooperative positioning method between two
cameras is designed by switching image sources.

The remaining section of the paper is organized as fol-
lows. The saliency detection method inspired by the eagle
midbrain inhibition mechanism is introduced in Section 2.
The hardware and software design of the eagle-eye in-
spired multi-camera sensor is presented in Section 3.
Section 4 shows the experimental results of our saliency
detection method and UAV navigation. The conclusion
and perspectives are shown in Section 5.

2 Target detection algorithm

Our moving object detection method mainly contains
two parts. The first part is cluster-based saliency detec-
tion19, which represents the static feature. The second
part is eagle-eye inspired dynamic perception, which de-
notes motion characteristics. The flowchart of our al-
gorithm is shown in Fig.1. Our method can consider both
the static and dynamic characteristics of moving objects.

2.1 Static image saliency

The single image saliency calculation is inspired by
the cluster-based method9. In general, the generic data-
set images and camera-captured images are usually stored
in RGB color space. To make the calculation process
closer to the physiological characteristics of raptors, the
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Fig.1 Framework of our dynamic target detection algorithm
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RGB color space was first converted to the LMS color
space. The conversion formula from the RGB color space
to the LMS color space is as follows:

L 0.3811 0.5783 0.0402 R
M | = 01967 0.7244 0.0782 G |. ()
S 0.0241 0.1288 0.8444 B

Raptors without prior training tend to gaze at certain
salient areas of the scenel20l, Generally, salient areas have
specific image features, such as luminance, color, and
edge density. Therefore, we use cluster-based saliency
cues in [19] to simulate the biological mechanisms of a
raptor's visual system.

First, the contrast cue represents the color saliency of
the target. This cue measures the color difference between
the current pixel block and the surrounding pixel block.
The formula of contrast cue A°(k) was calculated as fol-
lows:

k
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where k denotes cluster C*, N* represents the total
cluster number, the Ls norm quantifies the color and
luminance features, n’ denotes the pixel number of cluster
C%, N denotes the pixel number of the whole image, and
1 denotes the average of the three color channels in the
cluster.

Second, we use the spatial cue to simulate the raptor’s
gaze effect. The visual saliency in the center of the eagle
field is higher than that around the field of view (FOV).
The following formula can characterize the spatial sali-
ency:

S (3)
I —ol

where z, is the coordinate of pixel p in the image. o
represents the center position of the entire image. ||-||* is
the Euclidean distance calculation symbol.

Raptors tend to bring objects of interest to a retinal
fixation area near the central vision field2!l. Each cluster
has similar low-level image feature information, and the
pixels are spatially continuously distributed. The spatial
cue \° of cluster C* is described as follows:

k
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NOEEDY
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where n” is the total number of pixels in image block C*,
considering the adjacent frame relationship in the image
sequence, targets that repeat in the central area of an
image will have higher spatial saliency. Thus, (4) is
rewritten as

where M is the total number of images in the image
sequence, j represents the number of images, and 9 (-)
denotes the Kronecker delta function. c(-) is a mapping
relationship from pixel to cluster, and c(:vf ) represents the
cluster where pixel z7 is located. Since ||x{—oj|| is
calculated as the pixel distance in (5), there is a
significant variation and discontinuity in the data.
Therefore, normalization is performed after calculating
the spatial saliency of all clusters.

The static saliency Ss(j) of image j in the image se-
quence is derived from the combination of spatial and col-
or cues. Pixels in cluster C* have the same static sali-
ency value. The static saliency Ss(j) can be calculated as
follows:

Ss(4) = A*(k) - A°(k). (6)

2.2 Midbrain network inhibition mechan-
ism-based dynamic perception

For the target detection task of UAVs while moving,
target location extraction in the field vegetation cover en-
vironment cannot be satisfied by the low-level image fea-
tures alone. In addition to low-level image features such
as color and morphology, the target also has a relative
movement of the UAV. The precondition to obtain the
dynamic characteristics of the target is to eliminate back-
ground information interference. The eagle midbrain
plays an essential role in eagle visual information pro-
cessing. According to the midbrain stimulus selection net-
work[?2 23] 5 dynamic feature extraction framework based
on midbrain inhibition was extracted. The framework is
shown in Fig. 2.
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Fig.2 Dynamic feature extraction framework based on
midbrain inhibition

The dynamic perception extraction framework is es-
tablished according to the intercellular inhibition and the
structure of the cross inhibition between the optic tectum
and the nucleus isthmus large cell in the midbrain. The
dynamic perception extraction framework consists of six
parts: input optics, response unit (RU), delay unit (DU),
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inhibition unit (IU), competitive selection unit (CSU) and
output unit. Each part corresponds to Fig. 2.

