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Abstract: Many isolation approaches, such as zoning search, have been proposed to preserve the diversity in the decision space of mul-
timodal multi-objective optimization (MMO). However, these approaches allocate the same computing resources for subspaces with dif-
ferent difficulties and evolution states. In order to solve this issue, this paper proposes a dynamic resource allocation strategy (DRAS)
with reinforcement learning for multimodal multi-objective optimization problems (MMOPs). In DRAS, relative contribution and im-
provement are utilized to define the aptitude of subspaces, which can capture the potentials of subspaces accurately. Moreover, the rein-
forcement learning method is used to dynamically allocate computing resources for each subspace. In addition, the proposed DRAS is
applied to zoning searches. Experimental results demonstrate that DRAS can effectively assist zoning search in finding more and better
distributed equivalent Pareto optimal solutions in the decision space.
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1 Introduction

In real-world applications, many multi-objective op-
timization problems (MOPs) such as path planningl,
network optimization?l, structure optimization of neural
networksll, and multi-objective knapsack optimization(4
have multimodal properties, i.e., multiple Pareto optimal
sets (PSs) that correspond to the same Pareto front (PF).
Debl5l defined these kinds of problems as multimodal
multi-objective problems (MMOPs). Traditional multi-
objective evolutionary algorithms (MOEAs)0-8 usually
improve the PF distribution in the objective space, which
often leads to poor diversity of Pareto sets. Therefore,
these MOEASs cannot solve the MMOPs.

In order to alleviate the above problem, two kinds of
methods are proposed to keep the diversity of the de-
cision space and the objective space. The first method is
soft isolation, such as fitness sharing® 10, crowding!!: 12]
and speciation/!3. Although these methods can effectively
maintain diversity, the degradation of population di-
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versity is inevitable due to increased environmental selec-
tion pressure. To solve this issue, hard isolation, i.e., zon-
ing search strategyl!4, is proposed as the second method.
The total decision space is divided into several subspaces,
which can search more widely in each subspace.

Although the hard isolation approach can effectively
improve the diversity of decision space, there are two
problems. Firstly, each subspace allocates the same com-
puting resources without considering the difficulty of each
subspace. If there are a few Pareto optimal solutions in
some subspaces, a lot of computing resources will be
wasted. Secondly, computing resources are not allocated
reasonably according to the evolution state of each sub-
space. Thus, how to define the potential based on the dif-
ficulty and evolution state of each subspace is a very
meaningful research problem. In addition, allocating the
computing resources of each subspace adaptively accord-
ing to the feedback information is also an urgent problem.
The specific shortcomings are as follows:

1) The recent zoning search strategy allocates the
same computing resources to all subspaces, which fails to
consider the difficulties of subspaces. An illustrative ex-
ample is presented in Fig. 1, where there is no PS curve in
the two subspaces while the same computing resources
are allocated to the two subspaces. The above facts in-
spired us to allocate computing resources based on the
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Fig.1 Subspaces with different difficulties. The first and third
quadrants have the same number of PSs, and the second and
fourth quadrants have no PS.

difficulties of subspaces to achieve better results.

2) For the MMOP, the evolution states of subspaces
with the same computational difficulty may be different.
Specifically, Fig.2 is an example that illustrates the dif-
ferent evolution states. The subspaces corresponding to
the PS5 curve obtain poor results, while the subspaces
corresponding to the PSs curve get excellent results. In
order to tackle this limitation, computing resources are
dynamically allocated based on the evolution states. In
this way, the limited resources can be fully utilized.

3) According to the analysis of the above two short-
comings, the difficulties and evolution states of subspaces
are used as feedback information to allocate computing
resources. However, the allocation of computing resour-
ces reasonably according to the feedback information is
the key problem. In this paper, the computing resource
allocation process is controlled by the reinforcement
learning method.

In order to solve the above problems, a dynamic re-
source allocation strategy with reinforcement learning is
proposed, called DRAS, which combines subspace's relat-
ive contribution with improvement to calculate the po-
tentials of subspaces. Moreover, the computing resources
of each subspace are dynamically allocated by the rein-
forcement learning method. In addition, the proposed
DRAS is applied to zoning searches. The main contribu-
tions are listed as follows:

1) By introducing the concept of hypervolume, the
subspaces’ relative contribution and improvement are ob-
tained in the evolution process to measure the aptitudes

% - * True PS
N\, - Obtained PS

Fig.2 Subspaces with different evolution states. A large
number of PSs in the third and fourth quadrants have been
found, and only some PSs in the first and second quadrants have
been found.

of subspaces, which can reflect the difficulties and poten-
tials of subspaces.

2) The reinforcement learning method is used to con-
trol the computing resource allocation process by the po-
tentials of subspaces. In this way, the limited computing
resources can be used efficiently.

3) The proposed DRAS is applied to zoning search[4],
named DRAS-ZS Ring PSO SCD. Compared with six
multimodal multi-objective evolutionary algorithms
(MMOEAs), the experimental results demonstrate that
DRAS-ZS Ring PSO_SCD is efficient and competitive.

The rest of this paper is arranged as follows. Section 2
reviews the related work on the definition of MOP, the
definition of MMOP, resource allocation in evolutionary
algorithms, and reinforcement learning. Section 3 presents
the details of DRAS. The experimental results are presen-
ted in Section 4. Finally, Section 5 concludes this paper.

2 Related work

2.1 Definition of MOP

Without loss of generality, an MOPH!5 can be ex-
pressed as follows:

min f(2) =(f1(@), fa(@), - , (@)
high

j )a.j:1>27"'7n (1)

zj € (z,x
where S (S C R") represents the decision space; x =

(z1, 22, - ,xn)T denotes an n-dimensional vector; f;(x),

i=1,2,---,m, is the i-th objective to be minimized, and
. L . high
m is the number of objective functions; x;"w and acjlg are

the lower and upper bounds of z;, respectively; n is the
dimension of the MOP.

