Machine Intelligence Research 19(3), June 2022, 209-226

www.mi-research.net DOI: 10.1007/s11633-022-1330-7

Towards Interpretable Defense Against Adversarial

Attacks via Causal Inference

Min Ren!:2 Yun-Long Wang? Zhao-Feng He3

1 University of Chinese Academy of Sciences, Beijing 100190, China
2Center for Research on Intelligent Perception and Computing, National Laboratory of Pattern Recognition,

Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

3Laboratory of Visual Computing and Intelligent System, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract: Deep learning-based models are vulnerable to adversarial attacks. Defense against adversarial attacks is essential for sensit-
ive and safety-critical scenarios. However, deep learning methods still lack effective and efficient defense mechanisms against adversari-
al attacks. Most of the existing methods are just stopgaps for specific adversarial samples. The main obstacle is that how adversarial
samples fool the deep learning models is still unclear. The underlying working mechanism of adversarial samples has not been well ex-
plored, and it is the bottleneck of adversarial attack defense. In this paper, we build a causal model to interpret the generation and per-
formance of adversarial samples. The self-attention/transformer is adopted as a powerful tool in this causal model. Compared to exist-
ing methods, causality enables us to analyze adversarial samples more naturally and intrinsically. Based on this causal model, the work-
ing mechanism of adversarial samples is revealed, and instructive analysis is provided. Then, we propose simple and effective adversarial
sample detection and recognition methods according to the revealed working mechanism. The causal insights enable us to detect and re-
cognize adversarial samples without any extra model or training. Extensive experiments are conducted to demonstrate the effectiveness

of the proposed methods. Our methods outperform the state-of-the-art defense methods under various adversarial attacks.
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1 Introduction

Deep learning methods open a new era of artificial in-
telligence. In the field of computer vision, deep learning
methods have achieved great success in image classifica-
tion[l"7l, object detection® 9 and image segmenta-
tionl!0: 11, Deep neural networks showcase the powerful
capability to perform a nonlinear mapping from raw data
to high-level features. However, adversarial samples cast
a shadow over the notable success of deep learning. The
“powerful” deep learning modules are vulnerable to vari-
ous adversarial attacking algorithms(!214. Using well-craf-
ted perturbations, attackers can undermine predictions
from state-of-the-art models, even though the perturba-
tions cannot be spotted by humans. This problem pre-
vents the application of deep methods in sensitive and
safety-critical scenarios[!-18], Hence, defense against ad-
versarial attacks is of considerable concern and has be-
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come an essential research topic.

Numerous studies on defense against adversarial at-
tacks have been reported. However, it is unclear how ad-
versarial samples fool deep learning models. The underly-
ing working mechanism of adversarial samples deserves
more exploration and study. Hence, most existing meth-
ods are just stopgaps for specific adversarial samples. For
example, adversarial training, which introduces adversari-
al samples into the training process, is widely popular as
a defense method. However, the generalization capability
of adversarial training-based methods is quite limited, es-
pecially for unseen attacks.

In order to defend against adversarial attacks, it is ne-
cessary to reveal the working mechanism of adversarial
samples. In this paper, we adopt causal inference to ex-
plore the working mechanism of adversarial samples as
shown in Fig.1l. Compared to the methodology based on
statistics, causal inference models the relationship
between variates more naturally and intrinsically. A caus-
al model is established to describe the generation and per-
formance of adversarial samples. The causal model en-
ables us to estimate the causal effects between the out-
puts of the deep neural network and the subregions of ad-
versarial samples, which cannot be realized by data-driv-
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Estimating causal effects between the outputs and the subregions of adversarial samples: (a) Generation and performance of

adversarial samples; (b) Causal graph of the adversarial sample; (c) Causal effect of a subregion on the prediction is estimated by the

intervention treatment.

en/statistical methodology. Hence, the tampered predic-
tions can be attributed to the subregions, which means
that it is possible to interpret the adversarial sample and
reveal its working mechanism.

Because of its special construction, vision transformer
(ViT)1 is adopted to establish the causal model. ViT is
a self-attention-based deep learning model. It originates
from transformers, which is designed to process variable-
length sequential data. To handle images, ViT divides im-
ages into non-overlapping patches for use as input.
Hence, ViT can handle the variable-length sequential in-
put, i.e., variable number of image patches. This charac-
teristic of ViT enables us to perform the intervention
treatment on patches and attribute the outputs to subre-
gions of images.

According to the discoveries of the working mechan-
ism of adversarial samples, we propose simple and effect-
ive strategies for defense against adversarial attacks. The
causal analysis reveals that the causal effect of different
subregions of an adversarial sample can be inconsistent,
even opposing. Usually, only a small part of the ad-
versarial sample plays a decisive role in fooling the recog-
nition model. Hence, adversarial attacks can be defended
according to the inconsistency of the adversarial samples.
Moreover, the causal effect of subregions at different
scales can differ, which indicates that it is helpful to fuse
the multi-scale inconsistencies for defense against ad-
versarial attacks. Note that the recognition model does
not need to be retrained using adversarial samples and
that there are few performance costs for clean samples. It
is almost free to detect adversarial attacks and improve
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the robustness of the recognition model because the work-
ing mechanism of the adversarial samples is revealed by
our causal model.

The main contributions of this paper can be summar-
ized as follows:

1) We build a causal model to interpret the genera-
tion and performance of adversarial samples. The causal
model enables us to estimate the causality between the
outputs of the deep neural network and the subregions of
the input samples.

2) Based on causal inference, the working mechanism
of the adversarial samples is revealed. The causal effect of
different subregions of an adversarial sample can be in-
consistent, even opposing. Usually, only a small portion
of the adversarial sample plays a decisive role in fooling
the recognition model.

3) According to these discoveries, we propose simple
and effective strategies for defense against adversarial at-
tacks. These strategies enable us to detect and recognize
adversarial samples without additional models or train-
ing.

