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Abstract: Due to the popularity of group activities in social media, group recommendation becomes increasingly significant. It aims to
pursue a list of preferred items for a target group. Most deep learning-based methods on group recommendation have focused on learn-
ing group representations from single interaction between groups and users. However, these methods may suffer from data sparsity prob-
lem. Except for the interaction between groups and users, there also exist other interactions that may enrich group representation, such
as the interaction between groups and items. Such interactions, which take place in the range of a group, form a local view of a certain
group. In addition to local information, groups with common interests may also show similar tastes on items. Therefore, group represent-
ation can be conducted according to the similarity among groups, which forms a global view of a certain group. In this paper, we propose
a novel global and local information fusion neural network (GLIF) model for group recommendation. In GLIF, an attentive neural net-
work (ANN) activates rich interactions among groups, users and items with respect to forming a group’s local representation. Moreover,
our model also leverages ANN to obtain a group’s global representation based on the similarity among different groups. Then, it fuses
global and local representations based on attention mechanism to form a group’s comprehensive representation. Finally, group recom-
mendation is conducted under neural collaborative filtering (NCF) framework. Extensive experiments on three public datasets demon-
strate its superiority over the state-of-the-art methods for group recommendation.
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1 Introduction

With the increasing development of social media,
group activities are becoming more and more popular(l4.
For example, a group of people can take part in an activ-
ity together on Meetup or see a movie that they are all
interested in. Such activities have led to the rapid devel-
opment of group recommendationls 6. Similar to person-
alized recommendationl6-8], group recommendation aims
to address the information overloading issue for groups.
For example, when a group of people is ready to dine out,
group recommendation may filter much of the informa-
tion they are not interested in to help the group focus on
the restaurants they may like.

Traditionally, a variety of group recommendation ap-
proaches(® 19 utilized individuals’ explicit profiles to gen-
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erate group profiles by some predefined strategies; thus, a
group could be regarded as a virtual individual, and then
personalized recommendation methods could be used to
generate group scores on the items. However, these ap-
proaches did not take into consideration the distinct pref-
erences of members in a group. In light of this deficiency,
some model-based methods(!l: 12l have been proposed to
model the generative decision process of a group, which
considered personal explicit profiles and influences of
group members, such as [11, 12].

More recently, there has been an emergence of deep
learning-based approaches modelling inherent embedd-
ings (i.e.,, inherent features) of groups, users and
items(!3-15, Due to the sparsity of group-item interac-
tions, representations of groups (or items) become more
and more significant for group recommendation under a
deep learning framework. For example, some resear-
chers[!5-17 modelled members’ embeddings in a group and
then aggregated them with dynamic influence weights to
obtain the group representation. These approaches work
well for groups with stable members and rich interac-
tions but may not fit groups with high sparsity. To en-
hance group representation, He et al.l18] first leveraged
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item-user interactions and group-user interactions to rep-
resent all members in a group and then indirectly passed
item features to represent groups by aggregating mem-
bers’ representations.

However, there are three challenges faced for group re-
commendation, which have not been solved well by cur-
rent state-of-the-art (SOTA) deep learning-based models:

1) (C1) There are abundant interactions among ob-
jects (i.e., groups, users and items)l? 19 20l For example,
in Fig.1, there are three kinds of interactions (i.e., group-
user, group-item and item-user interactions). Most exist-
ing group recommendation methods only model one (or
two) kind(s) of interactions or indirectly leverage them
all. This may lead to two issues: i) They do not get the
utmost use out of interaction information; ii) An indirect
aggregating strategy may weaken the effects of these ob-
jects, since the feature propagating from one to another
may lose some important information. For example, some
studies first adopt items to represent a user based on
item-user interactions and then leverage group-user inter-
actions to pass item inherent embeddings to group repres-
entations by aggregating users’. Such an indirect feature
propagation process may lose some features appealing to
the group. Thus, challenge 1 is how to make full use of
these interaction information to represent a group.

Group-user
interactions

| Group-item
interactions

User-item
interactions

N
i oy B B

e

e i~ B
Item1 Item2 Item3 Item4
Fig.1 An example on the interaction graph

2) (C2) In personalized recommendation, most meth-
ods jointly consider individual interaction records and
similarity between users. For example, user-based collab-
orative filtering methods collaborate similar users to
make individual recommendations(® 2. This idea can also
be generalized to group recommendation. For example, in
Fig.1, Group 1 is similar to Group 2 since they are both
interested in Items 2 and 3. Then, it is very possible for
Group 1 to like Item 4, which has been selected by Group 2.
Thus, challenge 2 is how to utilize information among
similar groups to enhance group representation under a
deep learning framework.

3) (C3) Different types of features may contribute dif-
ferently to the representation. For example, for groups
with a stable topic, items selected by the group may bet-
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ter reflect the tastes of the group since the target group is
inclined to choose topic-related items. In contrast, for
groups formed by friends, group members' preferences
may better reflect the tastes of the group. However, the
direct concatenation operation or average aggregation
cannot model such influence well, as it considers differ-
ent types of embeddings equally important and does not
investigate the influences among different types of fea-
tures. Thus, challenge 3 is how to design a component to
unite these different interaction features according to
their influences to gain group representation for better
group recommendation.

Motivated by the above observations, in this paper,
we present a model called GLIF to learn global and local
information fusion group representations for group recom-
mendation. In GLIF, we aim to learn two levels of group
representations from global information and local inform-
ation: 1) On the one hand, it learns the global-level group
representation by mining features shared over groups; 2)
On the other hand, it learns local-level group representa-
tion by modelling interactions within a group, such as
group-item interactions and group-user interactions. In
GLIF, we first design a local information representation
module and item representation module, which aim to
make full use of three kinds of interactions to obtain rep-
resentations of items’ and groups’ local features based on
attentive neural network (ANN). Next, we design a glob-
al information representation module to mine similar
groups and generate groups' global representation. Con-
sidering that each similar group has a different impact on
the target group, we adopt ANN to aggregate similar
groups. Then, to model deep interactions of group local
and global representation, we design a global and local in-
formation fusion module based on ANN. Finally, in line
with previous works, we deploy neural collaborative filter-
ing (NCF)22 to model interaction features between
groups and items and then make predictions. We evalu-
ate GLIF extensively on three real-world datasets. Exper-
imental results show that our model consistently outper-
forms the state-of-the-art methods.