2.2 Definition of MMOP

For the MMOPE], the Pareto set comprises many dis-
joint subsets in the decision space. As shown in Fig.3, the
two curves in the (x1,x2) decision space represent two
Pareto subsets, PSi1 and PS>, which correspond to the
same PF in the (f1,f2) objective space. The mapping
from the two red circles in decision space to the red circle
in objective space shows that there are solutions in PS;
and PS>. Although the two red circles belong to disjoint
Pareto subsets, they map to the same objective function.
Therefore, a new challenge is to obtain different PSs
which correspond to the same PF for MMOPs.

In order to solve this challenge, many MMOEAs are
proposed. According to the framework, these algorithms
can be divided into the following three categories:

1) Framework based on nondominated sorting: Given
that the diversity of the population is maintained, DN-
NSGAII proposed by Liang et al.['l can obtain more PSs.
Maree et al.l7 combined a multi-objective valley cluster-
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Fig. 3 Ilustration of multimodel multi-objective problem. Two
PSs correspond to one PF.

ing algorithm with the multi-objective algorithm MAM-
aLLGaM to solve MMOPs. Yue et al.['8] adopted a ring to-
pology to obtain better diversity for MMOPs.

2) Framework based on decomposition: Tanabe and
Ishibuchil'® 201 proposed a decomposition-based MMOEA
and a new framework to solve MMOPs. Peng and Ishibu-
chil?ll designed an efficient MMOEA based on a clearing
mechanism and a greedy removal strategy.

3) Framework based on indicator: Tanabe and Ishibu-
chil?2 proposed a niching indicator-based MMOEA to
solve the MMOP with more than three objectives. This
method calculates the fitness of individuals and their
nearest individuals to maintain diversity.

2.3 Resource allocation in evolutionary al-
gorithms

Generally, when the difficulty of multiple subprob-
lems or subtasks is inconsistent, they will face the prob-
lem of computing resource allocation, such as multi-ob-
jective optimization, co-evolution optimization, and mul-
titask optimization. Over the past decades, the resource
allocation strategies are mainly designed for multi-object-
ive optimization[?332, large-scale cooperative co-evolu-
tionary optimizationB340, and multitask optimization[4l].
According to the conclusion in [25], the above resource al-
location strategies include online and offline strategies.

1) Online resource allocation (ONRA): The comput-
ing resources are allocated dynamically according to the
online feedback information.

2) Offline resource allocation (OFRA): The comput-
ing resources are allocated according to the pre-calcu-
lated task difficulty.

In MOPs, most of the research work(23-30 focuses on
the improvement of subproblems, which only use the sub-
problem-level information instead of the overall popula-
tion information. Although the work in [31] emphasizes
the contribution of subproblems, it ignores the improve-
ment of subproblems. With the aim to solve this issue, a
mixed approach in [32] is proposed according to contribu-
tion rates and improvement rates of subproblems simul-
taneously. In cooperative coevolution, the resource alloca-
tion method in [38—40] allocates computing resources ac-
cording to the improvement of subproblems. In addition,
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an improved resource allocation method in [37]is pro-
posed according to accumulating contributions. In multi-
task optimization, an online DRASH! is designed based
on the improvement of subtasks.

2.4 Reinforcement learning

Reinforcement learning (RL) is a field of machine
learning, which emphasizes how to act based on the en-
vironment to maximize the expected benefits. As illus-
trated in Fig.4, the RL algorithm obtains the updating
state and reward from the environment. Afterward, the
agent takes action on the environment. Over the last dec-
ades, RL algorithm has been applied in diverse fields,
such as computer vision[42, financial investment43], auto-
matic drivingl44, natural language processingl43l, robot
controlfl and building energyl47l.

The problem of RL is normalized into the form of the
Markov decision process (MDP) by more rigorous math-
ematical language. MDP is described by a tuple
(S, A,p,R,v), where S is a finite set of states, A is a fi-
nite set of actions, p is the state transition probability, R
is the reward function, and + is the discount factor. The
goal of RL is to obtain the optimal strategy in the pro-
cess of interaction between agent and environment. A
policy is a mapping from state to action and is defined as
follows:

7(als) = plA: = a|S; = 5] (2)

where a is an action in A; and s is a state in S;. When
given a policy 7, the expected discounted return Gt is
calculated as

Gt =Riy1+7X Rep2 + - = Z’Yk X Riyrt1 (3)
k=0

where v € [0,1] and Ri4; is the reward function of the
(t +¢)}th generation. When the expected discounted
return G is obtained, the state-value function v.(s) and
the action-value function ¢- (s, a) are updated as follows:

o0
Un(s) =Ex [ > 7" X Rigria|Si = s (4)
k=0
————  Agent
>
State Reward Action
Environment

Fig. 4 Reinforcement learning model. The agent and
environment interact repeatedly, and the optimal strategy is
obtained.
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gx(s,0) =Ex | > 4" X Reprpa|Se =5, A =a
k=0

()

where E is the expectation under the policy .

3 Proposed approach

This section proposes DRAS in detail. Moreover,
DRAS is applied to zoning searches.

3.1 Subspace’s relative contribution and
improvement

This subsection defines the difficulties and evolution
states of subspaces through the relative contribution and
improvement, and then solves the two flaws of the zon-
ing search strategy. In addition, the concept of hyper-
volumel#8 is introduced to compare the solution of multi-
objective optimization. As shown in Fig.5, this is an ex-
ample to illustrate the concept of hypervolume. The red
dot represents the reference point. The yellow, blue, and
green matrices represent the hypervolume of points A, B,
and C, respectively. Specifically, the larger the hyper-
volume of the solution, the better its quality.

1) Subspace's relative contribution: The relative con-
tribution of the i-th subspace is defined as the propor-
tion of the sum of the hypervolume of all solutions in the
subspace to the sum of the hypervolume of solutions in
the total decision space:

Z HV (")

) zteS,
Alc’(fn ri S 6
' 3 HV(z') (©)
xteS

where ¢ represents the current generation; HV (')
denotes the hypervolume of solution a' in the objective
space; S; represents the i-th subspace. Generally, a small
Al

eontri Means that there is a small number of true PS in

the i-th subspace. Therefore, it is hopeful to be assigned
with less computing resources to this subspace for

A Reference
point

A

Fig. 5 Example for understanding the hypervolume. The
hypervolume of points A, B, and C are shown in the rectangular
area.

it

contr; indicates that

avoiding waste. In contrast, a large A
the i-th subspace has many true PS, requiring more
computing resources. Consequently, limited computing
resources can be used efficiently.