The remainder of this paper is organized as follows:
Section 2 presents a brief literature review on the related
work. The causal model of adversarial samples is detailed
in Section 3. The causal model is utilized to analyze ad-
versarial samples in Section 4. The proposed strategy for
adversarial attack detection and quantitative evaluations
are presented in Section 5. Then, the strategy for ad-
versarial sample recognition and the quantitative evalu-
ations are presented in Section 6. Finally, the conclusions
of this paper are summarized in Section 7.
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2 Related work

In this section, we provide a brief overview of the re-
search on adversarial samples as references, the self-atten-
tion-based deep learning models designed for images, and
the applications of causal inference in the field of com-
puter vision.

2.1 Adversarial attack

The adversarial attack method for computer vision
tasks is a research hotspot. Szegedy et al.l'?] first demon-
strated that deep neural networks are vulnerable to ad-
versarial perturbations. Subsequently, many adversarial
attacking methods have been proposed. Goodfellow et
al.l3] proposed an efficient single-step attack method
named fast gradient sign method (FGSM), which is a
gradient-based method. DeepFooll'¥ seeks to find the
nearest decision boundary to confuse the model. C& W20
was proposed to solve the joint optimization of the ob-
jective function and the perturbation scale. Projected
gradient descent (PGD)R!U iteratively applies FGSM.
Generalization of the adversarial perturbations has also
been reported. Attack methods based on universal ad-
versarial perturbation are proposed in [22-25].

Recently, some researchers have proposed subregion-
based adversarial attack methods. Differently from the
methods mentioned above, which falsify the whole image,
subregion-based adversarial attack methods manipulate
subregions of the image to fool the recognition model.
There is usually no constraint on the scale of adversarial
perturbations. An extreme case confuses the recognition
model by changing only a single pixel in the imagel26].
The subregion-based adversarial attack is easy to realize
physically through methods such as stickers/patches on
traffic signs, patterned eyeglass frames, and 3D printed
objects[27-31],

These methods reduce the costs of adversarial attacks
and increase the challenge for recognition systems in the
real world.

2.2 Defense against adversarial attacks

1) Adversarial attack detection

A family of defense strategies is adversarial attack de-
tection, which attempts to distinguish between benign
and adversarial samples. For example, Feinman et al.[32
developed a logistic regression-based (LR) adversarial ex-
ample detector that uses kernel density and Bayesian un-
certainty features. Ma et al.33 estimated a local intrinsic
dimensionality (LID) score at each neural network layer
and characterize key properties of the adversarial sub-
space. Recently, Yu et al.34 proposed an algorithm with
two key steps: i) the application of Gaussian noise in the
input example, and ii) the use of the number of steps re-

quired to change the classification of the example (from
benign to adversarial and vice versa) as a distance met-
ric to detect adversarial attacks. Another strategy is to
use the nearest neighbor algorithm for adversarial attack
detection. The deep k-nearest neighbors (DkNN)[35 meth-
od uses a k-nearest neighbor model at every layer of the
network to assess whether the input example is adversari-
al. Nearest neighbors, especially those that do not belong
to the majority class, are used for this determination. Lee
et al.3% proposed a Mahalanobis distance-based method
that models the distribution of samples in each class inde-
pendently.

However, for learning-based methods, the generaliza-
tion ability is limited. The kNN-based methods suffer
from high computational complexity. Based on the new
viewpoint of causality, our method is simple and effective.
The recognition model does not need to be retrained by
adversarial samples, which is computationally efficient.

2) Adversarial sample recognition

Another line of work on defense is robust recognition.
Existing adversarial sample recognition methods can be
roughly classified into two categories. The methods in the
first category aim to improve the robustness of neural
networks against adversarial examples. Methods in the
second category attempt to erase adversarial perturba-
tions from the samples before feeding them to the target
model.

A common strategy of the first category is to train
networks with adversarial examples!!3 3739 Various
learning strategies have been proposed to improve robust-
ness against gradient-based attacks. Ross and Doshi-
Velezl0 trained the model while regularizing the input
gradients. Cazenavette et al.[4!l attempted to improve the
adversarial robustness of CNNs by reframing each layer
as a sparse coding model. Network distillation[42, the re-
gion-based classifierl43], the generative modell*+ 45 and
self-supervised learningl46l have also been adopted to im-
prove the robustness of the models.

Some other methods are designed to remove the ad-
versarial perturbations before the recognition model. Das
et al.47l sought to remove the perturbations using joint
photographic experts group (JPEG) compression. Pixel-
CNNIM8 was used to transform the adversarial examples
to clean images in [49, 50]. Moosavi-Dezfooli et al.[5l and
Sun et al.2 adopted sparse coding to reconstruct patches
of images. Self-supervised learning was adopted to re-
move the adversarial noise in class activation feature
space in [53].

Most of the existing adversarial sample recognition
methods are costly in real-world applications where new
adversarial attack methods are constantly emerging, since
they are just stopgaps for specific adversarial attacks.
The underlying working mechanism of adversarial
samples has not been well interpreted. As a result, the
generalization ability of these methods to unseen ad-
versarial attacks is limited.
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2.3 Causal inference in computer vision

Recently, causal inferencel54 %] has been introduced in
various computer vision fields, including feature learn-
ingl56, 571 few-shot classification®®l, long-tailed recogni-
tion[9, semantic segmentationl6®, and visual question an-
swering[61].

In the field of multi-instance learning (MIL), where an
object is represented as a bag of instances, some research-
ers have also studied the idea of estimating the causal ef-
fect between an instance (patch) to the bag (image)
labell62: 63, The causal structure of an image is separated
as an accumulation of the patches’ causal effects in these
methods due to the task configuration and the limita-
tions of CNNs. These methods assume that the patches’
causal effects can be simply combined by an OR opera-
tion. However, this assumption cannot be applied to ad-
versarial samples. As we will demonstrate in Section 4.3,
there is no simple accumulation relationship between the
causal effects of different scale subregions. The causal
structure of the adversarial sample is much more com-
plex. Hence, MIL methods are not appropriate for ad-
versarial samples.