In general, the main contributions of this paper are
summarized as follows.

1) To the best of our knowledge, this is the first work
to exploit global information over groups to enhance
group representation for group recommendation.

2) Interactions within a group are fully integrated to
learn group local representation. GLIF learns item and
group embeddings from multiple views and derives the
dynamic weight for each view embedding based on ANN.

3) We provide a principled way to exploit both global
and local behavior of groups to learn a comprehensive
group representation. Meanwhile, we propose a new
framework GLIF to perform global and local information
via an attentive aggregation module for group recom-
mendation.

4) We conduct extensive experiments on three real
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datasets. Our results show that GLIF significantly out-
performs the state-of-the-art deep learning-based group
recommendation models in terms of hit rate (HR) and
normalized discounted cumulative gain (NDCG).

The rest of this paper is organized as follows. Section 2
highlights the related work. Section 3 discusses some pre-
liminaries used in this work. Section 4 describes the over-
all architecture of GLIF for group recommendation. The
experimental results are given in Section 5. Finally, con-
clusion and future work are given in Section 6.

2 Related work

Group recommendation aims to suggest preferred
items to a group of users instead of to an individual user.
Categorized by the group recommendation technique,
there are two lines of research on group recommendation,
namely, memory-based approaches and model-based ap-
proaches.

2.1 Memory-based approaches

Memory-based approaches, which adopt a data-inde-
pendent strategy to aggregate explicit preferences or
scores of members, can be characteristically dichotom-
ized into score aggregation and explicit preference aggreg-
ation approaches!!ll.

The key characteristic of score aggregation approa-
ches is to generate group scores on the target item by ag-
gregating the scores of all members in a group obtained
from individual recommendation models(23-25]. Some early
works adopted predefined score aggregation strategies, in-
cluding average (AVG)2% 291 least misery (LM)RSl and
maximum satisfaction (MAX)[27. However, there was no
outstanding winner within these predefined strategies/9l.
Based on early aggregation approaches, recent works
agreed that users’ influence should be taken into consider-
ation when aggregating individuals’ scores. For example,
GroupSA[2] proposed a social-attention network, which
took social influence and dynamic weighting adjustment
into consideration, to model the voting scheme of a group
and then assigned weights to members to obtain the fi-
nal score for group recommendation.

The key characteristic of explicit preference aggrega-
tion strategies is to generate group preference by aggreg-
ating the explicit profiles (i.e., what he/she likes or dis-
likes) of group members into a virtual profile. Then, these
methods treat a group as a virtual individual and adopt
personalized recommendation models to generate items
that are preferred to a group. For example, McCarthy et
al.2% proposed a conception named the group preference
agent, which could reflect a group of users’ preferences.
To obtain this group agent, McCarthy et al.29 first util-
ized interaction vectors of users on musical genres (e.g.,
new music, hot country, and dance) to generate a mem-
ber’s explicit preference and then aggregated these expli-
cit preference vectors by adding these members' prefer-

ence vectors. Yu et al.89 first gathered all the features of
users (e.g., actor, keyword) by relative importance as lex-
icon vectors and then merged these users’ vectors based
on total distance minimization so that group vectors,
which were close to most members’ vectors, could be ob-
tained.

2.2 Model-based approaches

Model-based approaches explore and utilize interaction
relationships to make group recommendations/!l: 12; 31, 32],
For example, Liu et al. 12 agreed that the most influen-
tial member could dominate the decision of the group.
Yuan et al.l'll] proposed a generative model named con-
sensus model (COM) to model the decision process of
group activities that considered users’ influence and users’
group behaviors. Note that both of these methods util-
ized influences among users to model the process of a gen-
erative decision of a group, but users’ influences were
fixed in different groups.

Distinct from the two methods mentioned above, re-
cently, with the successful application of attentive net-
work[33, 34 several attention-based models have been elab-
orated to support the influential mechanism for group re-
commendation(!5-18, 28], In such models, the influence of
users is dynamically determined by a specific group or
item. Cao et al.!%] first leveraged a neural attention net-
work to learn the relative influence among members in a
dynamic way and then utilized group members’ prefer-
ences to represent the group preference by considering
group-user interactions. Tran et al.ll7 first employed a
subattention neural network to model user-user interac-
tions in a group and then exploited the remaining mem-
bers to represent a user’s preference. Finally, they aggreg-
ated a group of users by average strategy. He et al.ll8l
fused users, items and groups’' features from multiple
views by attention mechanism to capture representations
and then made group recommendations. Firstly, they
leveraged item-user interactions to obtain user represent-
ation and item representation. Secondly, they adopted
group-user interactions to obtain group representation.
Finally, they used attention mechanism to aggregate user
representation to gain group representation and optim-
ized it under the NCF framework. He et al.[l6] adopted a
multilayer perceptron (MLP)B% to model group-user in-
teractions and leveraged item-user interactions to aggreg-
ate users’ representations. Guo et al.3% introduced friend
preferences from the social network and further exploited
group-level similarity with a hyperedge embedding
scheme to learn group representation.

Most existing works usually conduct interaction rela-
tions (i.e., item-user, group-user, group-item) for group
representation, which can be considered as the local in-
formation for a group. However, there also exists global
information among similar groups, which may enhance
group representation from a global view. To sum up,
there are three major differences between the works men-

@ Springer



334

tioned above and ours: 1) We make full use of three dir-
ect interactions (i.e., group-user, group-item and item-
user) to represent groups and items instead of using par-
tial or indirect interactions; 2) We conduct group recom-
mendations based on both global and local information
instead of just local interactions for groups. 3) Our work
introduces an attention mechanism on different levels of
group representation to better characterize group prefer-
ences.

