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Abstract:   The problem of disguised voice recognition based on deep belief networks is studied. A hybrid feature extraction algorithm
based on formants, Gammatone frequency cepstrum coefficients (GFCC) and their different coefficients is proposed to extract more dis-
criminative speaker features from the original voice data. Using mixed features as the input of the model, a masquerade voice library is
constructed. A masquerade voice recognition model based on a depth belief network  is proposed. A dropout strategy  is  introduced to
prevent overfitting, which effectively solves the problems of traditional Gaussian mixture models, such as insufficient modeling ability
and low discrimination. Experimental results show that the proposed disguised voice recognition method can better fit the feature distri-
bution, and significantly improve the classification effect and recognition rate.
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1   Introduction

In recent  years,  biometrics,  which is  based on finger-

print, face,  iris  and  other  physiological  features,  has  de-

veloped  rapidly  in  many  fields  and  been  widely  used[1].

Because  these  physiological  characteristics  are  relatively

stable  for  the  same  person  and  have  relatively  unique

characteristics  for  different  people,  the  recognition  effect

is  better.  Compared  with  other  biometric  recognition

technology, voiceprint recognition has been gradually ap-

plied  to  many  fields  because  of  its  unique  advantages[2].

Voiceprint  technology  from  the  original  voice  to  extract

the unique characteristics of the individual, only need to

collect voice without direct contact with people, the user

is more acceptable. And it requires less equipment, only a

device with the function of recording. However, face, fin-

gerprint  and other  identification technologies  are  usually

more  expensive,  because  these  technologies  need  to  use

professional  scanning  equipment,  need  to  be  certified  by

professional institutions.

Therefore, voiceprint  recognition  has  obvious  advant-

ages over other biometric technologies, and it can be ap-

plied in public security and judicial departments. For ex-

ample, if the police obtain a recording of a criminal at the

scene of a crime, they can compare the voiceprint inform-

ation of the recording with the voiceprint information in

the  trained  database  to  find  the  identity  information  of

the suspect. By using voiceprint recognition method, law

enforcement  agencies  can  quickly  and  efficiently  arrest

criminal suspects.

The  voiceprint  recognition  technology  facilitates  our

daily life[3]. But unlike biometric technologies such as fin-

gerprints, irises and DNA, voice is not immutable. Due to

the  influence  of  internal  and  external  factors  such  as

background  noise  interference,  channel  transformation,

disguised,  excitement  and  pressure,  sound  will  change.

Voice variation makes it difficult to use voice for identity

authentication, and when it is used by illegal elements, it

will bring trouble and crisis to our life[4].

In voice cases, more and more criminals use whispers,

falsetto, imitation of other people′s voice and other means

to disguise their  voices in order to conceal  their  identity

and avoid arrest[5]. For the normal voice, due to the influ-

ence  of  non-human  factors,  the  voice  is  often  distorted,

which brings  some difficulties  to  the voice  identification,

and the appearance of disguised voice makes the identity

authentication more difficult[6, 7]. Therefore, improving the

performance  of  voiceprint  recognition  system  under  the

condition  of  disguised  voice  is  of  great  significance  for

identity recognition and forensic evidence[8, 9].

Matveev[10] investigated  the  impact  of  age-related
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voice  changes  on  voiceprint  recognition  performance

based  on  voice  data  collected  from  2006  to  2010,  and

found that  the  performance  of  automatic  voiceprint  re-

cognition system tended to decline over a four-year peri-

od.  A  statistical  feature  and  support  vector  machine

(SVM) classifier  algorithm  based  on  mean  and  correla-

tion coefficient can separate the disguised voice from the

original  voice[11].  In 2015,  Wu et al.[12] held the first  dis-

guised voice test contest and released the first statistical

analysis  system  (SAS)  database  designed  for  disguised

voice  recognition  research[12].  One  algorithm  successfully

uses pitch estimation scale  factor  and improved Mel  fre-

quency cepstrum  coefficient  (MFCC)  extraction  al-

gorithm to eliminate the disguised effect, and verifies the

identity  of  the  speaker  by  transforming  the  disguised

voice[13].  By  analyzing  the  recognition  results  of  human

ear to disguised sounds and the disguised effects of differ-

ent disguised  sounds,  the  most  difficult  disguised  to  re-

cognize  is  deduced[14].  Using  normal  voice  and  ten  kinds

of disguised  voice,  human  auditory  experiments  of  a  fa-

miliar  and  unfamiliar  speaker′s disguised  voice  are  car-

ried out, and it is found that the recognition of whispers

is the most difficult and the disguised effect is the best. A

method for recognizing an electronically disguised voice is

proposed[15]. A Gaussian mixture model (GMM) model is

established  to  construct  the  combination  features  of  the

mean vector. Then the SVM classifier is used for training

and recognition.

At present,  the  achievements  of  disguised  speech  re-

cognition are  almost  all  in  the  form  of  electronic  dis-

guised speech,  while  the  achievements  of  physical  dis-

guised  speech  recognition  are  mainly  based  on  feature

analysis. Zhou et al.[16, 17] have studied voiceprint recogni-

tion with  mixed  features  of  Gammatone  frequency  cep-

strum coefficients  (GFCC)  and  MFCC,  but  the  recogni-

tion model is a GMM method using shallow network. Cao

et  al.[18, 19] mainly  studied  the  classical  GMM  model  for

voiceprint  recognition,  but  GMM  is  a  shallow  network

structure  model,  and  its  ability  to  represent  complex

functions is limited in the case of not enough samples. Lv

and  Pan[20, 21] have  studied  speaker  recognition  based  on

deep neural networks, but only a single MFCC feature is

considered in feature extraction.

Therefore,  we  discuss  the  effect  of  disguised  voice  on

voiceprint recognition performance from two aspects: fea-

ture  extraction  and  model  building.  In  order  to  obtain

more  robust  and  better  voice  features,  a  hybrid  feature

parameter  method  based  on  the  combination  of  GFCC

and  formant  is  proposed,  which  can  effectively  improve

the recognition accuracy of a disguised voice. In order to

solve the  problem  of  low  modeling  ability  and  low  dis-

crimination of traditional models, a disguised voice recog-

nition model based on a depth belief network is proposed.

Meanwhile,  a  dropout  strategy  is  introduced.  Compared

with the GMM model, the proposed depth model can ef-

fectively improve the poor performance of over-fitting and

disguised voice recognition system. 

2   Voiceprint feature extraction of
camou-flage voice based on GFCC and
formant

The  technical  difficulty  of  disguised  voice  voiceprint

recognition is that when the voice is disguised, some char-

acteristic parameters of the voice can be changed greatly.

It is a key step to improve the performance of speaker re-

cognition system  by  extracting  more  discriminative  fea-

ture parameters to reduce the influence of the voice.

We focus on feature extraction to solve the problem of

low performance  of  the  disguised  voice  recognition  sys-

tem. Considering the combination of formant and feature

parameters, a robust and more distinctive voice feature is

extracted from the limited original voice data, which can

effectively improve the poor performance of the tradition-

al disguised voice voiceprint recognition system. 