The working mechanism of adversarial samples de-
serves further exploration and study, as it is the bottle-
neck for research on adversarial samples. We are the pi-
oneer in examining adversarial samples from the causal
viewpoint. Based on causal inference, we provide a simple
and effective method for defense against adversarial at-
tacks.

2.4 Self-attention/Transformers in com-
puter vision

Inspired by the success of self-attention layers and
transformer architectures in natural language processing
(NLP), self-attention structures have been introduced in-
to the field of computer vision. Some works employed
self-attention layers to replace some or all of the spatial
convolution layers in the popular ResNet(64-66], Other re-
searchers attempted to augment a standard CNN archi-
tecture with self-attention layers or transformers(67, 68],
ViT[9 directly applies a transformer architecture to non-
overlapping image patches for image classification. The
pioneering work of ViT and its follow-ups(67l have
achieved impressive performance in image classification
compared to convolutional networks.

The characteristics of ViT enable us to realize the
causal inference on patches and attribute the recognition
result to subregions of images.

3 Causal model of adversarial samples

In this section, we build a causal model to describe
the generation and performance of adversarial samples.
Based on this causal model, we adopt ViT to realize caus-
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al effect estimation and attribute the outputs of recogni-
tion to the subregions of adversarial samples. Accord-
ingly, we can interpret the working mechanism of ad-
versarial samples.

3.1 Notations

We denote an image sample using x. An image sample
can be divided into subregions: {z1,%2, - ,Zn}, where n
is the number of subregions. The adversarial attack al-

gorithm generates an adversarial sample:
¥ = A(x) (1)

where A(+) is the adversarial attack algorithm and z’ is
the adversarial sample generated from z. The adversarial
sample z’ can also be divided into subregions in the same
way: {z1,75, -,z }. The prediction of the recognition
model is denoted by y, i.e., the predicted category to
which the input sample belongs.

3.2 Causal graph of adversarial samples

First, we construct a causal graphl% 72 of the ad-
versarial sample and the prediction, as shown in Fig.2.
This causal graph is a directed acyclic graph used to in-
dicate how variables interact with each other through
causal links. The direction of a link indicates the direc-
tion from cause to result. The adversarial sample is di-
vided into subregions in the causal graph, and each sub-
region has a causal effect on the prediction. Note that it
is an extreme case, all subregions have causal effects on
the prediction. It simplifies the causal model, since it is
difficult, if not impossible, to point out which subregion
of a sample has a noteworthy causal effect on the predic-
tion before the specific analysis. Furthermore, it does not
interfere with the following quantitative analysis. A sub-
region without a causal effect on the prediction can be
described as having a causal effect of 0.

x| Xy oeee X,
y
Fig.2 Causal graph of the adversarial sample and the
prediction of the recognition model. The adversarial sample is

divided into subregions in the causal graph, and each subregion
has a causal effect on the prediction.

Then, the adversarial attack algorithm can be intro-
duced into this causal graph. The adversarial sample is
generated by the attack algorithm. Hence, the attack al-
gorithm is one of the causes of the adversarial sample.
Accordingly, the causal graph is expanded, as shown in
Fig. 3.

The clean image sample is another cause of the ad-
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N
y
Fig. 3 The adversarial attack algorithm is introduced into the
causal graph.

versarial sample. As shown in Fig.4(a), a subregion of
the adversarial sample is generated from the correspond-
ing subregion of the clean sample by adding adversarial
perturbations. Hence, there is a causal effect from the
subregion of the clean sample to the corresponding subre-
gion of the adversarial sample. Accordingly, the causal
graph can be expanded, as shown in Fig.5.

Meanwhile, the other subregions of the clean sample
also have a causal effect on this subregion of the ad-
versarial sample, as shown in Fig.4(b). All parts of the
clean sample are taken into consideration by the attack
algorithm during the generation of the adversarial
sample. Hence, there are causal effects from all subre-
gions of the clean sample on this subregion of the ad-
versarial sample. Accordingly, the causal graph can be ex-
panded, as shown in Fig. 6.

In addition, the subregions of the clean sample are not
independent. There are common causes for these subre-
gions since they are split from the same image. Despite
the common causes being unobservable, they can be ab-
stracted into two hidden variates: the category-specific
hidden cause, denoted as Z, and the category-invariant
hidden cause, denoted as R. Hence, the causal graph is
expanded as shown in Fig. 7.

This causal graph is the causal model of the adversari-
al samples. It illustrates the generation and influences on
the prediction of the adversarial sample. Based on this
causal model, we can interpret the working mechanism of
the adversarial samples through causal effect estimation.

Clean sample
Prediction: “7”

Adversarial sample
Prediction: “9”

(2

3.3 Causal effect estimation

As shown in the causal graph in Fig.7, there are many
confounders between the subregion of the adversarial
sample and the prediction. A confounder is a variable
that influences both causes to result and creates a spuri-
ous statistical correlation. For example, z; isa con-

founder of x} and y:
’ /
TL 44— T — TH — Y

The attack algorithm, the subregions of the clean
sample, and their common causes are confounders of the
subregion of adversarial samples and the prediction.
Meanwhile, these variates in the causal graph are unob-
servable in the test configuration. The impact of these
confounders cannot be removed from a statistical per-
spective, e.g., the data-driven machine learning methodo-
logy. Hence, it is difficult to directly estimate the causal
effect between the subregion of the adversarial sample
and the prediction.