3 Problem statement and preliminaries

In this section, we present the problem of group re-
commendation and then introduce two types of neural
network models, i.e., type-based ANN and k types-based
ANN, that will be used in the paper.

3.1 Notations and problem statement

We use bold capital letters (e.g., X) and bold lower-
case letters (e.g., ) to represent matrices and vectors, re-
spectively. We employ non-bold letters (e.g., z) to de-
note scalars and non-bold capital letters (e.g., X) to de-
note sets. If not clarified, all vectors are in column forms.

Let U = {u1,u2, - ,u,}, V={v1,va,--
G={91,92,- ,9,+ be the sets of users, items and
groups, respectively. The [-th group ¢; € G consists of a

, U, and

set of users, i.e., group members u;; € U. There are three
kinds of observed interaction relations among U, V and
G, namely, group-item interactions, item-user interac-
tions and group-item interactions. Item-user interactions
denote an item that has been selected or rated by a user.
Group-user interactions denote that a user is in a group.
Group-item interactions denote that a group has an inter-
to de-

sXm

mxn b0 denote

action history with an item. We use A = [ay]
note group-item interactions, B = [bs]
item-user interactions and C = [¢;],,,, to denote group-
user interactions.

Given a target group ¢, the problem of group recom-
mendation is defined as recommending a list of items
which users in group ¢; should be interested in, which is
formally defined as

Input: U, V,G, A, B, C

Output: One function that generates a score for each
group on an item f:V — R.

3.2 Definition

In this subsection, we present some definitions and
concepts used in this paper.

Definition 1 (Inherent embedding). Let u € R?,
v e R?and g € RY be user v € U, item v € V, and group
g € G inherent embeddings, respectively, where d de-
notes the dimension of a vector. Under deep learning
framework, inherent embeddings are learnable paramet-
ers that can reflect the latent interests of a user (or
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group) or the latent features of an item. In our paper, in-
herent embeddings are initialized by the Xavier
strategy[37.

Definition 2 (y-neighbor set) (N])). The ~-neigh-
bors set consists of the top v groups, which are similar to
the target group g;. Firstly, similarities between target
group ¢g; and the rest groups are calculated. Then, the
rest groups are ranked by similarities. Finally, top-vy
groups g1, gi,2, - -
of group g, denoted as N,
to control the number of neighbors. Note that parameter

, g1,y are selected as ~-neighbors set
where ~ is a hyperparameter

~ favors the modelling of high semantic information over
groups since it is helpless (even noise) for capturing glob-
al-level semantic features if beyond the scope of ~.

Definition 3 (Global information). Inspired by
homophily theory, which shows that people with high
similarity tend to share common tastes3® 39, we propose
the concept of global information among groups with high
similarity. According to Definition 2, for each group
g1 € G, global information is defined as {gi x| g,k €
Ngsaur € G}

Definition 4 (Local information). In contrast, loc-
al information means learning embeddings from interac-
tions within groups. Suppose we have a target group gi,
each user u; € I, (¢1) and item v; € I,, (g;) is called local
information of group gi. I. (g:) and I, (g:) are the sets
consisting of users and items, respectively, which have in-
teracted with group ¢;.

3.3 Attention models: Type-based ANN
and K types-based ANN

In this subsection, we present two different attention
models to aggregate semantic embeddings in different
situations.

Type-based ANN (TANN). TANN aims to ag-
gregate the same type of inherent embeddings to repres-
ent the target embedding. Suppose there is a set
I (g;) = {p}:, (i =1,2,--- ,k)} including k objects of the
same type that have interactions with the target object
g;. Denote the t-type interaction as pzz Let pjl and gj
be embedding vectors for pﬁb and g;. Then, we employ a
neural network named TANN to aggregate content em-
beddings. Formally, the aggregated t-type content embed-
dings for g; are given as follows:

q; =TANN (q]',It (qj)) = Z aip;’,i (1)

P51 (a5)

_ exp {MLP ([a; & pj:])}
Yot seni(ay) P AMLP ([0 ® p,]) }

(2)

%)

where @ denotes the operation of concatenation and MLP
is multi-layer perceptron that uses the rectified linear
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Type-based __|
representations

The same type inherent embeddings
aggregation with attention

Fig. 2

unit (ReLU) function as the nonlinear activation function.
Fig.2(a) shows the detailed architecture of the TANN.

K types-based ANN (KTANN). KTANN aims to
combine k types of embeddings to obtain a semantic fu-
sion representation for the target g;. Suppose we extract k
types of features of target q from k types of views. Let q;v)
and g}(t=1,2,---,k) be the embeddings of ¢; and k
types of features, respectively. Then, we use a neural net-
work to fuse k types of features and its self-embedding;:

3)

k
KTANN(g;) =) fd]

exp {MLP ([Q? D qﬂ)}

Bi = . (4)
Cioexp {MLP ([¢) @ a}]) }
Fig.2(b) shows the detailed architecture of the
KTANN.

4 Framework of GLIF

4.1 Overall framework

In this subsection, we formally present a novel global
and local information fusion neural network for group re-
commendation (GLIF). GLIF aims to exploit both global-
level and local-level pairwise groups and items for model-
ling group preference and item feature for group recom-
mendation. Fig.3 presents the overall architecture of
GLIF. It first leverages item-user interactions to repres-
ent each item. To obtain a group's local representation, it
jointly utilizes group-user interactions and group-item in-
teractions. Next, it uses global information between dif-
ferent similar groups to obtain the group's global repres-
entation. Then, it adopts ANN to fuse global and local
representations. Finally, it uses fully connected layer

representations
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k types-based

K types embeddings
fusion with attention

Overall architectures of two attention models: (a) TANN; (b) KTANN.