2) Subspace's relative improvement: At the genera-
tion t, the relative improvement induced by the i-th sub-
space is defined as

A;;:Lprov = Z Aiml’“’”(wt) (7)

xzteS;

where Aimprov(Z") represents the improvement of x* and
can be defined as follows:

HV(z'™') — HV (x!)
HV (xt-1) ’ (8)

Aimprov (wt) =

The purpose of (7) is to accurately quantify the im-
provement degree of the i-th subspace. If the improve-
ment of A"

improv

is large, the i-th subspace has great de-
velopment potential, and vice versa. In this way, the po-
tential of the total decision space can be exploited to the
greatest extent.

3.2 Dynamic resource allocation strategy
with reinforcement learning

Inspired by the parameter control strategy in [49], a
dynamic resource allocation strategy based on RL is pro-
posed. The MMOEA is regarded as the environment, and
the subspace is the agent. The subspace’s relative contri-
bution and improvement are the feedback information
from the environment to the agent. The amount of com-
puting resource allocation in subspace is the agent’s ac-
tion to the environment. Thus, the dynamic resource al-
location process is the control process of the RL method.
In addition, at the (g + 1)-th generation, the fitness con-
tribution rate and the improvement rate are calculated
by the subspace’s relative contribution and improvement
over the last [, generations, respectively.

g -~ .
Zt: _L+1 ’Y(g+1 R (Alc’zfntri + /“L)
FCR; 441 = g T (9
297 ,Y(g+1—t)(Az;:lpmv + 1)
FIRl 1= t=g—L+1
9 N Zg ,y(g+1—t) (Az:,t + )
i=1 t=g—L+1 1mprov

(10)

where N is the number of subspaces; 7 €[0,1] is a
discount factor; p is a small positive number to avoid the
denominator to be zero and is set to pu=1.0x 1072%
ALt and ALY are defined in (6) and (7). In (9), the

contri improv
fitness contribution rate can be reflected by the
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it
contri

accumulated feedbacks induced by A over the last L
generations. Similarly, the fitness improvement rate is
measured by the accumulated feedbacks induced by
Ai;’;pmv during the last L generations in (10).

By combining the fitness contribution rate and the fit-
ness improvement rate, the aptitude of each subspace is

defined as follows:

FCRZ',9+1 + F[Ri7g+1

APT; 441 = 5

(11)

For different test functions and evolution phases, the
difficulties and the potentials of the subspaces are differ-
ent. For simplicity, the difficulties and the potentials of
the subspaces are considered equally important. In (11),
the greater contribution and improvement of a subspace,
the more computing resources are allocated.

3.3 Applying DRAS to zoning search

Algorithm 1. DRAS-ZS Ring PSO_SCD
Input: Multimodal multi-objective optimization problem
MMOP, number of subspaces N, maximum number of
function evaluations maxF Es, subspace population size
A.
Output: Offspring population OF P.
1) The decision space S is divided into N subspaces, i.e.,
S = {Sl,SQ,"' ,SN};
2) Generate an initial parent population PAP =
{PAPl, e ,PAPN}, PAP»L = {ZE1,ZE2, ce ,CL‘N};
3) Set the aptitude APT = {%, %, cee %},
4) FEs =FFEs+ A X N;
5) While FEs < mazFFEs do
6) The zoning search adopts PAP and APT to
generate off-spring population OFP and computing
resources used C,;
7) FEs=FEs+ Cy
8) Calculate AZ . . and Ai;fwmv
(7
9) Obtain APT = {APT\+, APT>+,--- ,APTN+} accor-
ding to (9)—(11);
10) End While

The proposed DRAS is applied to the zoning
search('¥] named DRAS-ZS Ring PSO SCD, which is
summarized in Algorithm 1. Firstly, the decision space S

according to (6) and

is divided into NN subspaces based on the zoning search
approach. Secondly, an initial parent population PAP
and the aptitude APT are generated. Thirdly, the com-
puting resources of each subspace are dynamically alloc-
ated based on the feedback information in Steps 5)—10).
More specifically, the zoning search algorithm adopts the
allocated APT to generate the offspring population OF P
in Step 6). Finally, according to the subspace’s relative
contribution and improvement, the aptitude of each sub-
space is calculated in each generation to guide the alloca-
tion of computing resources in Steps 8)—9).
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4 Experimental studies

4.1 Test problems and performance indic-
ators

The 22 test problems on MMO are designed by Liang
et al.l5% The parameters settings of the test problems are

U and 2% are the

summarized in Table 1. Specifically, =
lower and upper bounds of the decision variables, respect-
ively. Frep is the reference point for hypervolume calcula-
tion, and PSs is the number of PS.

In the MOEAs, some performance metrics(! 52 have
been proposed. However, MMO pays more attention to
PSs fitting in the decision space, so these performance in-
dicators are not suitable for evaluating the performance
of MMOEAs. Therefore, the hypervolume (HV)B! and
the Pareto set proximity (PSP)[¥ are used to perform
the assessment of MMOEAs. Specifically, HV is used to
evaluate the obtained PF in the objective space, and PSP
is utilized to evaluate the obtained PSs in the decision
space. Because MMOP is to find multiple PSs in the de-

Table 1 Parameters settings of the test problems

Problems z! ¥ Frep PSs
MMF1 [1-1] 31] [1.11.1] 2
MMF1 2z [1-1] (31] 1111] 2
MMF1 e [1-20] (3 20] 1111 2
MMF2 [00] [12] [1.11.1] 2
MMF3 [00] [11.5] [1.11.1] 2
MMF4 [~10] [12] [1.11.1] 4
MMF5 [1-1] 33] 1111 4
MMF6 [1-1] [32) 1111 4
MMF7 [1-1] (31] [1.11.1] 2
MMF8 [~ 0] [7 9] 1111 4
MMF9 [0.10.1] [1.11.1] [1.2111] 2
MMF10 [0.10.1] [1.11.1] [1.2113.2] 1
MMF11 [0.10.1] [1.11.1] [1.2115.4] 1
MMF12 [00] [11] [1.541.1] 4
MMF13 [0.10.10.1] [1.11.11.1] [1.5415.4] 1
MMF14 [000] 111] [222222 2
MMF14 a [000] 111] [2.22.222] 2
MMF15 [000] 111] [252525 1
MMF15 a [000] 111  [252525 1
SYM PART simple  [~20 ~20] [20 20] [4.44.4] 9
SYM PART rotated  [-20 —20] [20 20] [4.44.4] 9
Omni-test [000] 66 6] [4.444] 27
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cision space, PSP is the main performance metric, and
HV is the auxiliary performance metric.