In order to overcome this problem, a counterfactual
sample is generated to realize an intervention treatment
for the performance of the adversarial sample. The caus-
al effect of a subregion can be estimated by comparing
the prediction of the adversarial sample and that of its
corresponding counterfactual sample. Without loss of gen-
erality, we use the causal effect between z; and the pre-
diction as an example. We introduce a variable f; as a
flag of x;. When f; =1, 2} is input into the recognition
model normally. When f; = 0, 2} is removed from the in-
put of the recognition model, and the input sample be-
comes a counterfactual sample. As a result, the causal ef-
fect between a subregion and the prediction can be estim-
ated by comparing the prediction of the adversarial
sample and that of its corresponding counterfactual
sample:

i = Yf,=1 — Yfi=0 (2)

Clean sample
Prediction: “7”

Adversarial sample
Prediction: “9”

(b)

Fig.4 An example image from MNIST. The prediction is changed from “7” to “9” by the adversarial sample: (a) There is a causal effect
from the subregion of the clean sample to the corresponding subregion of the adversarial sample; (b) There are also causal effects from

the subregions in different locations of the clean sample.
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Fig. 5 Causal effect from the subregion of the clean sample on
the corresponding subregion of the adversarial sample is
introduced into the causal graph.
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Fig.6 Causal effects of the other subregions of the clean
sample on the subregion of the adversarial sample

n
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A X, X, - X,

NV

Fig. 7 Complete causal graph

where ¢; is the estimated causal effect of the i-th
subregion.

Fortunately, the ViT is a proper framework for the
proposed intervention treatment. Transformer, which is a
self-attention-based architecture, has become the model of
choice in NLPI[™I. It is designed for variable-length se-
quential inputs. To address image samples, ViT splits an
image into non-overlapping patches and provides the se-
quence of linear embeddings of these patches as an input
to a transformer. The image patches are treated in the
same way as tokens (words) in an NLP application.
Hence, ViT can handle the variable-length sequential in-
put, i.e., variable number of image patches. A patch of
the image, as an input token, can be conveniently re-
moved according to the corresponding flag, and the other
patches will not be disturbed. On the other hand, the
convolutional neural network (CNN) is unsuitable for in-
tervention treatment. The subregion of the input image
can only be replaced rather than removed, which would
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introduce unwanted interference. Therefore, it is appro-
priate to utilize ViT as a recognition model to realize the
proposed intervention treatment.

Based on the proposed methodology of causal effect
estimation, we can attribute the prediction of the recogni-
tion model to subregions of the adversarial sample. The
pseudo-code for causal effect estimation is shown in Al-
gorithm 1. This methodology enables us to interpret the
working mechanism of adversarial attacks.

Algorithm 1. Causal effect estimation

Require: Adversarial sample: z’; a division of z’:
{z}, x5, -,z }; pre-trained ViT: F;the predicted cat-
egory: y.

Ensure: Causal effect of the subregions of z’ on y:
{¢11/7 Z2/7 e a¢%}

1) fori=1—ndo

2 fi =1, set the i-th flag

3)  yp=1 F(ah, x5, - x7)

4 X; =0, set the i-th flag

3 axfiflvmfﬂ»la"' 73”;1)

(=]

$i < Ypi=1 — Yf;=0

)

)

)

) Y=o « F(2h,---
)

7) end for

8) return {()b%lvd)gv o a¢%}

4 Causal effects of adversarial samples

In this section, we utilize the proposed methodology
for causal effect estimation to explore the causal effects of
adversarial samples.

In addition, the causal effects of different adversarial
attack methods and different scales are also investigated.

The pre-trained ViT-Base/16, which contains 12 lay-
ers, is adopted as the recognition model. Two datasets are
taken into consideration: CIFAR-10(" and ImageNet[3],
and all image samples are reshaped to 256 x 256.

4.1 Comparing to clean samples

To reveal the working mechanism of adversarial
samples, the adversarial samples are compared with clean
samples in this subsection. There are two adversarial at-
tack configurations: targeted attack and non-targeted at-
tack. In the targeted attack scenario, the adversary aims
to induce the recognition model to give a specific label to
the input sample. If there is no specific label, the attack
is non-targeted, which means the adversary only wants
the recognition model to predict incorrectly. Both config-
urations are investigated using the proposed methodo-
logy. In order to uncover the differences between the
causal effects of misclassified clean samples and those of
adversarial samples, the misclassified clean samples are
taken separately and compared to the adversarial
samples.

Projected gradient descent (PGD)[2! is adopted as the
attack algorithm, which generates adversarial samples.
The adversary can perturb the clean sample within a cer-
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tain amount:
Hx—x'”oo <e€ (3)

where € = 8/255 for all of the adversarial samples.

Two quantitative indexes are adopted to uncover the
differences between adversarial samples and clean
samples. The first is the sparseness of the positive effect:

N, ositive
§ =1 “positive 4
Ntatal ( )

where S is the sparseness of the positive effect of an input
image, Npositive 18 the number of patches that have
positive causal effects, and Niotq is the total number of
patches. The higher the S, the patches with positive
causal effects are sparser.

The second is the total variation of causal effect,
which measures the discontinuity of causal effect:

TV = Z \/(¢m+1,n - ¢m,n)2 + (¢m,n+l - ¢m,n)2 (5)

m,n

where TV is the total variation of the causal effect,
(m,n) is the 2D index of patches in the input image, and
¢m,n is the causal effect of the patch with the 2D index

Clean sample Adversarial sample

(m,n).

The causal effects of examples from CIFAR-10 and
ImageNet are shown in Fig.8. The positive causal effects
are denoted in red, and the negative causal effects are de-
noted in green. The quantitative results are shown in
Table 1. mS refers to the mean of the sparseness of the
positive effect, and sdS refers to the standard deviation of
the sparseness. Similarly, mTV and sdTV are the mean
and standard deviation of the total variation of the caus-
al effect, respectively. “Clean Mis.” refers to the misclas-
sified clean samples. “Adv.”’refers to the adversarial
samples.

From the visualized causal effects and the quantitat-
ive results, four points about adversarial samples can be
summarized as follows:

1) Compared to clean samples, the patches with posit-
ive causal effects are sparser in adversarial samples. Only
a small portion of the subregions contribute to fooling the
recognition model, while the causal effects of most subre-
gions are opposite or negligible. This phenomenon indic-
ates that only some key subregions of the adversarial
sample play a decisive role, although the whole sample is
perturbed by adversarial noise.