(NCF) to model the interaction between group and item
and an FCL to predict a score.
4.1.1 Item representation learning module

Different from most previous works that regarded
item inherent embedding as final item representation,
GLIF models item representation from item-user interac-
tions. Intuitively, if an item has been selected by a user,
it should have some features appealing to the user. To
understand this, let us consider an example that if an
item has been rated by a user who likes comedy films, it
may contain some comic features. In light of such an idea,
we design a module to learn user-view item representa-
tion v;’ based on a two-layer attention neural network,

>

wg €Ly (v5)

'U? =TANN (’l}i,lu (U»L)) =

()

QUi

where «; is the attention weight of w;j;, which is
calculated in (2), w;,; is the inherent embeddings of user
j, and I, (v;) is a set of users who have interactions with
item v;.

Obviously, the inherent and user-view item embed-
dings (i.e., v; and vy, respectively) imply the comple-
mentary features of an item from different perspectives.
We design an ANN-based KTANN to fuse these two
types of item embeddings as the item representation. Ac-
cordingly, item representation for item wv; is finally ob-
tained by

v; = KTANN ('Uz) = fiv; + 52'0?

(6)

where (81 and (B2 are learned from ANN, as described in

(4).
learning.
4.1.2 Group local representation learning module

Fig.3(a) shows the process of item representation

The key idea of most group recommendation models is
to aggregate inherent embeddings from group members to

@ Springer
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© ORI A,
Interaction feature [O[I[OMI[OML] B,
lea'rni.ng and | - ORI ORI O] C.
prediction layer ( FCL )
T [O[O[OF O[O]..] v,
( NCF J [O[O[O[T[O[O]..] g
(d)
K types-based |
attention layer
K types-based |
attention layer | Type-based
attention layer
Type-based | L Inherent
attention layer embedding layer
neighbors
el Rank by
/ similarity
Inherent S mltﬁiiﬁ'f
embedding layer A
Similarit | Neighbors
imilari .
[ calculatio);l finding process
Input layer rogp-itei
Y; g9 A

Fig. 3 The overall architecture of GLIF: (a) Item representation learning module; (b) Group local representation learning module; (c)
Group global representation learning module; (d) Group global and local representation fusion module; (¢) NCF and predicting module.
A, . is the [-th row in group-item interactions A. Bj . is the j-th row in item-user interactions B. Cj . is the I-th row in group-user
interactions C. v; and g; are one-hot vectors of the item and group, respectively.

obtain the group local representation, regardless of group-
item interactions[15-17, 40, 411 Some works have tried to ob-
tain better user embeddings enhanced by item-user inter-
actions and then aggregated group members’ embed-
dings('8l. These methods may raise two issues: 1) They do
not take full use of group-item interactions since items se-
lected and rated by a group naturally reflect this group’s
tastes. 2) This feature propagation process, (i.e.,
item—user—group), may lose some features appealing to
the group. Considering these two issues, GLIF models a
group'’s local representation from two kinds of interac-
tions, including group-item interactions and group-user
interactions. Specifically, we design a local information
model based on TANN and KTANN to derive the com-
plementary group’s local representation. Firstly, two
TANNSs are used to aggregate members’ inherent prefer-
ences and items’ inherent features to obtain user-view
group embedding and item-view group embedding, re-
spectively. Then, KTANN is leveraged to aggregate three

@ Springer

kinds of group embeddings, including group inherent em-

bedding, to derive ¢;'s local representation gl(l),

g =TANN (g0, L. () = >  oafw,; (7
uy, €1u(91)

gl =TANN (¢, L (9)) = >  alw (8)
vy, €1y (91)

g\ = KTANN () = Bog! + Big" + P29 9)

where £1(j = 0,1,2) are attention weights of gf, g, g},
respectively, which are calculated in (4), g is the
inherent embedding of g;, g;* is the user-view embedding
of gi, g/’ is the item-view embedding of g;, and oj and «;
are weights of w;; and v;;, respectively, as described in
(2). I.(g:) and I, (g:) are sets of users and items that
have interacted with g;.
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Fig.3(b) illustrates the design of the group local rep-
resentation learning component. With such a soft atten-
tion mechanism, a dynamic weight can be assigned to a
user by his/her influence (7)I'2, and also an unfixed
weight can be assigned to an item by degree of group
preference on varying items (8). Such attention mechan-
ism may investigate different influences among different
types of features. Also, this mechanism is more general,
and existing heuristic predefined aggregation can be re-
garded as its special case. For example, AVG (e.g., aver-
age strategy) is parallel to allocating a uniform weight to
every member; however, LM (e.g., least misery) and MS
(e.g., max satisfaction) mean giving nonzero weights to
partial members only. Considering two examples: 1)
When a group discusses whether to watch The Lion King,
the members who have watched many Disney movies
should be more influential and should be assigned a lar-
ger weight. 2) A group may prefer to watch comedy
movies, so comedy movies should be better for represent-
ing the group, and a larger weight should be allocated. As
noted previously, history items should contribute more to
learning representations of the groups with a stable topic,
while the members’ preferences should contribute more in
the groups consisting of friends or people with close rela-
tionships, so we adopt dynamic weights learned by neur-
al networks to aggregate item-view embeddings and user-
view embeddings of g; (9).