First, using a one-dimensional vector mask s =[—1,
0, 1], the gradient is calculated in the horizontal and ver-
tical directions of the image. We define gf as the gradi-
ent in the z direction and g7 as the gradient in the y dir-
ection of pixel z;. Then, the gradient response G; in pixel
xz; can be obtained by

Gi=1/(g%)" + (¢!). (7)

Gradient response G; is then input to the inhibitory
section of the midbrain network. The inhibitory effect is
achieved mainly through the interaction of delay signals
with nondelay signals. In this process, the interference in-
formation will be inhibited. We suppose that the delay
parameter in inhibition is 7 and the output of DU is
G%(t) at time t. Then, the output of IU with DU can be
expressed as

- Gi(t) — fo t
Gi(t) = M (8)
Similarly, the delay output G%(¢ + 1) for moment

t+1is

Gi(t+1)=Gi(t)+ G (t) (9)

where the initial state is G¢(0) = 0.

The output of DU and IU in the opposite competitive
branch can be expressed as G;'(t) and G‘f(t), respect-
ively. Then, the output R;(t) of the CSU is calculated as

Ri(t) = Gi(t)GY (t) — Gi ()G (). (10)

The connection of the eagle visual system is an exten-
ded two-dimensional structure. After synthesizing the x
and y directions, the dynamic feature extraction frame-
work of the midbrain inhibition output O;(¢) is

O:(t) = \/(B2)? + (RY). (11)

After processing the dynamic feature extraction frame-
work of midbrain inhibition, there is still some back-
ground interference in the results. The distribution differ-
ence between the target object response and background
interference response can be used to filter out interfer-
ence further. According to [24], textural contrast is
defined as

_ Zlepi Oi(l)
2ep, OO0y (1)

2 iep, O=()O0y (1)

D(i
v S, O30

(12)

where O.(l) and Oy(l) denote the gradient in the
horizontal and vertical directions of the dynamic feature,
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respectively. [ is the pixel in the neighborhood of pixel i.

Generally, the background area has a circular feature
distribution, while the target area has an elliptical fea-
ture distribution. Therefore, the difference in distribution
can be obtained by calculating the eigenvalues of D(3).
The relative discrepancy Sas(i) between two eigenvalues
of D(3) is

Sar(i) = (A1 — A2)>. (13)

The relative distance between the UAV and target
varies from far to near during UAV flight. Meanwhile,
the total number of pixels the target occupies in the im-
age changes from less to more. The dynamic feature ex-
traction based on midbrain inhibitory synthesis of mul-
tiple scales adapts to substantial scale changes. The dy-
namic feature of image j in scale s, is denoted by
S (4, 7). The multiscale synthesis result Sas(j) is

suG)=1 >

re{ry,ra,...,rn}

S (j,m) (14)

where n is the total number of scales. The final result for
dynamic saliency detection based on the eagle midbrain
inhibition mechanism is

5(7) = Ss(3) x Sm(4)- (15)

3 Eagle-eye inspired multi-camera sen-
sor

The search task for ground targets has high require-
ments for visual sensors. Because the target position is
unknown, it is difficult to ensure search efficiency and ac-
curacy when a UAV searches according to the estab-
lished route by relying on a single fixed focus camera. Or-
dinary RGB cameras have limitations. Although the
short-focus camera has a large FOV, it has a poor resolu-
tion ratio for long-distance targets. The long-focus cam-
era can collect the characteristics of long-distance target
objects, but the FOV is small, and the target is easy to
move out of the FOV. Among living animals, eagles have
the highest chromatic visual acuity threshold3. The
eagle eye can consider a wide field of vision and high spa-
tial resolution. According to the physiological structure of
the eagle eye, a multi-camera sensor imitating the eagle
eye double fovea is designed to complete the pose meas-
urement of the target.