2) The spatial continuity of causal effects of adversari-
al samples is lower than that of clean samples. The caus-

Clean sample

Adversarial sample

Fig.8 Causal effects of clean and adversarial samples: (a) Causal effects of the samples in CIFAR-10; (b) Causal effects of the samples
in ImageNet. The clean images are shown on the left and the adversarial samples are shown on the right.
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Table 1 Quantitative results for clean samples and adversarial samples

CIFAR-10 ImageNet
mS sdS mTV sdTV mS sdS mTV sdTV
Clean 0.751 0.164 60.32 30.65 0.535 0.067 65.20 24.68
Clean Mis. 0.791 0.084 59.95 25.44 0.522 0.056 65.66 24.04
Adv. target 0.917 0.049 81.90 47.32 0.823 0.078 104.81 48.82
Adv. untarget 0.935 0.061 72.05 33.39 0.826 0.089 79.84 28.33

al effects of adjacent subregions within an adversarial
sample are more likely to play different roles, which indic-
ates that the causal effect of an adversarial sample is
complicated.

3) Compared to the misclassified clean samples, the
first two points about adversarial samples are still ten-
able. There are insignificant differences between correctly
classified and misclassified clean samples in the sparse-
ness of the positive effect and the spatial continuity of
the causal effect. This phenomenon shows that the work-
ing mechanism of adversarial samples is quite different
from clean samples, no matter whether clean samples can
be correctly classified or not.

4) As we can observe from the visualized causal ef-
fects in Fig.8, compared to the regions with less informa-
tion, e.g., the plain background, the causal effects of re-
gions with more semantic information, e.g., the fore-
ground, are more significant. This phenomenon indicates
that the adversarial attacker is more likely to tamper
with the existing content of the image sample rather than
to create something out of nothing.

4.2 Causal effects of different kinds of at-
tacks

Is there a difference between the working mechanism
of adversarial samples generated by different adversarial
attack algorithms? In order to answer this question, four
kinds of adversarial attacks are explored. We begin with
one of the most basic, the fast gradient sign method
(FGSM)!3l. The iterative fast gradient sign method (IT-
GSM)[70] is also investigated. The stronger attack meth-
ods included are the Carlini and Wagner (C & W)
attack(?l and projected gradient descent (PGD)RI. ¢ is
also set to 8/255 for all adversarial samples. The two
quantitative indexes, the sparseness of the positive effect
and the total variation of the causal effect, are adopted to
measure the differences in the causal effects.

The causal effects of examples from CIFAR-10 and
ImageNet are shown in Fig.9. The quantitative results
are shown in Table 2. The analysis in the last subsection
is appropriate for all adversarial attack algorithms. This
observation indicates that they are common characterist-
ics of an adversarial attack.

Meanwhile, the quantitative indexes of FGSM and IT-
FGSM differ slightly more than the other attack meth-
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ods, since they are similar in attack mechanisms. This
phenomenon shows that the proposed method captures
the principal characteristics of adversarial samples.

4.3 Causal effects at different scales

What are the relationships between the causal effects
of different scales? In order to answer this question, the
proposed methodology is applied to three different scales:
16 x 16, 32 x 32 and 64 x 64. The input images are di-
vided into patches of three sizes to investigate the causal
effects at different scales.

The results on CIFAR-10 and ImageNet are shown in
Fig.10. Two points can be deduced from the results:

1) The causal effect of a large patch is not equivalent
to an accumulation of small patches. There is no linear
accumulation relationship between the causal effects of
different scales. The causal effects could even reverse on a
larger scale. This phenomenon conforms to our common
sense. In many scenarios, it is impossible to recognize an
object according to any portion of it. Only the entirety
has effective causal effects, which means the causal ef-
fects of the entirety are not the accumulation of the por-
tions.

2) The negative causal effects of the small scales alle-
viate or invert at the larger scale in most cases. This phe-
nomenon indicates that the adversarial sample works bet-
ter on a larger scale.

5 Adversarial attack detection

In Section 3, we build a causal model for adversarial
samples. Based on this model, we analyze the working
mechanism of adversarial attacks using causal effect es-
timation. This analysis is instructive for adversarial at-
tack detection. In this section, we propose a simple and
effective strategy for adversarial attack detection accord-
ing to the discovery in the last section.

5.1 Detection based on semantic inconsist-
ency

As we have mentioned in Section 4.1, the causal ef-
fects of the subregions are not consistent within an ad-
versarial sample. Only a small portion of the subregions
contribute to fooling the recognition model, while the
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Fig.9 Causal effects of different kinds of attacks: (a) Causal effects of the samples in CIFAR-10; (b) Causal effects of the samples in
ImageNet. The clean images are shown in the first column. The adversarial samples generated by different algorithms and the
corresponding causal effects are shown in the next columns.

Table 2 Quantitative results for different kinds of attacks

CIFAR-10 ImageNet
mS sdS mTV sdTV mS sdS mTV sdTV
FGSM target 0.872 0.075 72.40 28.09 0.812 0.079 76.25 36.86
FGSM untarget 0.887 0.095 68.55 33.24 0.814 0.091 71.93 35.66
ITFGSM target 0.894 0.056 75.12 32.61 0.818 0.077 80.45 38.31
ITFGSM untarget 0.886 0.092 68.51 33.87 0.804 0.097 65.13 34.49
C & W target 0.875 0.062 71.41 27.71 0.769 0.109 75.81 32.93
C & W untarget 0.916 0.058 66.97 36.26 0.850 0.064 61.54 35.88
PGD target 0.917 0.049 81.90 47.32 0.823 0.078 104.81 48.82
PGD untarget 0.935 0.061 72.05 33.39 0.826 0.089 79.84 28.33
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Clean Adversarial 16x16 32x32 64x64

Fig. 10 Causal effects at different scales: (a) Causal effects of samples in CIFAR-10; (b) Causal effects of samples in ImageNet. The
clean images are shown in the first column of (a) and (b), the adversarial samples are shown in the second column, and the causal effects

at the three scales are shown in the other columns.

causal effects of most subregions have the opposite effect
or are negligible. Different portions of the adversarial
sample can be predicted as different labels by the recogni-
tion model. Hence, we can detect an adversarial attack
according to the semantic inconsistency of the adversari-
al samples.