4.2 Experimental settings

In this paper, seven competitive algorithms which are
MOEA/DIf], NSGAIIl, ZS-MO_Ring PSO SCD!4, DN-
NSGAII, MO Ring PSO SCDI8l, SSMOPSOP3, and
DRAS-ZS Ring PSO_SCD are selected as comparison al-
gorithms.

For seven comparison algorithms, the population size
is 800, and the maximum number of evaluations is 160 000.
Each algorithm runs 25 times independently. According
to the conclusion in [14], the number of subspaces N can
be set to 2, 4, and 6. For two-dimensional and three-di-
mensional test functions, N is set to 4 and 6 respectively,
and the algorithm has the best performance. Moreover, to
make a more accurate analysis, Friedman's test®¥ is util-
ized to identify the performance of each algorithm. The

“_»

signs “47, , and “~” denote that the performance of
the proposed algorithm is better, worse, and not much
different than the comparison algorithm. In addition, all
comparison algorithms are programmed in Matlab

(R2017b).
4.3 Comparison with other algorithms

In the experiment, seven comparison algorithms are
tested on 22 test problems in terms of HV and PSP.
Moreover, the test problems are divided into two groups
based on the difficulties of the subspaces. In the first test
problem group, the difficulty of each subspace is different,
while the difficulty is the same in the second test prob-
lem group.

Tables 2 and 3 show the mean and standard devi-
ation of the seven comparison algorithms on two groups
of test problems to HV. As shown in Table 2, DRAS-
ZS Ring PSO SCD surpasses the six other comparison

Table 2 HYV values of seven algorithms on the first test problem group

. DRAS-ZS Ring_ ZS-MO_Ring_ MO_Ring_
Problems PSO_SCD MOEA/D NSGAII PSO SCD DN-NSGAII PSO SCD SSMOPSO
8.81E-01 2.18E-01 8.73E-01 8.76E-01 8.72E-01 8.75E-01 8.75E-01
MMF1_z + + +
(3.74E-05) (5.63E-04) (5.63E-05) (4.72E-05) (6.36E-05) (4.59E-05) (2.06E-04)
8.74E-01 7.99E-01 8.72E-01 8.72E-01 8.72E-01 8.73E-01 8.75E-01
MMF1 e + + + + + -
(8.63E-04) (5.74E-05) (3.67TE-04) (7.23E-04) (5.87TE-04) (4.82E-04) (3.21E-04)
8.73E-01 8.76E—01 8.72E-01 8.72E-01 8.72E-01 8.73E-01 8.74E-01
MMF3 - + + + ~ _
(8.26E-04) (2.99E-05) (8.53E-04) (8.64E-04) (9.23E-04) (6.08E-04) (2.57TE-04)
8.75E-01 8.76E-01 8.7T7TE-01 8.76E-01 8.76E-01 8.75E-01 8.74E-01
MMF7 - - - - ~ +
(3.68E-05) (2.12E-05) (1.79E-06) (1.79E-05) (1.38E-06) (6.82E-05) (9.03E-05)
1.28E+01 1.23E4-01 1.30E+01 1.28E+-01 1.29E4-01 1.28E+01 1.29E4-01
MMF10 + - ~~ - ~ -
(7.42E-03) (8.87E-03) (7.63E-03) (7.10E-03) (7.86E-03) (2.20E-03) (4.70E-03)
1.45E401 1.45E401 1.46E+01 1.45E401 1.45E+401 1.45E401 1.45E+01
MMF11 ~ - ~ ~ ~ ~
(3.78E-05) (4.34E-05) (5.27E-05) (2.72E-04) (5.16E-05) (7.47TE-04) (2.90E-03)
1.57E+00 1.57E+00 1.58E+00 1.57E+00 1.57E+00 1.57E+00 1.57E400
MMF12 ~ - ~ I~ ~ ~
(1.74E-04) (3.18E-06) (4.27TE—-06) (1.60E-04) (4.59E-06) (1.85E-04) (1.39E-04)
1.85E401 1.84E401 1.86E+01 1.85E+01 1.85E+01 1.84E401 1.85E+01
MMF13 + - ~ ~ + ~
(7.83E-04) (1.23E-04) (1.79E-05) (8.85E-04) (1.41E-04) (9.25E-04) (7.95E-04)
4.51E+00 3.69E+00 4.49E4-00 4.48E+00 4.37E+00 4.35E+00 4.29E4-00
MMF15 + + + + + +
(8.54E-02) (8.56E-02) (8.66E-02) (7.07TE-02) (8.67TE-02) (7.69E-02) (9.54E-02)
4.62E+00 3.73E+00 4.83E+00 4.47E+00 4.47TE400 4.33E400 4.29E400
MMF15_a + - + + + +
(8.63E-02) (1.11E-01) (9.73E-02) (8.13E-02) (8.74E-02) (6.00E-02) (7.65E-02)
+ 6 4 5 5 5 4
~ 2 0 4 3 5 3
2 6 1 2 0 3
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algorithms on 6, 4, 5, 5, 5, and 4 test problems.
Moreover, DRAS-ZS Ring PSO_SCD surpasses the six
other comparison algorithms on 7, 2, 8, 6, 11, and 9 test
problems in Table 3. Furthermore, this paper conducts
Friedman's test® on seven comparison algorithms based
on 22 test problems. Table 4 presents the test results, and
it shows that NSGAII has the best ranking, sequentially
followed by DRAS-ZS Ring PSO SCD, ZS-MO Ring
PSO SCD, DN-NSGAII, MOEA/D, SSMOPSO, and
MO _Ring PSO SCD. It can be seen that DRAS-
ZS_Ring PSO_SCD performs worse than NSGAII. This is
because DRAS mainly improves the performance of de-

cision space. The performance of objective space mainly

Machine Intelligence Research 19(2), April 2022

depends on the multi-objective handling technology. Fi-
nally, although DRAS-ZS Ring PSO SCD does not have
the best ranking, its performance is significantly better
than the other five comparison algorithms.