2.1   Detection of formant based on cep-
strum

Formant is  one  of  the  important  characteristic  para-

meters of  voiceprint  recognition,  and  its  parameters  in-

clude formant frequency and bandwidth. The spectral en-

velope  of  vocal  tract  information  is  approximately  the

same as that of voice information, so the formant extrac-

tion  is  to  obtain  the  spectral  envelope  of  voice,  and  the

maximum  of  the  spectral  envelope  is  regarded  as  the

formant parameter[22].

In this  paper,  the  formant  of  the  language  is  calcu-

lated based on cepstrum. First, the homomorphic analys-

is method is used to eliminate the influence of the excita-

tion, and the information of the vocal tract is obtained.

Based  on  the  homomorphic  deconvolution  technique,

the pitch information is separated from the vocal tract in-

formation  in  the  cepstrum  domain.  It  is  more  accurate

and effective to extract the formant of the voice by using

the information of vocal tract.

x (n)

e (n) h (n)

The  voice  is  obtained  by  filtering  the  glottal

pulse  through  the  channel  response  as  shown

in (1).

x (n) = e (n)× h (n) . (1)

The cepstrum calculation for voice signals is

x̂ (n) = ê (n) + ĥ (n) . (2)

ê (n) ĥ (n)

e (n) h (n)

h (n)

Therefore, it can be concluded that pitch information

 and  vocal  tract  information  in  the  cepstrum

domain are relatively independent.  and  can be

separated by cepstrum, and then the resonance peak can

be  obtained  according  to  the  excitation  and  the
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characteristics  of  the cepstrum. The specific  steps are as

follows:

x (n) xi (n)

1)  By  pre-emphasizing,  windowing  and  framing  the

audio signal  (frame length N), we can get  and

i represents the i-th frame of the sound signal.

xi (n)2)  The  discrete  Fourier  transform of  is  carried

out to obtain:

Xi (k) =

N−1∑
n−0

xi (n) e−
j2πkn

N . (3)

Xi (k)3) Take the amplitude of  and then take the log-

arithm to obtain:

X̂i (k) = log (|Xi (k)|) . (4)

X̂i (k)

4)  An  inverse  Fourier  transform  is  performed  on

 to obtain a cepstrum sequence.

x̂i (n) =
1

N

N−1∑
k=0

X̂i (k) e
j2πkn

N . (5)

5) Set a low-pass window function window(n) on the

inverted  frequency  domain  axis,  which  can  generally  be

set as a rectangular window:

window (n) =

{
1, if n ≤ n0 − 1 and n ≥ N − n0 + 1

0, if n0 − 1 < n < N − n0 + 1
(6)

n0

x̂ (n)

where  is  the width of  the window function,  and then

the  window  function  is  multiplied  by  the  cepstral

sequence  to obtain:

hi (n) = x̂i (n)× window (n) . (7)

hi (n)

Xi (k)

6)  After  Fourier  transformation  of , the  envel-

ope of  is obtained:

Hi (k) =

N−1∑
n=0

hi (n) e−
j2πkn

N . (8)

7) The formant parameters can be obtained by search-

ing for the maximum on the envelope.

As shown in Fig. 1, the envelope (black thick line) cal-

culated  by the  cepstrum is  used  to  show the  location  of

the formant peak with black dots, and the corresponding

frequency of the formant is marked with dotted lines. By

calculating the four resonance peak, frequency is: 1 593.75,

3 062.50, 4 312.50, 7 187.50. 

2.2   Extraction of GFCC parameters

1) Gammatone filter

Our perception  of  sound is  mainly  through the  coch-

lea. The basement membrane is the most important part

of  the  cochlea  that  receives  voice  signals.  The  basement

membrane has  not  only  frequency  selective  characterist-

ics, but also spectral analysis characteristics. It can match

different frequency components with different positions of

the basement membrane, and transform the frequency in-

tensity into the amplitude of the basement membrane.

The  time-domain  expression  of  the  Gammatone  filter

is as follows:

h(t) = ktn−1e−2πbt cos(2πfct+ ϕ), t ≥ 0 (9)

ϕ fc

n = 3, 4, 5

k b

f

where  is the phase,  is the center frequency, n is the

order of the filter. When , the Gammatone filter

can  better  simulate  the  auditory  characteristics  of  the

human ear basement membrane.  is the filter gain.  is

the  attenuation  factor,  which  depends  on  the  filter

bandwidth.  It  controls  the  rate  of  decay  of  the  impulse

response. Its relation to the center frequency  is

b = 1.019× 24.7× (4.37× fc/1 000 + 1). (10)

ktn−1e−2πbt cos (2πfc + ϕ)

fc

Equation (9) consists of two parts: the filter envelope

 and  the  amplitude  of the  fre-

quency . Fig. 2 shows the frequency response of a Gam-

matone filter.

A number of  Gammatone filters with different center

frequencies can  be  combined  to  form  a  filter  bank.  Sig-

nals  using  this  filter  bank  can  represent  the  response

characteristics of the original voice signal at different fre-

quency components. Fig. 3 is  a  simulated cochlear  model

composed of 24 Gammatone filters.
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Fig. 1     Formant frequency of speech
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Fig. 2     Frequency response of Gammatone filter
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2) GFCC feature extraction

After the  voice  signal  is  preprocessed,  a  set  of  cep-

stral  feature  parameters  can  be  obtained  through  the

Gammatone filter bank based on the auditory character-

istics of the human cochlea. The parameter is recorded as

GFCC  (Gammatone  frequency  cepstrum  coefficients),

which can  be  further  used  in  a  speaker  recognition  sys-

tem. In the presence of noise, the recognition rate and ro-

bustness of this feature parameter is better than the tra-

ditional feature parameter MFCC, and it can have more

advantages in the case of low SNR.

Although  GFCC can  reflect  the  static  characteristics

of sound signals, human ears are more sensitive to the dy-

namic characteristics of sound. The system can achieve a

higher recognition rate by adding the difference paramet-

er  which  represents  the  dynamic  characteristics  of  voice

into the feature parameters and combining the static fea-

tures and dynamic features.

The first order difference and the second order differ-

ence are selected as dynamic features. Combining GFCC

with the first order difference and the second order differ-

ence,  we  can  get  the  eigenvector  of  GFCC. Fig. 4 shows

the characteristic parameters of GFCC, first-order differ-

ence and second-order difference of a segment of voice. 

2.3   Gaussian mixture model

The  Gaussian  mixture  model  is  formed  by  a  linearly

weighted combination of a plurality of Gaussian probabil-

ity density functions, as shown in (11).

p (xi) =

M∑
j=1

ϕjNj

(
xi;µj,

∑
j

)
(11)

ϕj

∑M
j=1 ϕj = 1 Nj

where M represents  the  degree  of  mixture  of  the  model,

i.e., the number of Gaussian components.  is the weight

corresponding  to  the j-th  Gaussian  component,  and

,  are  used  to  represent  the j-th  single

Gaussian probability density function, see below.