Specifically, for an input sample, we first obtain the
predicted label by entering all of its subregions into the
recognition model. For simplicity, this predicted label is
called the global-label. Meanwhile, all the subregions of a
sample are randomly split into k groups, where 2 < k <n
and n is the number of subregions. Each group of subre-
gions is input into the recognition model separately to ob-
tain the predicted label of this group, which is named the
partial-label. We regard this process as voting. If the win-
ner, which is the partial-label with the most votes, is in-
consistent with the global-label, the input sample is re-
garded as an adversarial sample; otherwise, the input
sample is regarded as a clean sample. The pseudo-code
for adversarial detection based on semantic inconsistency
is shown in Algorithm 2.

@ Springer

Algorithm 2 Adversarial sample detection
Require: division of x:
{21, 22,
groups: k.

Ensure: Prediction: s € {0,1}, s = 0 denotes that the
input image is a clean sample, s = 1 denotes that the in-

Input image: x; a

,Zn}; pre-trained ViT: F; the number of

put image is an adversarial sample.
1) s+ 0
2) Obtain the global-label: ygiopar  F ()
3) Divide {z1,z2,---
{618, &}
4)fori=1—k do
5) Obtain the partial-label of &t Ybapriar < F(&i)
6) end for
7) Obtain the winning partial label yy,,.4;q; from
{yzlaartiah y}%a'rtial? Tty y;artial}
8) if Ygiobal # Ypartiar then s <1
9) end if
10) return s
Another instructive phenomenon is the inconsistency

,Zn} into k groups randomly:

of causal effects at different scales, which indicates that
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causal effects at different scales are complementary for
adversarial attack detection. Hence, we propose a multi-
scale strategy to combine the evidence at different scales.
If the winning partial-label at any scale is inconsistent
with the global-label, the input sample is regarded as an
adversarial sample. The pseudo-code for adversarial de-
tection based on multi-scale semantic inconsistency is
shown in Algorithm 3.

Algorithm 3. Multi-scale adversarial sample detec-
tion

Require: Input image: z; pre-trained ViT: F; the
number of groups: k.

Ensure: Prediction: s € {0,1}, s = 0 denotes that the
input image is a clean sample, and s = 1 denotes that the
input image is an adversarial sample.

1) s« 0

2) Split x at scale 16 x 16 (the size of each subregion
is 16 x 16) as: {z1,x2, - ,Tni6}

3) Detect at scale 16 x 16:

s16 « Algorithm 2(z, {z1, 22, -+ ,Zn16}, F, k)
4) if s16 =1 then s + 1
5) end if
6) Split x at scale 32 x 32 as: {z1, 2, - ,Tn32}
7) Detect at scale 32 x 32:
s32 < Algorithm 2(z, {z1, 22, -+ ,Zn32}, F, k)
8) if s32 =1 then s + 1
9) end if
10) Split = at scale 64 X 64 as: {x1,Z2, - ,Tnea}
11) Detect at scale 64 x 64:
sea < Algorithm 2(z, {z1,x2, + ,Tnea}, F, k)

12) if se4s = 1 then s+ 1
13) end if
14) return s

5.2 Quantitative evaluation
To evaluate the proposed adversarial attack detection

strategy, we conduct experiments on the CIFAR-10 and
ImageNet test sets using MindSporel. The test images

consist of two kinds of samples: 1) all of the original im-
ages in the test images of CIFAR-10 and ImageNet,
which are the negative samples for detection, and 2) the
adversarial samples generated from the test images of CI-
FAR-10 and ImageNet by the attack method, which are
the positive samples for detection. The negative and pos-
itive samples are balanced. Four kinds of adversarial at-
tacks are explored: FGSM[3], C & W attack(20l, PGD[1],
and AutoAttackl™l. The adversary can perturb the clean
sample within a certain amount:

Hmfx/Hoo <e€ (6)

where ¢ = 8/255 for all attack methods. The pre-trained
ViT-Base/16 for image classification is adopted as the
recognition model. All image samples are reshaped to
256 x 256. The number of groups is 4.

The performance is compared to three state-of-the-art
adversarial attack detection approaches: DKNNIB3,
LIDB3], and [34]. For comparison, the detection thresholds
of these three methods are set to the threshold corres-
ponding to the best accuracy. Their performances can be
fully realized at this threshold since the negative and pos-
itive samples are balanced.

The results are shown in Tables 3 and 4. The results
demonstrate the effectiveness of the proposed strategy for
adversarial attack detection. According to the discoveries
of causal inference, the proposed method outperforms the
compared methods in most scenarios. For the adversarial
training-based method LID, although it works pretty well
in the WD scenario. There is an obvious gap between
within dataset and cross dataset evaluation, which indic-
ates that the generalization ability is quite limited. Note
that the proposed method is not retrained by the ad-
versarial samples or introduces an extra classifier, which
means that we almost gain the capacity of adversarial at-
tack detection for free. Meanwhile, multi-scale detection
significantly increases the recall rates with a slight cost
on the precisions, which demonstrates the complementar-

Table 3 Adversarial attack detection on CIFAR-10. The subscript LIDwp (within the dataset) means that LID is trained on the same
attack it is evaluated on. The subscript LIDcp (cross dataset) means that the LID is trained on C & W adversarial examples, and tested
on different unseen attacks.