4.1.3 Group global representation learning module

Except for local information, there also exists global
information among different groups. Specifically, groups
with high similarity tend to have similar tastes. In this
module, we capture global information for learning glob-
al representations of groups. To obtain group global rep-
resentation, we first calculate the Pearson’s correlation
coefficient (PCC)“2 as similarity and then sample a fixed
size neighbor set by selecting top-vy similar groups. Ac-
cordingly, we denote the sampled neighbor set of g, € G
as the y-neighbor set N (gi). Then, we employ TANN to
aggregate the inherent embeddings of neighbors g1 €
N (gi). Formally, the group global embedding gl(g> for g

is formulated as follows:

9\’ = TANN (g1, N (9)) = > argr  (10)

91,k ENG (91)

where «ay, is the attention weight of the k-th neighbor of
g1, as described in (2).
4.1.4 Group global and local representation fusion
module

We design a module to fuse global information with
local information to enhance group representation. To ob-
tain the final group representation g;, we implement the
aggregation function as follows:

G. = KTANN (g)) = aog? + a19® + azg!® (11

where ax(k =0,1,2) are the attention weights of group

inherent embedding g?, group local representation gl(l)

and group global representation gl(g), as described in (4).
Fig.3(d) illustrates the design of the group global and
local representation fusion component.
4.1.5 Interaction feature learning and predicting
module
NCF is a neural network model for personalized re-
commendation. Its key idea is to learn an interaction
function from history interaction records with inputs of
user inherent embeddings and item inherent embed-
dings(!5: 221, In our paper, NCF customized by [15] is ad-
opted to learn embeddings and interaction function.
Formally, given the final item representation v; and
group representation g;, the hidden interaction vector hy ;
is computed by

hii = W' (Wyy [ Ti] + Wegi + Was +b)  (12)

where WT, Wgw, Wy, W, and b denote weight matrices
and bias vector, respectively, ® denotes element-wise pro-
duct operation. We simply use ReLU o (z) as a nonlinear
activation function.

Finally, we adopt a fully connected layer with sig-
moid activation function to map hidden interaction vec-
tor h; ; to the score of group g; on item wv;:

ri; = Sigmoid (W}:Fhl,i + b) (13)

where W,l and b are learnable parameters. Fig.3(e)
shows the design of NCF and predicting components.

4.2 Model optimization

Pairwise learning is adopted to optimize the paramet-
ers since we address the top-K group recommendation
task. Pairwise learning considers scores of positive in-
stances and negative instances and assumes that the pre-
dicted scores for positive instances are near 1 and scores
for negative instances are near 0. In line with [15, 18], we
employ regression-based pairwise loss:

loss = Z(lyi,i/)eT (Tli - rli' - 1)2 (14)

where T denotes the training set, in which each instance
is a triplet (l,i,i/) meaning that group g¢; has interacted
with item v; but not interacted with v, r;; and 7, are
scores for group g; on items v; and v,/, respectively.

4.3 Time complexity

We further analyse the time complexity of the pro-
posed method. The time complexity of the item repres-
entation learning module is O (ed), where e is the num-
ber of users used to represent an item and d is the em-
bedding dimension. In the group local representation
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learning module, the time complexity of the user-view
group representation learning component and item-view
group representation learning component are O (nd) and
O (cd), respectively, where n and c are the group size and
the number of items used to represent each group, re-
spectively. In the group global representation learning
module, the time complexity of the procedure calculating
Pearson’s correlation coefficient (PCC) of each paired
group is O (52), where s is the number of groups. It
should be noted that we can calculate all PCCs and find
top-y neighbors for each group first, and it needs no more
calculation for the next prediction. Thus, in the predic-
tion stage, its time complexity is O (1). In terms of the
component of aggregating neighbors, its time complexity
is O (vd), where + is the neighbor size. The time complex-
ity of the global and local representation fusion module is
O (2d). The time complexity of the interaction feature
learning and predicting module is O (d). Overall, in the
prediction stage, the time complexity of GLIF is O (ed) +
O(nd) + O(cd) + O(vd) + O(2d) + O(d) = O((n+ c+ e+
v)d). Please note that the item representation learning
module, user-view group representation learning compon-
ent, item-view group representation learning component
and the component of aggregating neighbors can be de-
ployed on different CPUs or GPUs for executing in paral-
lel since their results are independent of each other. Thus,
the time complexity of parallel GLIF is O (max(n,c, e, )d).
In our model, we run it in parallel.

5 Experiments

In this section, we conduct extensive experiments with
the aim of answering the following research questions:

1) (RQ1) How does GLIF perform VS. state-of-the-
art baselines for group recommendation?

2) (RQ2) How do different components, e.g., group
local representation or group global representation, affect
the model performance?

3) (RQ3) How do various hyperparameters, e.g.,
group neighbor size or embedding dimension, impact the
model performance?

4) (RQ4) How does the attention mechanism work?

5.1 Experimental settings

5.1.1 Datasets

We conduct experiments on three real public datasets:
CAMRa2011 is a movie dataset that consists of movie
rating records for individual users and households. The
dataset that is prepared and available for download by
the paper[”l. In line with [15, 16], we transform explicit
rating records into positive instances. If a user/group has
rated a movie, the score will be set to 1; otherwise, it will
be 0. MS and MR are from MovieLens 1M datal. It con-
tains one million movie ratings for 4K movies by over 6K

L https://grouplens.org/datasets/movielens/
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users. Following the approach in [17, 24], we extract two
datasets from this data: MS and MR, respectively. MS
contains groups with high user-to-user similarity. MR
contains groups that are formed randomly. For a given
group in both cases, if a movie is given 4 stars or above
by every member in the group, then the movie is adop-
ted by the group.

Table 1 shows the statistics of the three datasets.
Note that from the first dataset to the last dataset, the
sparsity of group-item interactions increases.

Table 1 Dataset statistics

Dataset CAMRa2011 MS MR
Number of items 7710 783 447
Number of users 602 4883 3431
Number of groups 290 3000 3000
Avg. No. of users of a group 2.08 5 5

Avg. No. of interacting items of a group 500.23 12.19  5.17
Avg. No. of interacting groups of an item 18.82 46.71 34.71
Avg. No. of interacting items of a user 193.27 44.14 81.23

Avg. user similarity in a group 0.296 0.495 0.163

5.1.2 Baselines

We evaluate the performance of GLIF by comparing it
with the following state-of-the-art models:

1) NCF-Based. Based on three predefined aggregation
strategies, we employ SOTA neural recommendation
NCF222 to make group recommendations. neural collab-
orative filtering-least misery (NCF-AVG) adopts average
strategy to aggregate the preference scores of individuals
in a group, which are generated by NCF, as the group
preference score. This aggregation strategy is equivalent
to assigning a uniform weight to each user in a group.
NCF-LM assumes that the least satisfied member determ-
ines the final group decision. Thus, it regards the minim-
um score of individuals as the group preference score and
then optimizes this score. This strategy is equivalent to
assigning zero weight to those users whose score is higher
than the minimum score. NCF-MS[27 applies the maxim-
um satisfaction strategy to maximize the satisfaction of
group members. In our work, the maximum score is
treated as the preference of the group.