Nj

(
xi;µj ,

∑
j

)
=

1√√√√(2π)n

∣∣∣∣∣∑
j

∣∣∣∣∣
exp

[
−1

2
(x− µj)

T
−1∑
j

(x− µj)

]
. (12)

Because  the  EM algorithm  is  an  iterative  method  to

solve the model parameters in the case of incomplete data

and loss  data,  the  EM algorithm is  applied  to  the  para-

meter  estimation  of  Gaussian  mixture  model,  and  (13)

and (14) are obtained.

E-Step:

w
(i)
j = Qi

(
z(i) = j

)
= P

(
z(i) = j|x(i);ϕ, µ,Σ

)
(13)

M-Step:

ϕj =
1

m

m∑
i=1

w
(i)
j

µj =

∑m

i=1
w

(i)
j x(i)∑m

i=1
w

(i)
j

∑
j

=

∑m

i=1
w

(i)
j (x(i) − µj)(x

(i) − µj)
T∑m

i=1
w

(i)
j

. (14)

ϕ, µ,
∑

z(i)

ϕj

In  Step  E,  we  treat  as a  constant  and  com-

pute  the  probability  of ,  i.e.,  the  probability  that

sample i belongs to class j.  In step M,  is the ratio of
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Fig. 3     Gammatone filter bank
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z(i) = j

µj∑
j

 in the sample class, i.e., the weight of the Gaussi-

an  component.  is  the  mean  of  the  sample  features  of

class j.  is  the  covariance  matrix  of  the  example  of

class j. 

2.4   Improvement of feature extraction al-
gorithm based on hybrid parameters

The Gammatone filter bank for extracting GFCC fea-

tures  is  based  on  the  human  cochlear  auditory  model.

Each  filter  has  a  steep  edge  on  both  sides  of  the  center

frequency,  which  can  better  simulate  the  characteristics

of frequency  selection  and  spectral  analysis  of  the  base-

ment membrane,  and  suppress  the  interference  of  back-

ground noise, so this paper uses GFCC as a feature para-

meter.

Formant is  one  of  the  important  parameters  for  de-

scribing  the  vocal  tract  in  voice  signal  processing,  and

GFCC is a kind of auditory characteristic simulating the

human ear. The two kinds of voice feature parameters are

weighted  and  combined  by  different  weight  coefficients,

which can not only reflect the mechanism of human pro-

nunciation, but also reflect the perceptual characteristics

of  human  ears.  The  combination  of  human  voice  and

hearing, as the basis of acoustic modeling, can better re-

flect  the  personality  characteristics  of  the  speaker,  as

shown in Fig. 5.

  

Voice Pretreatment

Formant

GFCC+ΔGFCC+
ΔΔ GFCC

Mixed feature
parameter

 
Fig. 5     Block diagram of combining feature parameter

 

ĥ (n) Gm

ĥ (n) Gm

Firstly, the voice signal is preprocessed to extract the

vocal tract impulse information  and  (GFCC and

the  first-order  difference  and  second-order  difference  of

GFCC)  obtained  by  Gammatone  filter.  Then,  these  two

kinds  of  feature  parameters  are  combined  into  a  hybrid

feature  as  the  input  of  the  acoustic  model.  Thereafter,

 and  are normalized as shown in (15) and (16).

ĥ(n)′ =
ĥ (n)

ĥ(n)max
(15)

Gm
′ =

Gm

Gm−max
(16)

ĥ(n)max
Gm−max

ĥ(n)′ Gm
′

where  is  the  maximum  value  of  formant

characteristic  parameter,  is  the maximum value

of  GFCC  and  its  difference  characteristic  parameter.  In

this way, both  and  are data between 0 and 1.

And then,

d1 = ĥ(n)′ (17)

d2 = Gm
′. (18)

The  impact  factors  of  the  two  methods  in  (19)  and

(20) can be expressed by the average value of the test set.

C1 =
ave (d1)

ave (d1) + ave (d2)
(19)

C2 =
ave (d2)

ave (d1) + ave (d2)
(20)

C1 C2where  and  represent  the  influence  of  the  two

feature  parameters  on  the  recognition  results.  The

resulting  mixed  feature  parameter  is  a  weighted

combination  of  the  two  feature  parameters,  as  shown in

(21).

S = C1ĥ(n)
′ + C2Gm

′. (21)
 

2.5   Experiment and result analysis

Construction of disguised voice database

1)  The  choice  of  pronouncers  and  the  design  of  the

language material

The general  principle  of  the  construction  of  the  dis-

guised  speech  database  is  as  follows:  The  study  objects

are the students who speak standard mandarin and enun-

ciate clearly, in order to eliminate the interference of oth-

er factors  on  the  phonetic  variation.  The  self-built  dis-

guised speech database consists of 49 students, both male

and  female,  all  postgraduates  in  the  school,  whose  ages

are between 24 and 26.

The  pronouncers  come  from  different  parts  of  the

same country,  and  their  mandarin  proficiency  is  relat-

ively good. It is not excluded that some pronouncers still

have obvious  dialect  characteristics.  From  the  perspect-

ive  of  phonetics,  the  normal  speech  database  and  the

physical disguised  speech  database  are  established  re-

spectively. The normal speech database is used for train-

ing, and the physically disguised speech database is used

for testing. According to the characteristics of physically

disguised speech,  the  speaker  should  have  certain  per-

formance ability, and be able to make corresponding dis-

guised speech according to the way of disguised[23].

The  selected  physical  disguises  were  fast,  slow,  high,

low, whispering, biting a pencil and pinching a nose. Each

speaker  repeats  the  pronunciation  three  times  for  each

physical  disguised  pronunciation  mode  and  one  time  for

the  normal  pronunciation.  49  normal  speech  samples  of

49 speakers  and  343  speech  samples  of  different  physic-

ally disguised modes can be collected.
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As for  the  selection  of  the  content  of  the  corpus,  we

mainly consider two aspects: i) The words or phrases in-

cluded in the prediction do not have an obvious emotion-

al  tendency.  ii)  The  corpus  should  include  main  vowels,

monophthongs and  diphthongs.  The  above  considera-

tions are to exclude the influence of emotion on disguised

speech,  and  to  ensure  that  the  speech  conforms  to  the

norms of phonetics research. The content of the corpus is

I am XX, the school number is XX.

2) Hardware and software equipment for voice record-

ing of physical disguised

In  order  to  eliminate  the  interference  of  background

noise, the recording location is selected in a quiet studio,

using laptop computers and a Newsmy voice recorder, the

voice processing software is Adobe Audition CS6. Before

recording, let the speaker be familiar with the voice text

and  practice  pronunciation.  The  voice  is  recorded  by

monophonic  channel,  the  storage  format  is  16  bits,  the

sampling rate is 32 kHz, and the storage format is WAV.

3) Speech processing, annotation and classification

Before  annotating  the  speech,  it  needs  to  preprocess,

standardize  and  unify  the  length  and  format.  The  voice

will be recorded into the computer, with Adobe Audition

CS6 to cut all  the voice, remove the blank part and the

part of the effect that is not good, and the voice length is

standardized  at  3 s.  The  output  is  saved  as  an 8 000 Hz

sample rate, 16-bit WAV file.

After  the  voice  processing  is  completed,  it  is  labeled,

i.e.,  each  voice  is  named  according  to  certain  rules.  For

the sake of convenience, the file names of normal speech

are named by digital numbers, and the naming rules cor-

responding  to  different  disguised  modes  are  the  same  as

those of normal speech.