FGSM FGSM PGD AutoAttack

Method
Precision Recall Precision Recall Precision Recall Precision Recall
DKNNI3] 63.74% 65.87% 60.11% 69.60% 57.33% 58.82% 58.37% 59.71%
LIDwp B3 77.31% 79.82% 55.42% 54.12% 68.21% 65.70% 56.17% 57.86%
LIDGp 33 73.98% 75.80% - - 61.01% 63.66% 55.53% 53.87%
Yu et al.[34] 87.21% 88.20% 91.51% 92.21% 61.48% 52.26% 55.27% 48.68%
Ours 16 X 16 98.04% 71.711% 94.36% 97.45% 86.98% 74.42% 95.03% 66.33%
Ours 32 X 32 98.17% 70.84% 94.06% 96.60% 87.06% 74.59% 90.31% 66.28%
Ours 64 X 64 98.26% 70.16% 94.03% 96.59% 87.71% 75.96% 87.09% 67.14%
Ours multi-scale 95.12% 85.02% 93.98% 98.57% 86.33% 85.30% 85.34% 81.03%
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Table 4 Adversarial attack detection on ImageNet. Similar to Table 3, the subscript LIDwp and LID¢p refer to the within dataset and
cross dataset evaluation, respectively.

FGSM C & W PGD AutoAttack
Method

Precision Recall Precision Recall Precision Recall Precision Recall

DKNNI3] 87.89% 86.27% 65.66% 61.01% 73.63% 79.79% - -

LIDwp 33 95.53% 96.85% 53.26% 59.85% 96.90% 95.23% - -

LIDGp 33 83.65% 88.30% - - 57.61% 58.14% - -

Yu et al.[34] 70.60% 74.53% 86.54% 84.41% 84.57% 89.42% - -
Ours 16 X 16 86.33% 84.95% 95.75% 97.26% 86.60% 85.80% 82.44% 79.95%
Ours 32 x 32 87.01% 86.08% 96.24% 97.84% 87.12% 86.61% 80.83% 80.99%
Ours 64 x 64 87.91% 87.63% 96.06% 97.35% 88.04% 88.02% 75.68% 82.99%
Ours multi-scale 85.61% 94.23% 95.21% 98.61% 85.63% 93.71% 75.01% 90.96%

ity of different scales.
5.3 Evaluation under adaptive attack

In order to critically evaluate the proposed method,
we adopt an adaptive attack method to validate its per-
formance in this subsection. The sparseness of the posit-
ive causal effect is the basis for the proposed detection
method. A reasonable way for adaptive attacking is to in-
crease the proportion of subregions with positive causal.
Therefore, the different portions of an adversarial sample
can lead to the same goal.

We conduct the adversarial attack on every small part
of the input image, respectively, rather than the whole
image. Moreover, the attacking objects are the same for
all parts. Then all the parts are re-assembled together as
an adversarial sample. Specifically, the input image is
split into four parts by dividing all of its patches into
four groups randomly. PGD is utilized to conduct the at-
tack on all parts of the input image. The adversary can
perturb the clean sample within 8/255.

The results are shown in Table 5. The performances of
the proposed method under adaptive attack are passable.
The results indicate that the proposed adversarial sample
detection method is quite robust to adaptive attack. The
underlying reason may be that it is difficult to unify the
causal effects of different subregions of an image.

5.4 Sensitivity analysis on hyperparameter

There is a hyperparameter in the proposed method:
the number of groups of patches k. To explore the im-
pact of k on detection performance, we conduct a sensit-
ivity analysis on it. The proposed method is tested when
k variates from 2 to 6 under the attack of PGD.

The results are shown in Table 6. As the number of
groups increases, the recall rates of detection increase.
The percentage of groups that are affected by patches
with positive causal decreases with the number of groups
increasing. Because these patches are sparse, there would

@ Springer

Table 5 Evaluation under adaptive attacking

CIFAR — 10 ImageNet
Scale
Precision Recall Precision Recall
16 x 16 90.64% 58.81% 77.41% 63.85%
32 x 32 86.70% 59.67% 75.87% 70.47%
64 x 64 78.50% 61.89% 75.51% 68.17%
Multi-scale 77.40% 72.19% 72.31% 78.57%

Table 6 Sensitivity analysis on the number of groups

CIFAR — 10 ImageNet
k Precision Recall Precision Recall
2 88.87% 84.28% 88.75% 92.57%
3 87.95% 84.73% 87.03% 93.06%
4 86.33% 85.30% 85.63% 93.71%
5 84.52% 85.95% 81.19% 94.46%
6 82.82% 87.15% 75.97% 95.44%

be more partial-labels that are different with the goal of
adversarial attacking. Hence, the recall rate increases
with k. On the other hand, as the number of groups in-
creases, the number of patches in each group will de-
crease. For clean samples, the prediction based on fewer
patches would be more unstable, and the more clean
samples would be wrongly determined as adversarial
samples. Hence, the precision decreases with k. In sum-
mary, there is a trade-off between precision and recall
rate in the selection of k.

6 Recognition subregion based adver-
sarial samples

Unlike from the general adversarial attack, which fals-
ifies the whole image, subregion-based adversarial attack
methods manipulate subregions of the image to fool the
recognition model. There is usually no constraint on the
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scale of adversarial perturbations. Hence, it is more diffi-
cult to recognize subregion-based adversarial samples.
Meanwhile, a subregion-based adversarial attack is easy
to realize physically, as shown in Fig.11. These methods
reduce the costs of adversarial attacks and increase the
challenge for recognition systems in the real world.
According to the analysis based on causal inference,
we propose a method for subregion-based adversarial
sample recognition in this section. The proposed method
is simple and effective, since causality provides us with a
new viewpoint on the adversarial samples. Based on the
proposed causal model, some crucial aspects of the work-
ing mechanism of adversarial samples are revealed, espe-
cially the sparseness of the positive causal effect. The
causal perspective enables us to detect and recognize ad-
versarial samples without extra models or training. Hen-
ce, the causal model and the causal effect estimation res-
ults are the preconditions of the proposed defense methods.