2) Factorization machines-average (FM-AVG)F. Sim-
ilar to NCF-AVG, FM-AVG takes the average score of all
group members as the group preference score and models
the interactions by the linear relation of matrix factoriza-
tion.

3) DeepGroup?®!3]. DeepGroup — A deep neural net-

2 https://github.com/hexiangnan /neural collaborative filtering

3 https://github.com/sarinasajadi/DeepGroup/tree/main/datase-
t/sushi

4 https://github.com/LianHaiMiao/Attentive-Group-Recommen-
dation
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work for learning group representations and decision
making, learns group representations by employing aver-
age aggregator to fuse members’ preferences.

4) AGREE!.  Attentive group recommendation
(AGREE) directly aggregates the users' inherent embed-
dings with the group inherent embedding under a stand-
ard attention network and adopts a customized NCF to
model the interactions between groups and items.

5) MoSANUI7. Medley of sub-attention networks
(MoSAN) directly sums all members’ preferences as a
group’s preference. Each member’s preference is fused
from the preference of the remaining members in the
group by a sub-attention network.

6) GAME[!8l. Graphical and attentive multi-view em-
beddings (GAME) employs graph convolutional network
to aggregate first-order neighbors to obtain user/item
representations from multiple views and utilizes a soft at-
tention network to learn the item-related influence of
members.

5.1.3 Evaluation metrics

The leave-one-out evaluation protocol is adopted to
evaluate the performance of GLIF, which has been widely
applied to evaluate the performance of the top-K recom-
mendations!% 4345l Since it is too time-consuming to
rank all items for each group, we follow the common
scheme that randomly selects 100 negative items and
ranks the testing item among the 100 items[l5 18: 22, 46, 47],
Following previous works, two widely used evaluation
metrics at top-K recommendations are adopted: Hit ra-
tio (HR) and normalized discounted cumulative gain
(NDCG)[15; 16, 18, 22, 41] denoted HR@K and NDCG@K,
respectively. Larger values indicate better performance.
We calculate the two metrics for each test instance and
report the average. The formulas for the two metrics are
defined as follows:

 #hitQk
HR =TI (15)
K 27‘el71 -1
DCGaK
NDCGAK =+ =res (17)

where #hit@Qk denotes the number of hits in the test set
and N is the total number of test cases. rel; = 1 indicates
that the item at rank 4 in the Top-K recommendation list
is in the test set; otherwise, rel; = 0. IDCG means the
maximum possible DCG through ideal ranking.
5.1.4 Implementation details

GLIF was implemented in PyTorch. For hyperpara-
meter tuning, 6 negative instances were randomly
sampled for each group. The embedding layer and other

layers were initialized by the Xavier strategy and stand-
ard normal strategy, respectively. The embedding size is
set as d = 32. Root mean square prop (RMSProp) was
adopted as the optimizer for all gradient-based methods,
where the mini-batch size, learning rate and dropout rate
were set as 256, 0.0001 and 0.2, respectively. We fol-
lowed schemell®!, which conducted a paired two-sample ¢
test on NDCG@10 based on the 5 experimental results
and reported the average results in Table 2.

Table 2 Time complexity and runtime of all models in each
iteration (s). n is the group size, d is the embedding dimension,
c is the number of items used to represent each user, m is the
number of groups used to represent each user, fis the number
of users used to represent each item, k is the number of groups
used to represent each item, e is the number of users used to
represent each item, v is the neighbor size.

Model Complexity Time consuming
NCF-AVG 0(nd) 6.32
NCF-LM O(nd) 6.15
NCF-MS O(nd) 6.23
FM-AVG O(nd) 6.87
DeepGroup O(nd) 7.36
ACGREE O(nd) 9.45
MoSAN 0(n2d) 12.23
GAME O((nc+nm+ f+k)d) 20.32
GLIF O (max (n, c,e,v) d) 11.33

5.2 Experimental results

5.2.1 Overall performance comparison (RQ1)
Effectiveness. We compare our GLIF with some
state-of-the-art deep learning-based group recommenda-
tion models. The performances of all models are reported
in Table 3, where the best results are highlighted in bold,
and second-best results are underlined. According to
Table 3, 1) GLIF achieves the best performance on three
datasets for group recommendation, and its results are
significant in most cases. This demonstrates that our pro-
posed GLIF model is effective under attentive neural net-
works and the positive effect of global and local informa-
tion fusion solution for group recommendation. 2) Al-
though the similarities of members in a group vary from
three datasets, our model can consistently achieve the
best performance. This indicates that our model can be
adapted to diverse datasets. 3) Among the NCF-based
methods, in most cases, NCF-AVG performs better than
NCF-LM and NCF-MS. Our explanation is that the ag-
gregation strategies of the latter two only focus on the
minority of members, while NCF-AVG can take all mem-
bers in a group into consideration. Thus, it can describe
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Table 3 Overall performance comparison on CAMRa2011, MS and MR datasets. ** for p <0.01 and * for p <0.05