Besides the HV, the indicator PSP is used to evaluate
seven comparison algorithms. As shown in Table 5, the
first group test problems are used, which have different
difficulties in each subspace. DRAS-ZS Ring PSO SCD
surpasses the six other comparison algorithms on 12, 12,
12, 12, 12, and 10 test problems. This is because the
DRAS can dynamically allocate computing resources
based on the contribution and improvement degree of the
subspaces, which can effectively improve the overall per-
formance. Moreover, the second group test problems are

Table 3 HYV values of seven algorithms on the second test problem group

DRAS-ZS_Ring

ZS-MO_Ring_

MO_Ring

Problems Lo g " MOBA/D NSGAII SO SOD DN-NSGATII PSG. SO SSMOPSO
8.76E-01 8.76E-01 8.77E-01 8.76E-01 8.76E-01 8.75E-01 8.75E-01

MMF1 ~ - ~ ~ + +
(1.58E-05)  (1.71E-05) (1.79E-05) (4.29E-05) (4.19E-06) (4.61E-05) (2.13E-04)
8.73E-01 8.76E-01 8.73E-01 8.72E-01 8.71E-01 8.72E-01 8.73E-01

MMF2 - ~ + + + ~
(6.25E-04)  (2.03E-05) (1.84E-03) (5.66E-04) (1.60E-03) (3.42E-04) (5.43E-04)
5.44E-01 5.43E-01 5.48E-01 5.43E-01 5.43E-01 5.42E-01 5.42E-01

MMF4 + - + + + -
(5.66E-06)  (8.38E-07) (8.27E-06) (7.45E-05) (8.12E-06) (1.28E-04) (1.95E-04)
8.76E-01 8.76E-01 8.77E-01 8.76E-01 8.76E-01 8.75E-01 8.75E-01

MMF5 ~~ - ~~ ~~ =+ +
(7.26E-06)  (1.20E-05) (7.67E-05) (4.76E-05) (1.59E-05) (3.37E-05) (2.71E-04)
8.77E-01 8.76E-01 8.79E-01 8.76E-01 8.76E-01 8.75E-01 8.75E-01

MMF6 + - - + + -
(6.26E-05)  (1.81E-04) (7.35E-05) (4.01E-05) (2.95E-06) (4.30E-05) (1.74E-04)
4.24E-01 4.25E-01 4.24E-01 4.24E-01 4.24E-01 4.23E-01 4.24E-01

MMF8 - 5] =~ ~ + 5]
(4.33E-05)  (3.92E-05) (7.53E-05) (8.42E-05) (6.40E-05) (3.58E-04) (1.26E-04)
9.72E400  9.69E400 9.74E+00 9.71E400 9.71E400 9.70E+00 9.69E-+00

MMF9 + - + + + -
(5.63E-05)  (2.60E-05) (7.43E-05) (1.48E-04) (6.36E-05) (8.44E-04) (4.70E-03)
3.14E400  2.11E400 3.15E400 3.15E400 3.14E400 3.06E+00 2.97E-+00

MMF14 + - - ~ + +
(5.288-02)  (8.68E-02) (7.25E-02) (9.54E-02) (9.67TE-02) (1.37E-01) (7.33E-02)
3.19E4+00  2.79E400 3.21E+00 3.17E+00 3.20E400 3.00E400 3.10E-+00

MMF14 a + - + _ I "
(1.68E-01)  (1.70E-01) (1.65E-01) (1.29E-01) (1.67E-02) (1.35E-01) (4.14E-02)

Sym pART  1-13E+01 L67TE+01  169E+01  LOGE-+01 . L67TE+01 L67E+01  L66E+00
simple (3.67TE-05)  (2.64E-05) (7.25E-05) (8.27E-04) (4.91E-05) (5.52E-04) (4.86E-04)

Sym pArT L6SEH0l  LG67E+01 . 1.67E+01 . 1.31E400 . 1.67E+01 . 1.67E+01 . 1.67E+01 .
rotated (7.26E-04)  (3.10E-05) (2.77E-05) (8.64E-04) (5.99E-05) (1.30E-03) (3.75E- 03)
6.22E+01  5.28E401 5.46E-+00 6.20E-01 5.28E401 5.28E-01 5.28E+01

Omni-test + + + + + +
(3.67E-03)  (1.20E-03) (3.76E-04) (7.70E-03) (5.23E-04) (6.00E-03) (9.64E-04)

+ 7 2 8 6 11 9

~ 2 2 3 4 0 2

3 8 1 2 1 1
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Table 4 Results obtained by the Friedman's test on 22 test
problems on MMO to HV

Algorithms Ranking
NSGAII 2.295 5
DRAS-ZS_Ring PSO_SCD 3.0000
7ZS-MO_Ring PSO_SCD 4.0227
DN-NSGAII 4.045 5
MOEA/D 4.704 5
SSMOPSO 4.8409
MO_Ring PSO_SCD 5.0909

utilized in Table 6. It is confirmed that DRAS-
ZS_Ring PSO_SCD can perform better than six other
comparison algorithms on all test problems, except for
the problems SYM-PART simple and Omni-test. There-
fore, it can be concluded that the DRAS can allocate

145

more computing resources to subspaces with greater per-
formance improvement. Furthermore, this paper con-
ducts Friedman's test(¥ on seven comparison algorithms
based on 22 test problems. Finally, Table 7 presents the
test results showing that DRAS-ZS Ring PSO SCD has
the best ranking, which indicates that the DRAS is an ef-

fective method for MMOPs.
4.4 Visual comparison

To further verify the effectiveness of DRAS, two prob-
lems (i.e., MMF3 and Omni-test) are utilized. As shown
in Fig.6, these are the obtained PSs and the true PSs on
problem MMF3. Clearly, it can be seen that seven al-
gorithms can find two PS regions. In particular, DRAS-
ZS Ring PSO SCD can obtain better solutions than six
other comparison algorithms in each PS. Therefore,
DRAS-ZS_Ring PSO_SCD has the best performance. For