6.1 Recognition based on ensemble

The subregion-based adversarial attack is quite differ-
ent from other kinds of adversarial attacks. The perturba-
tions cannot be removed or handled like the other kinds
of adversarial perturbations with minor scales. However,
the analysis based on causal inference indicates that there
is a common characteristic shared by the subregion-based
and other adversarial samples: only a small portion of the
image contributes to fooling the recognition model.
Hence, we can recognize subregion-based adversarial
samples based on this characteristic.

Specifically, a portion of the subregions is randomly
selected and inputted into the recognition model to ob-
tain the prediction. The above procedure is repeated k
times to obtain k predicted labels. Since only a small por-
tion of the image is manipulated, these subregions would
not be sampled in most cases. Hence, we can recognize
the subregion-based adversarial samples by ensembling
the k predicted labels. The pseudo-code for the subregion-
based adversarial sample recognition is shown in Al-
gorithm 4.

Algorithm 4. Subregion-based adversarial sample re-
cognition

Require: Input image: x; pre-trained ViT: F; per-

centage of the sampled patches p; the number of
sampling times: k.

Ensure: Predicted label: y.

1)fori=1—k do

2) Randomly sample patches from x, the percent-
age of the sampled patches is p:
&+~ {Zﬂil,l’n, s ,zim}
3) Obtain the i-th predicted label: y; « F(&;)
4) end for
5) Obtain the winning final label y by voting:
y < Vote(y,y2,- - 1Y)

6) return y

Meanwhile, the causal analysis shows that the causal
effects at different scales are inconsistent. Hence, similar
to adversarial attack detection, we introduce the multi-
scale strategy to combine the information of different
scales.

6.2 Quantitative evaluation

To evaluate the proposed subregion-based adversarial
sample recognition method, we conduct experiments on
the test set of CIFAR-10 and ImageNet. The subregion-
based adversarial attack method proposed by Komkov
and Petiushkol™ is adopted to generate adversarial
samples. The size of the manipulated subregion of CI-

FAR-10 is ixi of the input image, and the manipu-

1 1
lated subregion of ImageNet is 3 X 1 of the input image.

The pre-trained ViT-Base/16 for image classification is
adopted as the recognition model. All image samples are
reshaped to 256 x 256. The percentage of the sampled
patches p is 25%, and the number of sampling times k is
5.

Two kinds of common defense strategies are con-
sidered for comparison: adversarial training and JPEG
compressionl4”l. For the adversarial training strategy, the
same recognition model is trained using the adversarial
samples generated by FGSM. The quality of JPEG com-
pression is 75.

The results are shown in Table 7. The results demon-
strate the effectiveness of the proposed method. The re-
cognition accuracy for the adversarial samples by our
method is much better than the compared methods. The

Fig. 11 Example of subregion-based adversarial samples

@ Springer



222

Machine Intelligence Research 19(3), June 2022

Table 7 Recognition accuracy on clean and subregion-based adversarial samples

CIFAR — 10 ImageNet

Method
Clean 1 Adversarial 1 Gap | Clean 1 Adversarial 1 Gap |
ViT 95.67% 9.80% 85.27% 78.40% 7.96% 70.44%
Adv. training 95.28% 11.19% 84.09% 72.76% 9.14% 63.62%
JPEGI3] 80.82% 75.68% 5.14% 59.72% 46.97% 12.75%
Ours 16 x 16 93.12% 89.90% 3.22% 69.55% 65.82% 3.73%
Ours 32 x 32 90.88% 86.30% 4.58% 70.29% 67.56% 2.73%
Ours 64 X 64 86.41% 79.01% 7.40% 68.31% 64.58% 3.73%
Ours multi-scale 93.20% 90.28% 2.92% 74.02% 71.53% 2.49%

gap between the performance of clean samples and ad-
versarial samples by our method is minor. Note that we
do not introduce any extra model or training data, which
means that we almost significantly improve the robust-
ness of the recognition model for free. Meanwhile, the
performance of the multi-scale strategy is better than
that of the single-scale strategy, which demonstrates the
complementarity of different scales. The defense effect of
adversarial training is weak, which indicates that the gen-
eralization ability of adversarial training is quite limited.

6.3 Sensitivity analysis on hyperparameter

There are two hyperparameters in our method: the
percentage of sampled patches p and the number of
sampling times k. To explore the impact of these hyper-
parameters on recognition performance, we conduct two
experiments. The first experiment tests the recognition
performance under different percentages of the sampled
patches p. The number of sampling times k is 5 in this
experiment. The second experiment tests the recognition
performance under different numbers of sampling times k.
The percentage of sampled patches p is 25% in this ex-
periment.

The results are shown in Fig.12. As we can observe,
the recognition accuracy is highest when p = 30%. When
p is too small, there is not enough information for recog-
nition. On the other hand, when p is too large, the ad-
versarial region disturbs the recognition. For the number
of sampling times, the recognition accuracy increases with
k. However, the computational complexity also increases.
Therefore, there is a trade-off between accuracy and effi-
ciency.

7 Conclusions

Although deep learning methods have made signific-
ant progress, they still lack effective and efficient defense
strategies against adversarial attacks. As a result, the un-
derlying working mechanism of adversarial samples has
become the bottleneck of defense methods. In this paper,
we adopt the methodology of causal inference to estab-
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Fig.12 A low sampling ratio (about 30%) works well for
adversarial sample recognition. On the other hand, the
recognition accuracy grows with k.

lish a causal model to describe the generation and per-
formance of adversarial samples. Furthermore, this caus-
al model enables us to attribute the output of the recog-
nition model to the subregions of the input image and to
interpret the working mechanism of adversarial samples.
Hence, we can reveal many instructive phenomena of ad-
versarial attacks and adversarial samples.

Based on the proposed causal model, we develop a
method for adversarial attack detection and a method for
adversarial sample recognition. These two methods are ef-
fective and efficient. Moreover, based on the powerful
self-attention/transformers, we can detect and recognize
adversarial samples without extra models or training. The
results of the experiments demonstrate the superiority of
our methods, especially the generalization capacity.
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