3.1 Design scheme of the eagle-eye in-
spired multi-camera sensor

To combine the characteristics of a large field of vis-
ion with high resolution, we designed a multi-camera
sensor based on a eagle-eye biological structure. The ret-
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inal structure of the eagle eye is different from that of
other animals. This unique visual structure is helpful for
eagle flight positioning and target capture. Such advant-
ages are consistent with the search task requirements of
the UAV platform. The relative distance between the tar-
get and the UAV keeps changing during searching. In the
process of the UAV approaching the target, the wide
FOV is first used to search the target and detect the pos-
ition of the target in the image. Then, the target feature
information is extracted by using the high-resolution re-
gion. The eagle eye retina has two high-resolution ima-
ging core areas, the deep fovea and the shallow foveal20].
Two foveae can be used for different functional imaging
and image processing. Inspired by the biological struc-
ture of the eagle eye retina, we designed and constructed
a multi-camera sensor.

The structure of the eagle eye retina brings ideas to
hardware design. The deep fovea on the eagle eye retina
has maximum visual acuity. To imitate this structure, we
use a long-focus camera to capture the details of the tar-
get. The shallow fovea on the retina has less visual acu-
ity than the deep fovea. However, the shallow fovea
provides a wider FOV. We use a short-focus camera to
imitate the shallow fovea. Thus, considering the combina-
tion of long-focus and short-focus dual cameras, a multi-
camera sensor with two eagle eye-like fovea structures is
constructed. The installation components of the multi-
camera sensor are 3D printed with nylon. The dimen-
sions of the device are carefully designed to ensure struc-
tural compactness. We use a Basler daA1280-54uc cam-
era as a visual sensor, which is small in size and mass and
has high imaging quality.

According to the pinhole camera model?7], focal length
parameters are designed. In the application scenario, the
upper limit of the distance between the camera and tar-
get is 10m. The lower limit is 15-20cm according to the
grasping situation. According to the pinhole camera mod-
el and camera parameters, the focal length of the short-
focus camera is 2.8 mm and that of the long-focus camera
is 12mm. This set of parameters ensures that the target
can occupy over 100 pixels on a long focal length camera
image at a distance. In close grasp, the short-focus cam-
era FOV can fully cover the target. Two cameras collab-
orate through task logic design. The multi-camera sensor
can search the target in a wide-angle view and further
judge the details of the target. It can continuously monit-
or and detect a wide range of visual fields and analyse
and measure targets with high resolution. The eagle-eye
inspired multi-camera sensor is shown in Fig. 3.

3.2 Processing logic design of the eagle-eye
inspired multi-camera sensor

The target detection and visual measurement task
process are shown in Fig.4. The whole task is mainly di-
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Fig. 3 Eagle-eye inspired multi-camera sensor
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vided into two stages. UAV cruising along preset routes
due to a lack of prior information about target locations.
During the cruise, the multi-camera sensor device with an
angle of 30° between the optical axis and the horizontal
plane continuously collects images. Due to the slight
field-of-view angle of the long-focus camera, it is difficult
to determine whether the target appears in the view at
this stage. At this time, detecting the image of the long-
focus camera can cause unnecessary waste of computa-
tion power. To solve this problem, the image of the short-
focus camera is first processed. Dynamic target detection
based on midbrain inhibition (DTDMI) is used to calcu-
late the target area. The target saliency detection results
are shown in Fig.4(g). The target is marked with a green
rectangular box. Figs.4(e) and 4(f) show the images col-
lected by the eagle-eye inspired multi-camera sensor.
These two images are collected simultaneously by the
short-focus camera and the long-focus camera. The two
images are aligned by speeded up robust features
(SURF)®8l. The corresponding area of the long-focus cam-
era’'s FOV in the short-focus camera’s FOV is represen-
ted by a red box. In the image captured by the long fo-
cal camera, the DTDMI processing results are combined
with the SURF matching results. It can be known that
the target is not in the FOV of the long-focus camera at
the current moment.