After each voice is labeled, it is classified, i.e., accord-

ing to its different way of speaking, it is placed in differ-

ent folders, which are named for its corresponding way of

speaking. This results in one normal voice folder and sev-

en  physically  disguised  voice  folders,  each  containing  49

voices.

Experimental design

This part focuses on the influence of the characteristic

parameters on the disguised voice recognition system. In

order to show that the hybrid feature parameters can ef-

fectively improve the performance of the system, we com-

pare  the  hybrid  feature  parameters  with  GFCC.  The

training  voices  used  in  the  experiment  are  normal  voice

and disguised voice, and the test voice is disguised voice.

An improved map based on feature extraction is shown in

Fig. 6.

Firstly, the training voice and the test  voice are pre-

processed, the length of the frame is 256 points, and the

frame is shifted to 80 points. In order to reduce the edge

effect  of  the voice  frame,  a Hamming window is  used to

add  a  window.  Then  the  endpoint  detection  method  is

used.

GFCC +∆GFCC +∆∆GFCC

In the training process, the training voice signal is pre-

processed, and then  the  feature  parameters  of  the  train-

ing  voice  are  extracted.  The  formant  coefficients  and

 coefficients  are  extracted

and  linearly  combined  with  different  weight  coefficients.

The feature  parameters  of  each frame are  39 dimensions

(3  dimensions  formant,  12  dimensions  Gammatone  filter

output,  12  dimensions  first  order  difference  coefficients

and  12  dimensions  second  order  difference  coefficients).

Thus, the feature vectors of 49 speakers can be obtained.

The extracted feature parameters are used as the input of

the Gaussian mixture model. The Gaussian mixture mod-

el  used  in  this  experiment  is  composed  of  32  Gaussian

 

Pretreatment GFCC GMM

Pretreatment GFCC Judgement Result

Training speech

Test speech

Pretreatment Mixed feature GMM

Pretreatment Mixed feature Judgement Result

Training speech

Test speech

Fig. 6     Graph based feature extraction improvement
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models,  and  then  the  parameters  of  each  GMM  can  be

obtained at the end of the training process.

In the  test  session,  the  same  preprocessing  and  fea-

ture extraction  methods  are  used  as  in  the  training  ses-

sion, the obtained mixed feature parameters are matched

with  each  GMM  model,  the  similarity  score  with  each

GMM is calculated, and the label with higher score is the

one to be recognized. The correct label of the voice to be

recognized is  compared  with  the  recognition  label  ob-

tained in the testing phase; if the two labels are the same,

it  shows that  the  result  obtained in  the  testing  phase  is

correct, otherwise, the result obtained is wrong, so the ac-

curacy of the voiceprint recognition system is obtained by

calculating the number of correct recognition results.

In the  voiceprint  recognition  system,  accuracy  is  un-

doubtedly  the  most  direct  and  important  performance

evaluation  index,  if  a  higher  recognition  rate  cannot  be

guaranteed,  then  the  recognition  system  will  be  of  no

great use. For a speaker recognition system, the accuracy

usually represents the probability that the system will re-

cognize the correct sample, and is calculated mathematic-

ally as (22).

CID =
ncorrect

ntotal
× 100% (22)

CID ncorrect

ntotal

where  is  the  accuracy  rate,  and  is  the

number  of  correctly  identified  samples,  and  is  the

total number of samples to be identified.

Experimental results and analysis

Zhou et al.[16, 17] have studied the voice print recogni-

tion based on the GFCC and MFCC hybrid features,  so

the recognition rate of the two methods is compared with

the GFCC + Formant hybrid feature method proposed in

this paper.

Based on the parameters of MFCC, GFCC, GFCC +

MFCC and GFCC + Formant mixed features, in the case

of GMM model, using normal speech as training data and

different disguised speech as test data, the performance of

the speaker recognition system is judged by the accuracy.

Thus, the  accuracy  of  different  feature  extraction  meth-

ods  for  different  disguised  voices  can  be  obtained,  as

shown in Table 1.

 
Table 1    System recognition rate of different disguised voices

based on different features

Disguised voice MFCC GFCC GFCC+ MFCC GFCC+Formant

Fast 79.65 89.80 91.50 95.92

Slow 77.38 81.63 94.33 93.88

Treble 57.30 59.18 65.38 67.35

Bass 65.15 75.51 87.55 89.80

Whispers 33.45 38.78 38.78 40.82

Nose pinching 39.75 44.90 52.70 55.10

Pencil biting 59.35 65.31 66.45 65.31

 

In order to clearly see the accuracy of the system us-

ing different  feature  extraction  algorithms  under  differ-

ent disguised voice tags, the form of a histogram is used,

as shown in Fig. 7. The first bar of each set of histograms

represents  the  MFCC  as  the  feature  parameter,  the

second  represents  the  GFCC  as  the  feature  parameter,

the third represents the use of GFCC and MFCC mixed

feature  parameter,  and  the  fourth  represents  the  use  of

GFCC and Formant mixed feature parameter.

From Table 1 and Fig. 7,  we can see the influence of

different feature parameters on voiceprint recognition sys-

tems. In the case that all models are GMM, the recogni-

tion rate of the system based on mixed feature paramet-

ers is higher than that of the system using only GFCC or

MFCC  feature  parameters,  except  for  biting  pencils.

Compared with the acoustic system only using GFCC or

MFCC features, the acoustic system based on mixed fea-

ture  parameters  combines  the  vocal  characteristics  and

auditory characteristics,  which  can  better  reflect  the  in-

formation of  the speaker and have a better classification

effect on the disguised voice. The recognition rate of the

hybrid  feature  is  better  than  that  of  the  single  feature

method, and the recognition rate of the GFCC + Form-

ant hybrid feature is also higher than that of the GFCC +

MFCC hybrid feature.

When biting a pencil to pronounce, because the teeth

and one corner of the mouth cannot be completely closed,

it sounds like a leak. The articulator′s tongue, lips, teeth

and other  vocal  organs  are  inhibited,  which  cannot  pro-

nounce normally, thus affecting the formant frequency to

a  certain  extent.  Therefore,  under  the  masquerade  label

of biting pencil,  the  recognition rate  of  the acoustic  sys-

tem  based  on  mixed  features  is  not  improved  compared

with that based on GFCC.

It  can  also  be  seen  that  among  the  seven  disguised

methods, fast and slow have least influence on speaker re-

cognition, while whisper and nose pinch have the greatest

influence on  speaker  recognition.  Although  the  recogni-

tion rate of the system based on mixed feature paramet-

ers is improved under the disguised labels of whisper and

nose  pinching,  the  recognition  rate  is  only  48.2%  and

55.1%,  which  is  similar  to  human  auditory  perception.

Whispering is mainly caused by the friction between the
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Fig. 7     Recognition rate of different features
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air flow and the vocal organs. The vocal cords do not vi-

brate during articulation, and pinching the nose leads to

nasal  obstruction,  which  greatly  changes  the  resonance

characteristics of the voice cavity. As these two kinds of

disguised for the pronouncer are relatively easy to do, the

pronouncer does not need to change the habit of pronun-

ciation,  so  the  disguised  effect  is  better  and  the  system

recognition rate is relatively low. 