Dataset Metric NCF-AVG NCF-LM NCF-MS FM-AVG  Deep Group AGREE MoSAN GAME GLIF
HR@5 0.583 3 0.5714 0.5719 0.5427 0.563 7 0.5850 0.587 3 0.5909 0.591 8
HR@10 0.776 5 0.771 3 0.751 2 0.709 5 0.764 5 0.779 3 0.7751 0.786 4 0.789 3
CAMRa2011 NDCG@5 0.396 9 0.396 3 0.3850 0.367 2 0.379 6 0.402 5 0.402 4 0.402 3 0.4030
NDCG@10 0.462 5 0.458 1 0.4441 0.420 3 0.4335 0.466 2 0.463 1 0.4670 0.467 3

p-value 1.14E-10** 5.06E-11** 1.03E-13** 2.10E-16™* 2.38E-7** 8.16E-3* 2.94E-8** 3.63E-2* -
HR@5 0.5919 0.6331 0.644 3 0.643 2 0.652 3 0.659 6 0.664 1 0.659 7 0.664 3
HR@10 0.8315 0.8107 0.822 5 0.824 3 0.8229 0.8323 0.8177 0.8322 0.8355
MS NDCG@5 0.473 5 0.459 2 0.466 2 0.472 2 0.479 2 0.4733 0.470 2 0.483 8 0.482 0
NDCG@10 0.5221 0.5119 0.519 8 0.5210 0.522 5 0.529 4 0.516 3 0.5325 0.534 4

p-value 1.30E-11** 6.55E-15" 1.86E-13" 3.55E-11** 3.57E-13" 2.46E-9** 3.03E-13* 6.01E-7** -
HR@5 0.635 2 0.633 2 0.623 5 0.630 3 0.629 6 0.6410 0.6521 0.655 5 0.656 1
HR@Q10 0.784 2 0.784 6 0.778 5 0.783 8 0.781 8 0.790 1 0.7975 0.793 2 0.799 3
MR NDCG@5 0.453 2 0.451 8 0.444 3 0.450 5 0.452 3 0.457 6 0.452 3 0.464 1 0.464 3
NDCG@10 0.5029 0.500 3 0.490 2 0.498 6 0.496 9 0.506 9 0.505 4 0.5010 0.5107

p-value 6.92E-10™  2.39E-9™ 2.43E-9*  1.55E-10" 2.51E-13" 248E-7** 3.81E-9™ 1.25E-10™ -

group preference more comprehensively. 4) Compared
with predefined aggregation strategies methods, i.e.,
NCF-AVG, NCF-LM and NCF-MS, ANN-based methods,
i.e., AGREE, MoSAN, GAME and GLIF, perform better.
This indicates that the traditional score aggregation
baseline methods are insufficient to make group recom-
mendations well, while ANN shows remarkable superior-
ity, which dynamically assigns weight to each member by
learning from interactions. 5) GAME underperforms
GLIF in most cases. The reason is that the feature
propagation process (item—user—group) may weaken the
effect of items that reflect group preference.

Efficiency. Since all the proposed algorithms rely on
stochastic gradient descent, we show the runtime of the
methods performed on CAMRa2011 in one iteration in
Table 2. In practice, all the algorithms would converge in
less than 30 iterations. Compared with NCF-based meth-
ods, AGREE, MoSAN GAME and GLIF need more
runtime by adding extra attention networks. Among at-
tention-based models, GAME and GLIF need to com-
pute multiple attention weights to further identify differ-
ent items or groups; thus, they cost more time while per-
forming better than AGREE and MoSAN. Notably, GLIF
costs approximately 1.2 times as much as AGREE, while
GAME costs approximately 2.2 times as much as
AGREE. Given the above analysis, we empirically con-
clude that our method achieves a good compromise in ac-
curacy and time efficiency.

5.2.2 Study on the components of GLIF (RQ2)
The key characteristics in our proposed GLIF model
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are: Item representation learning module that captures
item features based on item-user interactions; the group
local representation learning module that captures group’s
local preference based on group-item and group-user in-
teractions; the group global representation learning mod-
ule that captures group’s global preference based on the
similarity among groups; and the global and local repres-
entation fusion module that captures group’s comprehens-
ive representation based on the attention mechanism.

Here, we study the components of GLIF by evaluat-
ing five variants: 1) GLIF-nGIR without leveraging the
group-item interactions to represent groups (i.e., items’
fusion representation by group). 2) GLIF-nIUR without
embedding from item-user interactions (i.e., users’ fusion
representation by item). 3) GLIF-nGR without consider-
ing global information (i.e., global representation). 4)
GLIF-nGLF adopting averaging strategy to fuse global
and local representations instead of attention neural net-
work. 5) GLIF-nLR without considering local informa-
tion. 6) GLIF-T that replaced all type-based ANNs as av-
erage aggregators. 7) GLIF-K that replaced all K types-
based ANNs as average aggregators.

Fig.4 depicts the recommendation performance of the
five variants in comparison to GLIF on NDCG. Accord-
ing to it, GLIF consistently and significantly outper-
forms the five variants on three datasets. This indicates
that all components are beneficial to model group de-
cisions, and combining them contributes to better per-
formance. Specifically,
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Fig. 4 Performance on the variants of GLIF

Item representation. GLIF-nIUR performs worse
than GLIF on all three datasets, which indicates that
mining item features from user preferences is useful since
user preferences can reflect item features to some extent.
Among the three datasets, GLIF-nIUR performs worst
(against GLIF) on MR dataset. This may due to that
compared with the other two datasets, MR dataset con-
sists of fewer group-item interactions. Thus, item repres-
entation learned from item inherent embedding is not suf-
ficient, and user inherent embedding may be a good com-
plement to item representation.

Group's local information representation. GLIF-
nLR always performs worse than GLIF. which indicates
that it makes sense to derive group local representation
based on user-view and item-view group representation
and assigning dynamic influence weights to them is mean-
GLIF-nGIR shows
worse performance than GLIF, which indicates that it is

ingful for group recommendation.

useful to compress item inherent embedding rated by
group into group representation. It is noticeable that the
performances of GLIF-nLR, GLIF-nIUR and GLIF are
constantly improving on all three datasets. Our explana-
tion is that they consider one, two and three types of in-
teractions, respectively, which indicates that utilizing
more interactions results in more accurate group prefer-
ence.