First, the camera coordinate system is defined in the
same way as in [29]. Due to the small number of pixels in
the long-focus camera image, it is difficult to accurately
estimate the relative distance between the UAV and the
target. Therefore, the UAV navigation information is
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roughly estimated using the following methods:

FOV
E; = Apiﬁiv (16)

where ¢ € {z,y}, E; is the estimated estimative distances
of the target in the z and y directions, Ap; denotes the
difference between the pixel value of the target center
and the center of the image in direction i, (§; represents
the pixel size in direction i, and M, indicates the
resolution in direction i. The offset of the target in the
camera coordinate system from directions =z and y is
calculated. Based on the calculated relative position, the
UAV can correct the preset navigation points and keep
approaching the target position.

In the process of UAV visual navigation, two-camera
image matching and saliency detection of short-focus
camera images are continuously performed. When the
target is detected to be within the image matching area
(as shown in Fig.4(c)), navigation proceeds to the second
stage. This stage mainly completes the accurate position
measurement. The image captured by the long-focus cam-
era is shown in Fig.4(b), and the result of saliency detec-
tion using DTDMI is shown in Fig.4(d). Through adapt-
ive threshold segmentation, the target specific region is
extracted from the image. Then, the minimum circum-
scribed rectangle of the target area is selected. The four
vertices of the rectangle are used as marker points for
pose estimation by the robust solution to the perspective-
n-point problem (RPnP) algorithmB. The calculated rel-
ative position information is fed back to the UAV plat-
form controller to provide the UAV platform navigation
information in real time. The pose estimation diagram is
shown in Fig. 5.

(-12,-9,0) (12,-9,0)

Target saliency map

Object coordinate system
Fig. 5 Feature point matching

The translation matrix and rotation matrix of the ob-
ject's coordinate system relative to the camera’s coordin-
ate system can be obtained by the RPnP algorithm. Con-
sidering the navigation task requirements, visual informa-
tion mainly provides the relative location relationship
between the UAV and the target. Therefore, the rotation
matrix is ignored, and the translation matrix is mainly
used as the judgment basis. According to the z, y and z
direction relative positions in the translation matrix, the
position control command is fed back to the flight con-
troller to complete the navigation process.
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4 Experimental results

4.1 Image saliency

In this section, we have designed several experiments
for dynamic target detection based on the midbrain in-
hibition (DTDMI) method proposed in this paper. The
overall experiment was carried out in the Matlab R2020a
environment, and the computer was configured as follows:
Winl0 system, processor for AMD Ryzen 5800H, 16 GB
memory configuration. In the experiment, a variety of
mature image saliency detection methods are used for
comparison, including co-saliency (CS)!%, maximum sym-
metric surround (MSS)BU, covariance (COV)BI, visual
attention model (VAM)B3, spectral residual (SR)B4, sali-
ency aware (SA)B saliency optimization (SO)B6l sali-
ency filters (SF)B7, geodesic saliency (GS)B8l, manifold
ranking (MR)BY, and co-saliency using implicit rank-
sparsity (CoIRS)40. The algorithm is first tested on the
densely annotated video segmentation (DAVIS)(4! and
Freiburg-Berkeley motion segmentation (FBMS)42l data-
sets. The DTDMI will then be tested in images acquired
by an eagle-eye inspired multi-camera sensor.

Comparisons on DAVIS and FBMS datasets.
The DAVIS dataset contains a total of 50 video se-
quences. The videos are densely annotated with high
quality and high resolution. The dataset has two resolu-
tion images of 480p and 1080p. The FBMS dataset goes
further on the basis of FBMS dataset. Compared with the
FBMS dataset, the FBMS dataset adds 33 additional
video sequences. Every video sequence is carefully annot-
ated at the pixel level. These two datasets cover all kinds
of situations of moving targets. It mainly includes target
movement, target occlusion, etc.

We evaluate the DTDMI method in the above two
datasets. As mentioned before, we compare our method
with eight single image saliency methods: MSS, COV,
VAM, SR, SO, SF, GS and MR. We also compare our
method with three multiple image saliency methods: CS,
CoIRS and SA. The SA method uses spatiotemporal in-
formation of image sequences to obtain a saliency map.
Figs.6-9 show the visual saliency detection result on two
datasets. Among the comparison algorithms, SR and
COV have no clear salient object boundary. This will
bring difficulties to the subsequent target positioning pro-
cess. Although SF and MSS can detect the target area,
the target information is incomplete. For example, the
above two saliency detection methods in swing sequences
do not entirely detect all human body parts. The COV
method cannot determine the shape of the target but can
only roughly locate the target position in the image. GS
are seriously disturbed by the image background. From
the processing results of these methods, it is difficult to
extract an accurate target area. In addition, SF and MR
misidentified saliency targets in the cats0l sequence.
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Fig. 6 Single image saliency detection results of the proposed method and eight other comparison methods on the DAVIS dataset
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Fig. 7 Single image saliency detection results of the proposed method and eight other comparison methods on the FBMS dataset
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Fig. 8 Multiple image saliency detection results of the
proposed method and three other comparison methods on the
DAVIS dataset