3   Voiceprint recognition of disguised
voice based on DBN model

The key to improving the accuracy of disguised voice-

print recognition is  to mine the hidden speaker informa-

tion from the voice data. In the above content, we study

the methods to improve the performance of voiceprint re-

cognition from the feature extraction level.  The research

of  the voiceprint  recognition model  is  another  important

part of the speaker recognition system, the acoustic mod-

el  has  an  important  impact  on  the  performance  of  the

system.  This  part  starts  with  the  acoustic  model  of  the

system to  solve  the  problem of  poor  performance  of  dis-

guised  voice  recognition.  We  can  construct  a  powerful

deep  model  to  deal  with  voiceprint  recognition.  At  the

same time, in order to simulate the way of thinking of the

human brain, we can take the depth belief network as the

acoustic model of the recognition system to realize the re-

cognition of disguised voice speakers.

2006 is  the first  year  with deep learning,  and the re-

search  boom of  deep  learning  is  the  deep  belief  network

(DBN) proposed by Hinton, which is one of the first suc-

cessful applications of a deep network model training non-

convolution model.

DBN is a deep generative network composed of a set

of  restricted  boltzmann  machines  (RBMs),  which  is  a

generative  model  with  multiple  hidden  variable  layers.

Hidden  layer  neurons  are  usually  binary  (0  or  1),  while

explicit layer neurons can use binary or real numbers. Al-

though  DBNs  with  relatively  sparse  connections  can  be

constructed, in most cases, all neurons in different layers

are connected,  and there is  no connection between neur-

ons in different layers. The structure of a DBN is shown

in Fig. 8.
The core  of  a  DBN is  a  greedy,  layer-by-layer  learn-

ing  algorithm.  The  parameters  obtained  by  pre-training

in  an  unsupervised  way  can  provide  good  initial  points,

and the results are usually better than those obtained by

random  initialization[24].  Then,  the  parameters  are  fine-

tuned  by  the  supervised  back-propagation  algorithm,

which can effectively solve the local optimal situation and

under-fitting problem of the deep network.

A DBN is composed of many RBMs in series, in which

the hidden layer of the former RBM is the visual layer of

the latter RBM, and the output of the former RBM is the

input of the latter RBM. When the model is trained, the

parameters of the former RBM are kept unchanged after

the former RBM is  fully  trained,  and the latter  RBM is

trained until all RBMs are trained. 

3.1   Training of the DBN

The  parameters  of  the  deep  confidence  network  are

directly obtained by RBM unsupervised training. An im-

portant  feature  of  DBNs is  that  their  hidden States  can

be efficiently and correctly inferred by bottom-up passing,

and that up-bottom generated weights are used inversely.

Another  important  feature  is  that  the  new  DBN  has  a

lower bound on the  logarithmic  probability  of  the  train-

ing data when the DBN adds an additional feature learn-

ing layer, which is better than that of the previous DBN.

1) Gauss-Bernoulli restricted boltzmann machine

In the  simplest  RBM,  the  explicit  unit  and  the  hid-

den unit are binary and random, and the values are only

0 and 1. For voice signal, it needs to have the ability to

represent  the  probability  distribution.  In  order  to  deal

with  the  real  input  data,  we  use  a  Gaussian-Bernoulli

RBM. The visible cells use Gaussian distribution and the

hidden cells  use  Bernoulli  distribution.  Its  energy  func-

tion is defined as

Eθ (v, h) =

nv∑
i=1

(vi − ai)
2

2σi
2

−
nh∑
j=1

bjhj −
nv∑
i=1

nh∑
j=1

hjwji
vi
σi

(23)

wji

ai

bj
σi

nv nh

where  is  the  weight  of  the i-th  neuron in  the  visual

layer  and  the j-th  neuron  in  the  hidden  layer.  is  the

bias  value  of  neurons  in  the  visual  layer.  is  the  bias

value  of  hidden  layer  neurons.  is  the  variance  of

neurons in the visual layer.  and  are the number of

neurons in the visual layer and the number of neurons in

the hidden layer, respectively.

According  to  (23),  the  conditional  probabilities  of V

and H are obtained as follows:
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Fig. 8     Schematic diagram of deep belief network
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p (vi|h) = N

(
ai + σi

nh∑
j

Wjihj , σi
2

)
(24)

p (hj = 1|v) = δ

(
nv∑
i=1

Wji
vi
σi

+ bj

)
(25)

δ (x) =
1

1 + e−x
(26)

N (µ, σ) µ

σ

where  is  a  Gaussian  distribution  with  mean 

and variance .

2) Softmax regression

A softmax classifier  is  often used in the field of  deep

learning, which is an extension of logistic regression clas-

sification. Logistic regression is a binary nonlinear classifi-

er, which is extended to multiple classifiers by softmax. It

takes  the  most  posterior  probability  of  all  categories  as

the recognition object, so it is very suitable for the task of

speaker recognition.  After  the  training  of  the  unsuper-

vised restricted Boltzmann machine, the softmax classifi-

er  is  added to the top level  to  classify  the samples.  The

specific classification process is as follows:

Si = SoftMax (f) =
eft∑d

i=1
eft

(27)

fθ (x) = WX + b, θ = {W, b} Xwhere .  is  the  neural  unit

of  the  input  layer. W is  the  weight  coefficient  of  the

model. b is the offset of the model.

t = [0, 1]d

ti = 1 ti = 0

Assume that  denotes the classification of the

sample,  when  the i-th sample  is  correctly  classified,

,  otherwise, .  The  form  of  cross  entropy  is

used to calculate the loss function. As shown in (29),

J (t, S) = −1

d

[∑d

i=1
(ti logSi + (1− ti) log (1− Si))

]
.

(28)

Adjusting the model parameter θ to minimize the loss

function of (29).

θ∗ = arg min
θ

J (t, S) . (29)

The  partial  derivative  of  the  model  parameter θ can

be obtained:

∂J (t, S)

∂θ
= −1

d

∑d

i=1
(ti − Si)

∂fi
∂θ

. (30)

The gradient descent method was used to update the

model  parameter θ.  The  gradient  descent  method  was

used to update the model parameter θ as

{
W ′ = W − η

(
(S − t)TX + λW

)
b′ = b− η (S − t+ λb)

(31)

where λ is  the  weighting  factor  and η is  the  learning

factor.

3) Layer-by-layer pretraining and fine tuning

The  training  of  a  deep  network  can  be  divided  into

two stages: pre-training and fine-tuning. Pre-training is to

train each layer  of  the network in an unsupervised way.

When  one  layer  is  trained,  the  parameters  of  all  other

layers remain unchanged, and the input of the next layer

is  the  output  of  the  previous  layer.  The  fine-tuning  is

trained by  the  supervised  BP  algorithm  until  conver-

gence  after  the  parameters  of  all  layers  are  determined.

The depth belief  network is  based on these two steps to

complete the training parameters, as shown in Fig. 9.