Table 5 PSP values of seven algorithms on the first test problem group

) ZS- )
Problems DRASZS Ring yopap NSGAII MO Ring_ DN-NSGATII MO _Ring_ SSMOPSO
PSO_SCD PSO_SCD
PSO_SCD
1.71E+02 3.00E+01 8.31E+01 1.64E+02 1.13E+02 9.86E+01 9.47E+01
MMF1_z + + + + + +
(5.48E400)  (5.23E-01) (4.30E+00) (6.82E+00) (5.92E+00) (5.97E+00) (5.87E+00)
5.97E+00 3.78E+00 3.93E+00 5.92E+00 5.74E+00 5.95E+00 1.02E+01
MMF1 e + + + + + -
(1.40E+00)  (1.44E-01) (6.93E-01) (9.60E-01) (8.36E-01) (1.40E+00) (6.01E-01)
2.15E+02 8.86E+00 1.29E+02 2.11E+02 1.89E+02 2.20E+02 2.84E+02
MMF3 + + + + + -
(2.53E+01)  (4.54E+00) (4.63E+01) (2.04E+01) (6.21E+01) (1.56E+01) (1.36E+01)
2.08E+02 5.31E+00 7.42E+01 2.02E+02 1.18E+02 1.10E+402 5.78E+01
MMF7 + + + + + +
(1.04E+01)  (2.26E+00) (4.28E+00) (8.38E+00) (5.57TE+00) (6.24E+00) (4.79E+00)
6.22E+00 3.48E-01 1.73E-03 6.09E+00 2.50E-03 6.17E+00 6.18E+00
MMF10 + + + + + +
(2.32E-02)  (4.07E-01) (1.05E-04) (1.07E-01) (1.24E-04) (2.26E-02) (2.53E-02)
5.31E+00 6.46E-02 2.36E+00 3.05E+00 3.03E+00 5.30E+00 4.09E+00
MMF11 + + + + + +
(7.26E-02)  (2.75E-02) (1.78E-02) (2.12E-02) (5.25E-02) (8.73E-02) (1.86E-+00)
4.51E+00 5.65E-02 3.11E+00 4.34E+00 4.31E+00 4.42E+00 1.67E+00
MMF12 + + + + + +
(2.18E+00)  (4.45E-02) (3.10E+4-00) (2.88E+00) (3.89E+-00) (2.60E+00) (2.16E4-00)
3.72E+00 7.42E-01 7.28E-01 3.25E+00 1.27E4-00 3.51E+00 2.69E+00
MMF13 + + + + + +
(9.27E-01)  (4.00E-01) (5.28E-01) (7.73E-01) (7.90E-03) (6.73E-01) (7.15E-01)
6.67TE+00 9.96E+00 4.19E+00 6.63E-+00 5.84E+00 6.57TE+00 5.62E+00
MMF15 + + + + + +
(8.26E-01)  (6.17E—-01) (5.72E-01) (7.20E-01) (7.36E-01) (6.63E-01) (3.11E-01)
6.45E+00 9.76E+00 5.20E+00 6.30E+00 6.30E+00 6.42E+00 6.31E+00
MMF15_a + + + + + +
(4.73E-01)  (5.13E-02) (5.72E-01) (4.5TE-01) (4.74E-01) (3.96E-01) (1.51E-01)
+ 12 12 12 12 12 10
~ 0 ] 0 0 0 0
0 0 0 0 0 2
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Table 6 PSP values of seven algorithms on the second test problem group

DRAS- AS

Problems 7S Ring_ MOEA/D NSGAII MO Ring_ DN-NSGATII hlils%lgg% SSMOPSO
PSO_SCD PSO_SCD -
1.37E+02 7.29E400 4.82E401 1.24E+02 6.82E+401 7.21E+01 7.35E+01
MMF1 + + + + + +
(6.19E+00)  (6.47E+00) (3.82E+00) (5.52E+00) (1.61E+00) (3.28E4-00) (7.18E4-00)
2.32E+02 4.13E4-00 8.29E-+01 2.13E+02 1.47TE+02 1.80E+02 2.61E402
MMF2 + + + + + +
(1.84E+01)  (3.48E+00) (2.48E+01) (2.15E401) (4.44E4+01) (1.63E+01) (1.10E4+01)
2.57E+02 1.55E4-00 5.74E-+01 2.20E+02 1.04E+02 1.21E402 1.15E4-02
MMF4 + + + + + +
(4.03E+00)  (6.47E-01) (3.86E+00) (5.97E+00) (4.54E400) (2.05E+400) (3.22E4-00)
5.90E+01 3.48E+400 1.29E+01 5.85E+01 3.13E401 3.63E401 3.74E+01
MMF5 + + + + + +
(4.58E400)  (2.31E+4-00) (1.39E4-00) (3.21E4-00) (1.66E4-00) (7.30E-01) (3.97E+00)
7.01E+01 4.35E+00 1.73E+01 6.83E+01 3.35E4-01 3.85E4-01 3.67E+01
MMF6 + + + + + +
(3-30E+00)  (2.14E+00) (1.94E+00) (2.33E400) (1.86E400) (1.51E400) (1.03E+400)
8.72E+01 1.25E-01 4.25E401 8.61E+01 8.17E+00 5.39E401 4.26E401
MMF8 + + + + + +
(1.79E400)  (8.92E-02) (1.95E+00) (3.62E+00) (2.82E+00) (2.49E+00) (8.13E+00)
7.84E+01 2.07E-01 2.48E+02 7.69E+02 4.30E402 3.98E+402 3.76E+02
MMF9 + + + + + +
(1.59E4+01)  (4.95E-02) (9.42E4-00) (1.91E4-01) (1.68E4-01) (7.68E+00) (3.20E+01)
6.59E+01 1.00E+01 2.18E+01 5.61E+01 2.97E4-01 3.02E4-01 2.33E401
MMF14 + + + + + +
(3.79E-01)  (1.92E-01) (3.80E-01) (4.30E-01) (4.63E-01) (3.91E-01) (6.33E-01)
5.43E+01 9.81E+00 2.59E+01 5.07E+01 4.05E401 2.70E+401 2.45E+01
MMF14_a + + + + + +
(8.11E-01)  (1.81E-01) (4.73E-01) (7.19E-01) (3.57E-01) (6.34E-01) (4.30E-01)
SYM PART  9-7OE+01 4.69E-04 2.47E+01 3.38E+01 8.20E+01 3.15E4-01 3.05E+01
= + + + - + +
simpl
simpie (1.03E4+00)  (3.79E-04) (1.06E+4-00) (1.89E+400) (1.73E+00) (1.14E400) (2.96E400)
SyM pART  6-39E+01 1.63E-02 . 2.74E+01 . 3.05E+01 . 5.98E+01 N 2.66E+01 N 2.58E+01 .
tated
rorate (1.79E+00)  (1.80E-02) (1.06E+00) (1.75E+00) (9.04E-01) (1.29E+00) (1.62E+00)
1.99E+401 3.35E-02 1.60E+01 1.28E+01 4.17E+01 1.01E+01 1.16E+01
Omni-test + + + — 4 4
(3.18E+00)  (3.40E-03) (2.83E+00) (3.97E+00) (4.22E+00) (2.03E4-00) (7.28E4-00)
+ 12 12 12 10 12 12
~ 0 0 0 0 0 0
] 0 0 2 0 0