Moreover, COV is weakened because the salient target of
this image sequence is near the edge. The proposed meth-
od has the best performance among the ten results. Com-
pared with other methods, the DTDMI has a more appar-
ent significant target boundary. For the cosaliency detec-
tion algorithm, the CS method uses the connection
between multiple images to strengthen the saliency in-
formation. However, the interference information may be
enhanced in sequential images. The saliency areas calcu-
lated by the CoIRS are relatively rough. Furthermore,
the DTDMI method has a better inhibitory effect on

Cats06 Goats01

Cats01

HorsesO1 Tennis

Ours ColRS

Fig.9 Multiple image saliency detection results of the
proposed method and three other comparison methods on the
FBMS dataset

background interference. The DTDMI method also works
well when the target location is next to the edge of the
image. It can be found that our method’s result is closest
to the ground truth.

Figs. 10 and 11 show the quantitative results. For both
datasets, we use five methods for quantitative analysis.
Precision versus recall curve analysis and receiver operat-
ing characteristic (ROC) curve analysis are quantitative
indicators. To comprehensively measure the performance
of the algorithm, the F-measurel3%, mean absolute error
(MAE), and area under the curve (AUC)[43] are also com-
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puted. The F-score in this experiment is calculated as fol-
lows:

(1 + BQ) X precision X recall

F =
B2 x precision + recall

(17)

where 82 is the weight coefficient, which is used to adjust
the importance of the precision relative to the recall.
According to the recommendation in [44], 52 is set to 0.3.
By comparing the data, our proposed method is found
to be superior to other methods in most cases. The max-
imum F-score, AUC and MAE scores are shown in Table 1.
Compared with other methods, the DTDMI method has
better performance under these three evaluation criteria.
The SA method has a higher AUC on the DAVIS data-
set. SA also has a better F-score on the FBMS dataset.
Comparisons on camera capture images. In this
section, we use the eagle-eye inspired multi-camera sensor
to take a set of measured images. The background in the
image is mainly snow, land, and vegetation. Saliency ob-
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jects to be detected are placed between greenery. In this
scene, the target to be detected has specific color and
shape characteristics. The saliency detection result is
shown in Fig.12. In the task setting, saliency detection
results will be applied to the relative position measure-
ment between the target and the camera. Therefore,
methods such as SR, which cannot detect clear boundar-
ies of targets, are not applicable. In addition, we can also
see that SO, MR and GS do not distinguish background
from target very well. The area around the target is also
detected to be salient. In contrast, our proposed method
can detect the target’s location accurately. Because of the
combination of dynamic information in the algorithm,
background interference is well suppressed.

4.2 Relative position estimation experi-
ment

In the experiment, we used the eagle-eye inspired
multi-camera sensor to collect images in real time and
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Table 1 F-score and AUC of our method and other algorithms

Criteria  Dataset COoVv SR MSS GS MR SF SO VAM (6] CoIRS SA Ours

F-score DAVIS 0.5285 0.4496 0.4430 0.3496 0.4190 0.4387 0.4933 0.3177 0.4417 0.3625 0.6555 0.7147
AUC 0.9231 0.8946 0.8026 0.8511 0.8120 0.7799 0.8540 0.7937 0.7497 0.8341 0.9582 0.9303
MAE 0.0840 0.1844 0.0961 0.2052 0.2026 0.0743 0.1593 0.1175 0.0770 0.1400 0.0876 0.0615

F-score FBMS 0.3902 0.4193 0.3509 0.6094 0.5197 0.4195 0.5988 0.3442 0.4078 0.3273 0.7635 0.6986
AUC 0.8712 0.8671 0.7540 0.9104 0.8557 0.7583 0.8991 0.8035 0.7849 0.7913 0.9428 0.9431
MAE 0.1115 0.1771 0.1124 0.1501 0.1738 0.0907 0.1323 0.1483 0.0970 0.1491 0.0813 0.0669

src Ours COoVv MR

Fig. 12

process them online. The image processor adopts an
NVIDIA Jetson nano with four core ARM A57 CPU and
64 GB storage. The camera installation and outdoor nav-
igation tests are shown in Fig.13.