 
 

Standard label
information

Output data

Input data

Back-propagation

Fine tuning

Fine tuning

BP

RBM

RBM

V2

H1

V1

H0

V0

W0

W1

W2

 
Fig. 9     DBN training

 
i) Greedy pre-training layer by layer

The k-layer  RBM fast  learning  method  based  on  the

greedy algorithm is comprised of the following steps:

vi = xTake  the  training  data X as  input,  i.e., .  The

contrastive  divergence  algorithm (CD-k, k=1) is  used to

train the first RBM parameter θi, and calculate hi.

k = 2, 3, · · · ,K hk−1

vk = hk−1

θk

.  The  hidden  layer  of  the  last

trained RBM is used as an input, i.e., , and the

parameter  of the k-th RBM are trained.

K
θ1, θ2, · · · , θk

After the parameters of all the K RBMs are obtained,

the network parameters of the whole  layer can be ob-

tained by adding , which is  used as  the  ini-

tial value θ of the depth confidence network.

ii) BP reverse fine-tuning

The BP network is added to the last layer of the DBN

network, and the output of the last layer RBM is used as

its  input.  We  can  add  tag  information  for  supervised

training.  Because the parameters  obtained by each layer

RBM of  unsupervised  training  can  only  ensure  that  the

feature mapping in this  layer is  optimal,  and cannot en-

sure that  the  feature  mapping  in  the  whole  DBN is  op-

timal, so supervised back propagation is used to transmit
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the deviation obtained from the normal label from top to

bottom to each layer RBM, so as to realize the fine-tun-

ing  of  the  whole  DBN.  The  pre-training  process  can  be

regarded  as  the  parameter  initialization  process  of  the

deep BP network. Compared with the traditional BP net-

work, this method effectively solves the problem that the

network falls into a local optimum due to the random ini-

tialization of parameters.

The non-output layer uses the sigmoid function as the

activation  function,  and  the  parameter  value  is  updated

as (32).

al
j = δ

(∑
k

wl
jka

l−1
k + blj

)
(32)

wjk

where K means that there are K units in layer l−1, and

 means  the  weight  of  the k-th  unit  in  layer l−1  and

the j-th unit in layer l. To be written in matrix form as

follows:

al = δ
(
wlal−1 + bl

)
. (33)

al = δ
(
zl
)

wlal−1 + bl

zl

Equation  (33)  can  be  written  as  if the  in-

termediate  quantity  is calculated  and  desig-

nated separately as .

In order to find the error of the reverse transmission,

it is assumed that the error of the j-th neural unit of the

l-th layer is

ζlj =
∂J

∂zlj
(34)

where J is the loss function of cross entropy.

L represents the last layer of the network (output lay-

er).  Since  the  last  layer  is  a  softmax  layer,  the  error  of

the output layer is obtained according to (35).

ζLj = Sj − tj . (35)

Error of non-output layer is


ζlj =

∂C

∂zlj
=
∑
k

∂C

∂zl+1
k

∂zl+1
k

∂zlj
=
∑
k

ζl+1
k

∂zl+1
k

∂zlj

zl+1
k =

(∑
i

wl+1
ki al

i

)
+bl+1

k =

(∑
i

wl+1
ki δ(zli)

)
+bl+1

k

⇒


ζlj =

∑
k

ζl+1
k

∂zl+1
k

∂zlj
∂zl+1

k

∂zlj
= wl+1

kj δ′
(
zlj
) ⇒

ζlj =
∑
k

ζl+1
k wl+1

kj δ′
(
zlj

)
.

(36)

Partial  derivative of the loss function with respect to

an arbitrary weight is


∂C

∂wl
jk

=
∑
i

∂C

∂zli

∂zli
∂wl

jk

=
∂C

∂zlj

∂zlj
∂wl

jk

zlj =

(∑
m

wl
jmal−1

m

)
+ blj

⇒

∂C

∂wl
jk

=
∂C

∂zlj

∂zlj
∂wl

jk

= ζlja
l−1
k . (37)

Partial  derivative of the loss function with respect to

any offset is


∂C

∂blj
=
∑
k

∂C

∂zlk

∂zlk
∂blj

=
∂C

∂zlj

∂zlj
∂blj

zlj =

(∑
k

wl
jka

l−1
k

)
+ blj

⇒

∂C

∂blj
= ζlj . (38)

In this way, the output can be obtained from the in-

put along the forward direction.  We can solve  the para-

meter differential  in  reverse  direction  and  obtain  the  fi-

nal network parameters by parameter optimization.

The  training  process  of  DBN  can  be  completed

through  supervised  pre-training  and  unsupervised  fine-

tuning:

According to the CD-1 algorithm, the first RBM net-

work  is  trained  through  several  iterations,  and  the

weights and offsets of the first network are obtained.

The weight  and  bias  of  the  first  RBM  are  kept  un-

changed, and the output vector of the first RBM is used

as the input vector of the second RBM.

The CD-1 algorithm is used to train the second RBM

through multiple iterations, so that a superimposed RBM

structure can be obtained, as shown in Fig. 10.

The above  process  is  repeated  until  the  RBM  net-

work  of  the  last  layer  is  reached.  The  optimal  weights

and  parameters  of  each  layer  of  RBM  are  taken  as  the

initial  parameters  of  the  whole  DBN  network,  and  the

softmax classifier and label are added. The output vector

of the last layer of  RBM is taken as the input vector of
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Fig. 10     RBM additive process
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the  softmax  classifier,  and  then  the  error  between  the

predicted  label  and  the  real  label  is  calculated  to  fine-

tune the reverse BP. 

3.2   Improved model algorithm based on
DBN

1) Model structure based on DBN

GMM is essentially a shallow network structure mod-

el,  which  uses  the  Gaussian  probability  density  function

to quantify things accurately and decomposes a thing in-

to several models based on the Gaussian probability dens-

ity function. That is to say, no matter how the distribu-

tion  of  the  observation  data  sets  and  what  rules  they

present, they can be fitted by a mixture of multiple single

Gaussian  models.  When  the  number  of  samples  is  not

enough, GMM usually uses the entire sample and feature

information to predict, so it cannot fully describe the dis-

tribution of features and its ability to represent complex

functions  is  limited.  At the  same time,  if  the  number  of

features is more than dozens, the high-dimensional space

model  will  be  invalid.  Meanwhile,  GMM  is  modeled  by

likelihood,  although  discriminant  training  can  simulate

the discrimination between some sample classes,  the dis-

crimination ability is relatively limited.

As a deep network model, DBN has many advantages

by simulating the mechanism of neurons in human brain

for nonlinear learning.

i) DBN can construct a deep nonlinear network mod-

el and realize the approximation of complex function, and

its generalization ability is relatively strong.

ii)  DBN  can  reduce  the  number  of  hidden  units  by

nonlinear  transformations  of  the  network,  reducing  the

high dimension  of  feature  representation  to  low  dimen-

sion,  effectively  reducing  the  amount  of  calculation,  and

making  the  features  more  compact,  get  better  details  of

features.

iii) All feature data share the same network structure,

which  is  more  conducive  to  extracting  deeper  features

and enhancing the memory ability of the network.

iv)  After  supervised  pre-training  and  unsupervised

fine-tuning, DBN can not only build a multi-level genera-

tion  model  to  discover  the  features  themselves,  but  also

adjust  the  boundaries  of  classes  based  on  the  limited

amount of information in the tags.