the problem Omni-test, PSs obtained by seven al- Table 7 Results obtained by the Friedman's test on 22 test

bl MMO to PSP

gorithms are provided in Fig.7. Specifically, the Omni- probiems on OtoPS
test problem is the most complex compared to the other Algorithms Ranking
21 problems because it has 27 PSs. As shown in Fig.7, DRAS-ZS_Ring_PSO_SCD 1.5909
DRAS-ZS Ring PSO_SCD, ZS-MO_Ring PSO_SCD, ZS-MO Ring PSO_SCD 0.8400
DN-NSGAII, MO_Ring PSO SCD, and SSMOPSO can
find 27, 27, 27, 26, and 27 PS regions, respectively. MO_Ring_PSO_SCD 34091
However, the DRAS-ZS Ring PSO_SCD can obtain bet- SSMOPSO 4.0000
ter solutions than these algorithms in each PS. In addi- DN-NSGAII 41136
tion, MOEA/D and NSGAII can only find one PS

. NSGAII 5.727 3
region.

Through the above visual comparisons, DRAS can al- MOEA/D 6.318 2
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1.5 1.5 1.5
1.0 1.0 1.0
<! < <
0.5 0.5 0.5
= Obtained PS > Obtained PS = Obtained PS
- True PS + True PS + True PS
0 0 0
0 02 04 06 08 1.0 0 02 04 06 08 1.0 0 02 04 06 08 1.0
Xy X X
(a) DRAS-ZS Ring PSO_SCD (b) MOEA/D (c) NSGAII
1.5 1.5
1.0 1.0
<! Y
0.5 0.5
> Obtained PS > Obtained PS
+ True PS E + True PS
0 0
0 02 04 06 08 1.0 0 02 04 06 08 1.0
X X,
(d) ZS-MO_Ring PSO_SCD (e) DN-NSGAII
1.5 1.5
1.0 1.0
= <
0.5 0.5
= Obtained PS > Obtained PS
- True PS - True PS
0 0
0 02 04 06 08 1.0 0 02 04 06 08 1.0
Xy X
(f) MO_Ring PSO_SCD (g) SSMOPSO

Fig. 6 Obtained PSs and the true PSs on problem MMF3 for seven comparison algorithms: (a) DRAS-ZS Ring PSO_SCD; (b)
MOEA/D; (c) NSGAII; (d) ZS-MO_Ring_PSO_SCD; (e) DN-NSGAII; (f) MO_Ring_ PSO_SCD; (g) SSMOPSO.

locate the computing resources to the improved and con- ation, while a big v uses too much historical information,
tributed regions so that MMOEAs can obtain more well- which has a negative effect on the proposed DRAS.
distributed PSs. Therefore, DRAS is an effective way to

solve MMOPs. 4.6 Computational complexity

4.5 Parameter analysis Fig.9 presents the average runtime of five MMOEAs

on 22 MMO test functions. As shown in Fig.9, DN-NS-
GAII has the longest runtime, sequentially followed by
SSMOPSO, DRAS-ZS Ring PSO_SCD, ZS-MO_Ring
PSO SCD, and MO Ring PSO SCD. Firstly, the

DRAS introduces one parameter: the discount factor ~y
in (9) and (10). For the discount factor, a large  can

@ake.full .use of Illistorical information. IﬁIoweyer, early runtime of DN-NSGATI and SSMOPSO is significantly
historical information may have a negative impact on higher than the other three MMOEAs. This is because
current resource allocation strategies. Moreover, a small ~ DN-NSGATII uses a niching method to create the mating
cannot effectively utilize historical information. Therefore, pool, which consumes much computation time. Moreover,
we investigate how v affects the performance of DRAS- SSMOPSO adopts the self-organizing map network to es-
ZS_Ring PSO_SCD by testing five different ~: 0.1, 0.3, tablish the neighborhood of the particles, and much com-
0 5_0 7 ;nd 0_9 putation time is used. Secondly, the zoning search

strategy is applied to MO _Ring PSO _SCD to get ZS-
MO _Ring PSO SCD, and ZS-MO Ring PSO SCD has
longer runtime than MO_Ring PSO_SCD. This is be-
cause the zoning search strategy causes an additional

As shown in Fig.8, there are the results provided by
DRAS-ZS Ring PSO_SCD with five different ~ on
MMF4, MMF11, MMF14, and SYM-PART rotated.