The framework of the experimental process is shown
in Fig.14. In Period 1 of the experiment, the multi-cam-
era sensor is approximately 6 m away from the target. In
this period, the long-focus camera is mainly used as the
image source. Target saliency detection in short-focus
camera view and image matching based on SURF were
performed simultaneously.

The detailed flow of image processing is as follows.
After the image is acquired, the visual information is pro-
cessed using the DTDMI method. The three-channel
RGB image collected by the camera is processed as a
single-channel grayscale saliency map. The grayscale im-
age is then binarized with T%" = 120. Then, we use the
minimum bounding rectangle (MBR) to select a connec-
ted region with a nonzero pixel value in the binary image.
The center of the MBR serves as the basis for roughly
measuring the offset of the target in the x and y direc-
tions under the camera coordinate system. The target to
the camera is calculated by (16).

{

B
H - | -

SA

w2
=

CS

Saliency detection results of the proposed method and eleven other comparison methods on the camera capture image

Fig. 13 Hardware of the UAV navigation platform: (a) Device
installation mode on the UAV; (b) UAV navigation experiment.

As the UAV approaches, the target enters the FOV of
the long-focus camera. The target’s relative position of
the switch of the data source is mainly completed. The
image sequence with target information is captured by a
long-focus camera. The shape characteristics of the tar-
get as a priori information are known. We filter the final
target area based on the aspect ratio and size of the
MBR. The four vertex coordinates of the MBR can be ac-
quired. As Fig.5 shows, pixel points are matched to
to obtain the

known three-dimensional coordinates

target's relative position to the camera.
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Period 1: Target entry long-focus view and
saliency detection in two camera views

Period 2: Saliency detection in long-focus view
and relative position measurement

Fig. 14 Outdoor UAV navigation experiment flow

The target is within the FOV of the long-focus cam-
era in Period 2. The navigation information of the UAV
mainly comes from processing the image from a long-fo-
cus camera. Images are still processed using DTDMI
methods. The DTDMI method can accurately detect sali-
ency targets under the interference of the environment.
After extracting the MBR where the target is located, the
RPnP method is used for relative position measurement.
The relative position measurement results using the
RPnP method are shown in Fig. 15.
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Fig. 15 Relative position measurement result
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In the overall process of UAV navigation, the meas-
ured relative positions of the different cameras can be
smoothly connected. During the experiment, the UAV
keeps moving toward the target. Because of (16), only the
relative position information parallel to the imaging plane
direction can be obtained in Period 1. This period fo-
cuses on directional navigation to ensure that the UAV
moves in the target direction. Period 1 also plays a con-
necting role. Navigation information transitions from es-
timation to accurate calculation. In Period 2, the exact
relative position is calculated by the RPnP algorithm.
UAV can navigate accurately with visual measurement
information.

5 Conclusions

This paper proposes a novel eagle-eye inspired vision
system based on a combination of a long-focus camera
and a short-focus camera. An image processing method
called DTDMI is proposed for salient target detection.
Dynamic saliency features are extracted using the cross-
inhibition mechanism of the eagle visual system. Compar-
ative experiments are conducted, and the results verify
that the eagle-eye inspired visual system can handle tar-
get detection challenges in outdoor UAV capture tasks.
The DTDMI method can eliminate complex background
interference and accurately detect salient targets. The rel-
ative position can be measured based on the multi-cam-
era sensor. Experimental results demonstrate the feasibil-
ity and effectiveness of the designed biological visual sys-
tem and the proposed target detection method.

Future works will focus on detection-tracking soft-
ware design. In addition, due to its small size and light
weight, the eagle-eye inspired multi-camera sensor can be
used as a perception device on other unmanned vehicles,
including the remote operated vehicle and unmanned sur-
face vehicle.
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