With the deepening of research and the improvement

of parallel computing ability, it is found that using more

layers of a neural network has a better representation ef-

fect  than  a  single  layer  network.  A  deep  network  has

strong feature memory ability because it contains a lot of

parameters, and  the  classification  effect  will  be  signific-

antly improved by the model constructed by a deep net-

work.

Lv[20] and  Pan[21] have  studied  speaker  recognition

based  on  deep  layer  neural  networks,  but  only  a  single

feature  is  considered  in  feature  selection,  and  the  mixed

feature  considered  in  this  paper  is  more  discriminative.

At the same time, the over-fitting problem has not been

deeply discussed in the literature[20].

In order to improve the performance of voiceprint re-

cognition  for  disguised  speech,  the  GMM  model  in  [18,

19] is replaced by the DBN model in deep learning. Mod-

el improvements to the voiceprint recognition system are

shown in Fig. 11.

2) Dropout Strategy

Because  the  training  sample  data  is  limited,  and  the

number of layers and neurons of the deep network model

is  large,  it  is  easy  to  occur  the  phenomenon  of  over-fit-

ting that the training set is very good, but the test set is

not  good.  In  order  to  suppress  the  over-fitting  problem,

we  often  regularize  or  reduce  the  network  size  based  on

L1  and  L2.  Scholar  Hinton  proposed  that  a  part  of  the

feature  detectors  can be stopped every time the samples

are trained, which will make the generalization ability of

the  network  stronger.  Hinton  called  it  dropout[22].  We

choose  to  introduce  a  dropout  strategy  to  suppress  the

over-fitting  phenomenon. Fig. 12 shows  a  comparison  of

the network  before  and  after  the  dropout  policy  is  ap-

plied.

The image above is a visual representation of dropout,

with  the  network  on  the  left  before  using  dropout,  and

the same network on the right already using dropout.
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Although dropout can achieve the effect of regulariza-

tion, its principle is completely different from L1 and L2

regularization.  L1  and  L2  regularization  are  adjustment

cost  functions,  while  dropout  is  the  adjustment  of  the

depth network itself. The dropout network is composed of

sub-networks  which  are  formed  by  removing  non-output

units from the base network. A unit can be effectively de-

leted by multiplying some output units by zero.

There are some changes in the training and testing of

deep neural networks with dropout strategy:

i) In the stage of training model, the ratio of dropout

is set as p, i.e., the probability of a unit being abandoned

is p,  and  the  probability  of  being  left  is  1−p.  In  the

trained network, a probability step is added to each neur-

on, as shown in Fig. 13. The presence of offsets is not con-

sidered in the Fig. 13.
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Fig. 13     Dropout network

 
The  network  without  dropout  is  shown  in Fig. 13(a)

and is calculated as follows:

ui =
∑

i
wivi (39)

Oi = σ (ui) (40)

where σ is  the  sigmoid  function.  The  network  with

dropout  is  shown  in Fig. 13(b) and  is  calculated  as

follows:

ri ∼ Bernoulli (p) (41)

vi
′ = rivi (42)

Oi = σ
(∑

i
wivi

′
)

(43)

ri P (ri = 0) = p

ri

where  is  a  Bernoulli  function,  and ,

generating a zero vector with probability p at random. It

samples  and multiplies the input of  that layer one by

one to create fewer outputs. These outputs are then used

as  inputs  to  the  next  layer.  This  process  is  applied  at

each  layer  and  is  equivalent  to  sampling  a  subnetwork

from the larger network.

ii) In the testing phase, the integrated network model

of the training phase is simulated. The geometric mean of

the  ensemble  members  can  be  used  to  approximate  the

prediction  of  the  whole  ensemble,  and  only  one  forward

propagation is needed as the cost.

The idea of dropout is actually to train the model to

be  optimized  as  an  integrated  model,  and  then  average

the  output  value,  not  just  train  the  individual  model.

Thus, the  output  of  the  hidden  layer  unit  may  be  ex-

pressed as

O =
1

1 + e−u
(44)

u =
∑

i
wiviwhere  is the linear combination of all input

elements.  Assigning  the  input  units  randomly  with

probability p, N different kinds of network structures will

be  obtained,  and  the  non-standardized  probability

distribution  directly  defined  by  the  geometric  mean  can

be obtained by the following equation:

G (O) =
∏N

n=1
On

1
N (45)

G (O)where  represents  the  probability  that  the  output

unit O is activated, and we can also find the probability

that the unit O is not activated, as shown in (47).

G′ (O) =
∏N

n=1
(1−On)

1
N . (46)

In order to obtain the model, the normalized geomet-

ric mean  of  the  activation  probability  of  the  cell  is  de-

rived from equations (45) and (46) as follows:

NGM (O) =
G (O)

G (O) +G′ (O)
=∏N

n=1 σ(un)
1
N∏N

n=1 σ(un)
1
N +

∏N
n=1 (1− σ(un))

1
N

=

1

1 +
∏N

n=1 (
1−σ(un)
σ(un)

)
1
N

=

1

1 + exp
(
−
∑N

n=1

1

N
un

) =

σ

(
1

N

∑N

n=1
un

)
= σ(E(u)).

(47)
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Fig. 12     Visual representation using dropout
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u =
∑

i wivi

As can be seen from (47), the NGM value of the ele-

ment O is equivalent to the desired nonlinear transforma-

tion after the input element is linearly weighted. Consid-

ering that the output of the first hidden layer before dro-

pout is , the expected value after dropout is

E (u) =
∑

i
(1− P )wivi (48)

where p is the discard rate, so (47) can be written as

NGM (O) =
1

1 + exp
(
−
∑

i
(1− P )wivi

) . (49)

Since each neuron is present in the test phase,  in or-

der to maintain the same output expectations and get the

same  results  for  the  next  layer,  the  weights  need  to  be

multiplied  by  1−p when  testing,  as  shown  in Fig. 14.

Fig. 14(a) denotes the probability that a neuron exists at

the training stage is 1−p and the weight of the next layer

of  neurons  is W. Fig. 14(b) means that  neurons  are  al-

ways present during that training phase.  To ensure that

the desired output is the same as the output of the train-

ing stage, the weight is multiplied by 1−p.
 
 

(a) Training  stage (b) Test phase

1−P
W

(1−P)W

 
Fig. 14     The weight transform of dropout network

 
In view  of  the  above  advantages,  this  chapter  con-

siders the introduction of dropout strategy to improve the

system  recognition  rate.  The  improved  model  diagram

with the dropout strategy is shown in Fig. 15. 

3.3   Experiment and result analysis

1) Experimental design

The  database  used  in  the  experiment  is  a  self-built

disguised  voice  database.  Although  the  number  of

samples is limited, in order to reflect the strong modeling

ability  of  deep  belief  network,  the  training  samples  and

test samples are divided to get more samples. Each train-

ing data was divided into 50 pieces. Because the time of

the  fast  voice  is  short,  each  test  data  is  divided  into  15

copies.  The  test  data  was  divided  into  20  parts  under

other disguised  labels.  The  sample  data  after  segmenta-

tion is shown in Table 2.