Group global information representation. Com-
pared with GLIF, GLIF-nGR performs slightly worse,
which demonstrates that utilizing information among
groups may enrich group representation for group recom-
mendation. We can also observe that the gaps between
GLIF-nGR and GLIF on MR are larger than those on the
CAMRa2011 and MS datasets. Our explanation is that
with increasing sparsity, just interactions within a group
are too crude and can provide very limited latent inform-
ation to help infer group preference. Global information
may become a good complement. Thus, to address the
cold-start problem caused by group-item interaction
sparsity, it is better to fully exploit sharing features
among groups for group recommendation. It can be ob-

served that GLIF-nGR performs better than GLIF-nLR
on all three datasets, which indicates that local informa-
tion is more influential than global information for group
preference on our datasets.

Global and local representation fusion. The
primary motivation of this component is to learn vari-
able attention weights for group global and local level
representation, rather than the commonly used uniform
weighting strategy. We can observe that compared with
GLIF-nGLF, GLIF performs better on all three datasets,
which indicates that it is meaningful to adopt an atten-
tion mechanism to fuse global and local representations.
We can also observe that GLIF-nGLF performs worse
than GLIF-nGR on the MS datasets. One possible ex-
planation is that adopting a simple average strategy may
not mine sharing features to reinforce group representa-
tion or even weaken it. However, our model adopts the
attention mechanism to learn the attentive and dynamic
weights of the group’s global and local representations, in
which a higher weight indicates that the representation is
more important; thus, its contribution is more significant
for the group's final representation. Therefore, GLIF can
always perform better than GLIF-nGR, while GLIF-nGLF
cannot.

Type-based ANN and K types-based ANN. Com-
pared to GLIF-T and GLIF-K, GLIF performs better,
which validates the effectiveness of the type-based ANN
and K types-based ANN. One reason is that GLIF-T can
identify important objects (i.e., items, users, and groups),
and GLIF-K can mine features that are significant to
group recommendations by allocating proper weights to
each object and different features.

5.2.3 Hyperparameters sensitivity (RQ3)

We conduct experiments to analyse the impacts of
two key parameters, e.g., embedding dimension d and size
of sampled group neighbors 7, for each group on three
datasets. Fig.5 depicts the impact of embedding dimen-
sions on three datasets, and Fig.6 depicts the impact of
group neighbor sizes on three datasets.

According to Fig.5, we find that when d varies from 8
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to 32, NDCGs on the three datasets increase in general
since better representations can be learned. However, the
performance becomes stable or slightly worse when d fur-
ther increases. Our explanation is that an oversize embed-
ding dimension leads to an overfitting issue. Therefore,
the embedding dimension of GLIF is set to 32.

To investigate the effect of group neighbor size v on
the recommendation performance, group neighbor size
was searched in [5, 10, 20, 30, 40, 50, 60, 70]. According
to Fig.6, we can find that: 1) As v increases, NDCG first
rises and then declines. The decline may be due to the
decreasing average similarity (i.e., Pearson’s correlation
coefficient). Low average similarity may be caused by
high diversity among groups. In other words, as the
neighbor size increases, the preferences of groups become
more diverse, and it is more difficult to extract shared
tastes from group neighbors. With the diversity of groups
increasing, it may involve more noises for calculating
group preference. Thus, as - further increases, increasing
noise leads to worse performance. 2) Compared with aver-
age-based aggregating strategy, attention-based strategy
can always perform better, which demonstrates that util-
izing attention mechanism to assign different weights
may capture better group representations from global in-
formation. 3) Each dataset has different optimal values of
7, which are 10, 40 and 60, respectively.

Note that from dataset CAMRa2011 to MS, then MR,
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group-item interactions become increasingly sparse. This
indicates that the fewer group-item interactions within a
group, the more global information GLIF needs to en-
hance group representation. Therefore, the neighbor sizes
are set to 10, 40 and 60 for CAMRa2011, MS and MR,
respectively.

Dropout is a very important technique in deep neural
networks to avoid overfitting. Fig.7 shows the NDCG@10
metric on three datasets with different dropout rates. On
the three datasets, as the dropout rate increases, the per-
formance increases before reaching its peak. As the dro-
pout rate surpasses 0.2, the performance on all three
datasets decreases. Thus, on three datasets, we set the
dropout rate to 0.2.

5.2.4 Case studies on attention (RQ4)

Since many existing works mentioned in Section 2
have evaluated attention-based member-aggregating
strategy or item-aggregating strategy, we conduct experi-
ments to explore how attention mechanism works on fus-
ing global information (i.e., group neighbors). Thus, we
randomly sampled 10 groups for case studies, and each
group contained 10 groups.

According to the heatmap depicted in Fig.8, we have
two observations: 1) On the whole, attention weights and
PCCs of group neighbors gain similar results, which
demonstrates the effectiveness of both methods in find-
ing similar groups. 2) The discrimination of attention
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Fig. 8 Visualization for the sampled 10 groups on attention
weight and PCC of 10 group neighbors, where the z-axis denotes
the relative neighbor-id and the y-axis denotes the group-id.
Darker color means larger value.

weights is more obvious than that of PCCs. For example,
the neighbors of group 4 have obviously different atten-
tion weights but not PCCs'. This is probably because
group 4 has few history interactions (76 interaction re-
cords), and thus some influential groups (e.g., neighbor G
with 1847 history interactions)
treated as similar groups that have limited contribution
to learning the representation of group 4. However, atten-
tion can dynamically assign group neighbors’ weights by
learning-rich interactions, which shows remarkable superi-
ority.

may be mistakenly

6 Conclusions and future work

In this paper, we introduce the problems of group re-
commendation and propose a novel attentive neural net-
work model under a deep learning framework, i.e., GLIF.
Specifically, we utilize three kinds of interaction informa-
tion to generate group local representation and item rep-
resentation. Furthermore, it learns global-level group rep-
resentations by finding similar groups and aggregating
them under attention mechanism. In addition, consider-
ing the effect weights of global and local representation,
we adopt ANN to aggregate them. Finally, we model
group-item interaction under NCF framework. Extensive
experiments on three datasets demonstrate that GLIF
can outperform state-of-the-art methods.

In the future, we are interested in exploring social
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