When the discount factor is 0.7, DRAS-ZS Ring_ computing burden. Finally, DRAS is utilized to enhance
PSO_SCD has the best performance. The reason is as fol- the performance of ZS-MO_Ring PSO_SCD. As shown in
lows. A small v cannot make full use of historical inform- Fig.9, the runtime of ZS-MO_Ring PSO SCD and
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Omni-test _ Omni-test . Omni-test _
> Obtained PS > Obtained PS > Obtained PS
6 i L True PS 6 H (L True PS 6 i i | TruePs
4 4 L4
= =
2 2 2
0 0 0
X, 00 X, X, 00 X,
(a) DRAS-ZS Ring PSO_SCD (b) MOEA/D (c) NSGAII
i- Omni-test
Omn-est S tained PS Mt Obtained PS
6 i $ + True PS 6 i ¢ + True PS
-4 4
= =
2 2
0 0
Xy 00 X
(d) ZS-MO_Ring_PSO_SCD (¢) DN-NSGAII
Omni-test Omni-test
> Obtained PS > Obtained PS
¢ b ylTrers ¢yl Trueps
= =

(f) MO _Ring_PSO_SCD

(= )

(2) SSMOPSO

Fig. 7 Obtained PSs and the true PSs on problem Omni-test for seven comparison algorithms: (a) DRAS-ZS_Ring PSO_SCD; (b)
MOEA/D; (c) NSGALIL (d) ZS-MO_Ring PSO_SCD; (e) DN-NSGALIL (f) MO _Ring PSO_SCD; (g) SSMOPSO.

DRAS-ZS Ring PSO_SCD are almost similar, indicating
that DRAS significantly improves the performance of ZS-
MO _Ring PSO_SCD without too much additional com-
puting burden.

4.7 Imbalance problems

Twelve imbalance test problems on MMO are used as
test problems. Seven MMOEAs, which are CPDEAI],
MO_Ring PSO_SCDU8l DNEAPS, TriMOEA-TA&R7
DN-NSGAII Omni-optimizer(8l, and DRAS-ZS Ring
PSO_SCD, are selected as comparison algorithms. Each
algorithm runs 40 times independently. For the two-ob-
jective, three-objective, and four-objective problems, the
maximum number of evaluations is 18 000, 36 000, and
72 000, respectively, and the population size is set to 60, 120,
and 240, respectively. In order to compare different al-
gorithms on these test problems, we adopt inverted gen-
erational distance (IGDX)BY as the performance metrics.
IGDX can give a comprehensive quantification of both
the convergence and the diversity in the decision space of
the approximate solution set.

As shown in Table 8, the imbalance test problems are

@ Springer

used. DRAS-ZS Ring PSO_SCD surpasses the six com-
parison algorithms on 9, 12, 12, 12, 12, and 12 test prob-
lems. This indicates that DRAS-ZS Ring PSO_SCD still
achieves excellent performance on the imbalance test
problems. Moreover, the difficulty of each PS is different
in the unbalanced problems, and the proposed DRAS can
efficiently allocate computing resources to improve the
performance of the algorithm.

5 Conclusions

In this paper, a dynamic resource allocation strategy
with reinforcement learning is proposed for MMO. The
aptitudes of subspaces are defined by relative contribu-
tion and improvement. Moreover, computing resources
are dynamically allocated by the RL method based on the
aptitudes of the subspaces, which can make the subspace
with larger potential allocate more computing resources.
Finally, the experimental results indicate that DRAS is
efficient and competitive.

In the future, there are still several issues that de-
serve to be investigated. Firstly, the potential of sub-
spaces can be defined by new indicators. Secondly, since
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Fig.8 Box plots of the PSP value derived from DRAS-ZS Ring PSO_SCD with different discount factors on MMF4, MMF11,
MMF14, and SYM-PART rotated

Table 8 IGDX values of seven algorithms on imbalance test problems

DRAS- . . .
IDMP-M2-T1  3.78E-03 9.91E-04 — 5.82E-02 + 3.20E-01 + 3.20E-01 + 1.70E-01 + 3.06E-01 +
IDMP-M2-T2  9.75E-04 1.04E-03 4+ 2.79E-03 + 253E-01 + 3.03E-01 + 1.86E-01 + 2.06E-01 +
IDMP-M2-T3  1.27E-03 1.53E-03 4+ 2.71E-03 4+ 880E-02 + 256E-01 + 222E-01 4+ 290E-01 +
IDMP-M2-T4  5.92E-03 1.01E-03 — 1.05E-01 + 3.20E-01 + 3.37E-01 4+ 3.37E-01 4+ 3.22E-01 +
IDMP-M3-T1  3.25E-03 5.64E-03 + 6.39E-02 + 4.08E-01 + 3.97E-01 4+ 3.08E-01 + 3.89E-01 +
IDMP-M3-T2  4.97E-03 5.66E-03 + 3.57TE-02 + 3.60E-01 + 3.91E-01 + 3.55E-01 + 3.95E-01 -+
IDMP-M3-T3  6.01E-03 6.17TE-03 4+ 7.98E-03 + 2.6TE-01 +  3.42E-01 + 2.74E-01 4+ 3.34E-01 +
IDMP-M3-T4  3.16E-03 5.62E-03 4+  2.29E-02 +  4.05E-01 +  4.55E-01 4+ 4.61E-01 4+ 4.26E-01 +
IDMP-M4-T1  5.81E-03 431E-03 — 3.01E-01 4+ 5.93E-01 + 5.96E-01 +  4.99E-01 + 5.97E-01 +
IDMP-M4-T2  3.84E-03 4.35E-03 + 6.22E-02 + 5.20E-01 + 5.40E-01 + 5.55E-01 + 5.56E-01 +
IDMP-M4-T3  4.41E-03 4.78E-03 + 7.51E-03 + 4.84E-01 + 4.91E-01 + 3.42E-01 +  4.34E-01 +
IDMP-M4-T4  4.25E-03 4.38E-03 + 8.02E-03 + 5.10E-01 + 5.30E-01 + 5.28E-01 + 5.26E-01 +
+ 9 12 12 12 12 12
~ 0 0 0 0 0 0
3 0 0 0 0 0
contribution and improvement to the subspace are control the ratio of contribution and improvement based
treated equally, it is an interesting idea to dynamically on historical feedback. Finally, it would be very meaning-
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ful to apply the proposed method to the actual scene.
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