The voiceprint recognition system based on the DBN

model can be divided into two parts: One is the training

stage of speaker modeling. The other is the test phase of

voice. Fig. 16 is a  schematic  diagram of  speaker  recogni-

tion based on a deep belief network.

In  general,  the  state  values  of  the  visible  layer  unit

and the hidden layer unit of RBM are 0 or 1. When ap-

plied  to  voice  recognition,  the  generalization  ability  of

RBM is severely limited. Therefore, by replacing the bin-

ary state of the dominant layer neurons of the first layer

RBM with  a  Gaussian  state,  the  first  layer  RBM  be-

comes  a  Gauss-Bernoulli  restricted  Boltzmann  machine.

The  other  RBM layers  use  Bernoulli-Bernoulli-restricted

Boltzmann machines.

In  the  training  stage  of  voiceprint  recognition,  the

voice sample is first preprocessed, then the mixed feature

parameters are  extracted,  and  then  the  mixed  paramet-

ers are used as the input of the DBN acoustic model, as

shown  in Fig. 16(a) Then, Gibbs  sampling  and  CD  al-

gorithm are used to train a single RBM layer. The optim-

al parameters of each layer are obtained by training lay-

er by layer,  and these parameters are used as the initial

 

Table 2    Sample library of different disguised voices

Fast Slow Treble Bass Whisper Pinch nose Bite pencil

Training data 2 450 2 450 2 450 2 450 2 450 2 450 2 450

Test data 735 980 980 980 980 980 980
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parameters of  the DBN acoustic model.  When the unsu-

pervised  training  is  completed,  the  softmax  classifier  is

added to the last layer of the DBN model for supervised

fine-tuning.

In  the  recognition  stage,  as  shown in Fig. 16(b),  it  is

also  necessary  to  preprocess  the  voice  of  the  test  set  in

the same manner and extract the mixed feature paramet-

ers.  Taking  the  mixed  feature  parameters  as  the  input

vector  of  the  trained  DBN  acoustic  model,  the  label  of

the voice to be recognized can be obtained. The label ob-

tained in the recognition stage is compared with the cor-

responding  correct  label.  If  the  labels  are  the  same,  the

result of recognition is correct, and if the result is wrong,

the accuracy rate is calculated.

2) Experimental results and analysis

i) Network parameter setting

The number of input layer units of DBN is 780 (each

frame  corresponds  to  39  dimensional  mixed  features,  20

frames,  a  total  of  780  dimensions),  and  there  are  three

hidden  layers.  The  number  of  hidden  layers  is  400-200-

100. The  hidden  layer  uses  the  sigmoid  activation  func-

tion. The output  layer  is  classified  by the  softmax func-

tion, and the cross entropy loss function is used.

ii) Network training

In this  paper,  the pre-training method is  used to ini-

tialize the parameters of the network. The first RBM uses

the Gauss-Bernoulli  element,  and the RBMs of  the later

layers  are  Bernoulli-Bernoulli  elements.  CD-k  is  1,  the

number of iterations of RBM is 16, the number of itera-

tions of DBN is 30, and the learning rate is 0.005.

For the DBN model with dropout policy, the method

is  the  same  as  above,  but  the  dropout  policy  is  added

when the  model  parameters  are  fine-tuned,  and  the  dis-

card rate is 0.2.

iii) Platform construction

The voiceprint recognition system is built on pycharm

based  on  tensorflow framework.  On this  basis,  the  DBN

model is established and the dropout strategy is added.

Fig. 17 shows  the  loss  function  values  for  DBN  and

each  RBM layer. Fig. 17(a) is  the  loss  function  value  of

the DBN. Figs. 17(b)−17(d) are the loss function values of

the first, second and third layer RBMs, respectively. The

thin solid line in the Fig. 17 is the value of the loss func-

tion, and the thick solid line is the value of the loss func-

tion after  smoothing.  It  can  be  seen  that  with  the  in-

crease of the number of iterations, the loss function value

gradually decreases from the overall point of view.

The recognition rate of the disguised voice speaker re-

cognition  system  based  on  the  DBN  model  for  different

disguised voice tags is shown in Table 3.

In order to clearly see the recognition rate of different

acoustic  models  for  different  disguised  voice  tags,  the

form of a histogram is used, as shown in Fig. 18.

From the experimental data of Table 3 and Fig. 18, we

can see  that  the  classification  effect  of  the  DBN  al-

gorithm model on fast, bass and slow disguised voice tags

on the disguised voice database is better, and the recogni-

tion  rate  is  more  than  90%,  while  the  recognition  effect

on nose  pinch  and  whisper  disguised  voice  tags  is  relat-

 

Table 3    System recognition rate of different disguised voices
based on DBN

Disguised voice GMM DBN DBN of adding dropout

Fast 95.92 96.87 97.01

Slow 93.88 95.82 95.92

Treble 67.35 76.02 76.84

Bass 89.80 90.71 91.22

Whisper 40.82 52.85 53.67

Pinch nose 55.10 61.33 61.84

Bite pencil 65.31 70.61 70.92
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Fig. 16     Schematic of speaker recognition
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Fig. 17     Graph of loss function values
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ively poor, but compared with the traditional GMM mod-

el[18, 19], the recognition rate is improved.

Through the comparison of the experimental results, it

can be seen that the system recognition rate of the meth-

od  of  using  DBN  with  dropout  strategy  to  establish

acoustic  model  is  the  highest,  and  the  method  of  using

GMM to establish an acoustic model is the most unsatis-

factory.

Compared  with  the  shallow  network  such  as  GMM,

the  deep  network  such as  DBN can describe  the  feature

data in detail,  mine the useful  information,  and its  non-

linear modeling ability can express the original voice sig-

nal better. The special structure of DBN makes its model-

ing ability very outstanding. The parameters obtained by

RBM pre-training in an unsupervised way can provide a

good initial value for the model, and then the parameters

of the network can be fine-tuned by the supervised back-

propagation algorithm, so as to effectively solve the prob-

lem of local optimum.

DBN  with  dropout  strategy  has  a  better  recognition

rate, because it is equivalent to the role of regularization,

Criminal  Investigation  Police  University  of  China  can

prevent overfitting,  and  effectively  increase  the  robust-

ness of the neural network. 

4   Conclusions

The proposed  voiceprint  recognition  system based  on

mixed  features  can  learn  more  representative  voiceprint

features from voice data, and the recognition rate is high-

er than the traditional GFCC features. Therefore, it is a

very  effective  method  to  extract  mixed  features  to  solve

the  disguised  voice  speaker  recognition.  Based  on  the

powerful nonlinear modeling function of the DBN, higher

expression  level  features  can  be  mined  for  classification.

Compared with the traditional GMM model, the recogni-

tion rate of the model based on the DBN network is im-

proved.  And  the  dropout  strategy  can  further  improve

the recognition accuracy. It is a very effective method to

solve  the  problem  of  disguised  voice  speaker  recognition

by  using  deep  learning  from  the  level  of  speaker  model

building. 
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