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Abstract:    Outliers accompany control engineers  in  their  real  life activity.  Industrial  reality  is much  richer  than elementary  linear,
quadratic, Gaussian assumptions. Outliers appear due to various and varying, often unknown, reasons. They meet research interest in
statistical and regression analysis and in data mining. There are a lot of interesting algorithms and approaches to outlier detection, la-
belling, filtering and finally interpretation. Unfortunately, their impact on control systems has not been found sufficient attention in re-
search. Their influence is frequently unnoticed, ignored or not mentioned. This work focuses on the subject of outlier detection and la-
belling  in the context of control system performance analysis. Selected statistical data-driven approaches are analyzed, as they can be
easily  implemented with  limited a priori knowledge. The study consists of a simulation study  followed by the analysis of real control
data. Different generation mechanisms are simulated, like overlapping Gaussian processes, symmetric and asymmetric, artificially shif-
ted points and  fat-tailed distributions. Simulation observations are  confronted with  industrial  control  loops datasets. The work  con-
cludes with a practical procedure, which should help practitioners in dealing with outliers in control engineering temporal data.
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1   Introduction

An outlier is a strange phenomenon. Varying perspect-

ives may give different interpretations. Simple definitions

proposed by Dixon[1] define outliers as values, dubious in

the  eyes  of  the  researcher  or  by  Weiner[2] as contamin-

ants. One of the most popular definitions has been formu-

lated  by  Hawkins[3] naming, an  observation  which  devi-

ates so much from other observations as to arouse suspi-

cions  that  it  was generated by a different  mechanism to

be an outlier. Johnson and Wichern[4] define an outlier, as

an observation in a  data set  which appears  to  be incon-

sistent  with  the  remainder  of  that  set  of  data.  Barnett

and Lewis[5] say that, an outlying observation, or outlier,

is one that appears to deviate markedly from other mem-

bers  of  the  sample  in  which  it  occurs.  As  one  can  see

there are  various  other  names  for  the  outliers,  for  in-

stance  anomalies,  contaminants  or  fringeliers  reflecting,

unusual  events  which  occur  more  often  than  seldom[2].

These strange phenomena may have disastrous effects

on further data analysis, whatever it will be[6]. They may

increase signal variance and reduce the power of statistic-

al  tests  performed during analysis[7].  They destroy signal

normality  and  introduce  fat  tails[8].  Finally,  Rousseeuw

and Leroy[9] point out that they significantly bias regres-

sion analysis.

Following presented definitions, we may try to invest-

igate  their  origins[7, 10].  Generally,  outliers  may  originate

from  a  supposition  about  incorrect  observations  or  from

the  inherent  complex  and  non-linear  variability  of  the

data. Aberrant data can be caused by human errors or by

intentional  or  motivated  mis-reporting,  by  the  erroneous

operation of computer systems being in chain of the data

measurement  and  collection  process,  by  sampling  errors

or from standardization failures. Identification and correc-

tion of such incorrect values is not straightforward. Cau-

tiousness,  double  checking,  redundancy  or  recalculation

may help. If  incorrect observations cannot be reasonably

corrected, they need to be eliminated, as they do not re-

late to valid data.

Complex,  non-linear  and  often  unknown  process

nature  may  lead  to  simplifications  and  mis-interpreta-

tions,  like  for  instance  incorrect  assumptions  about  the

data distribution leading to the presence of possible out-

liers[11].  Such  processes  can  cause  multi-modal,  skewed,

asymptotic, fat-tailed, flat or very strangely shaped distri-

butions, which can depend on data sampling. As the pro-

cess  is  complex,  underlying  data  may  have  a  different

structure than  originally  assumed  inherently  character-

ized  by  the  tails[12, 13] or  there  might  just  be  more  than

one  mechanism.  Data  may  be  affected  by  long  term

trends, cross-correlations with varying delays, self-similar-

ity  or  multifractality[14].  On  the  other  hand,  an  outlier

might be rare, but a natural implication of the process it-

self. The  above  reasons  cause  problems  and  mislead  en-

gineers,  who  are  accustomed  to  linear,  quadratic  and

Gaussian simplifications.

We  observe  various  responses  to  the  outliers.  From

one  side,  we  may  continue  the  research  pretending  that

everything is according to the assumed normal conditions,

as  nothing  would  happen.  Actually,  this  is  a  dead  end

road. If we do not see the outlier, it does not mean that it
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does not  exist.  Once  we are  aware  of  outliers,  we  inten-

tionally acknowledge their existence and their impact.

Finally, the  outliers  might  be  considered  as  a  poten-

tial focus  of  inquiry.  Data  contamination  might  be  con-

sidered as a source of an important information focusing

on their  analysis.  Whatever  the approach is,  we need to

detect them. Thereby, we may label them for further ana-

lysis. Such an analysis is a target during fraud detection,

medical diagnosis, leakage detection, cyber security, etc[15, 16].

Current work focuses on specific applications to the ana-

lysis of control systems and to the detection of abnormal

control loop performance.

Detected outliers might be removed or not. There are

different policies  in  such  a  case.  There  are  strong  argu-

ments  for  their  removal.  On the  other  hand,  if  they  are

suspected to be legitimate, they are representative for the

population as  a  whole  and  should  not  be  removed.  Fi-

nally, they have to be isolated as they represent a wanted

feature or an incident. Therefore, the analysis of outliers

consists  of  several  activities,  such as  detection,  labelling,

interpretation or removal.

The story of outlier detection starts with simple visu-

al inspection  methodology.  The  process  dataset  is  visu-

ally inspected and any outlier is identified using the view-

er′s expert knowledge and then manually removed. Time

trends analysis has been soon supported by simple statist-

ical review  through  the  histogram  plots.  Such  a  simpli-

fied statistics  allowed  additional  domains  for  outlier  de-

tection.  This  manual  approach  has  been  soon  enhanced

with  structured  research  and  scientific  investigation.  It

has been quite natural that the initial  research has been

oriented  towards  statistical  approaches[17–20]. These  ana-

lyses have focused on the Gaussian approaches exploiting

various properties of normal distributions. The literature

on statistical outlier detection is very rich[3, 9, 21, 22]. Form-

ally, statistical analysis should follow three steps[11]: 1) la-

belling (flagging for further investigation), 2) accommoda-

tion through robust  statistical  methods  that  are  not  un-

duly  affected  and  3)  outlier  identification,  which  tests  if

the observation is an outlier.

There have been proposed numerous statistical meth-

ods for outlier detection. Actually, the consideration that

an  observation  is  an  outlier  depends  on  the  underlying

distribution of the data. Most of the research is limited to

univariate  datasets  assumed  to  follow  an  approximately

normal  probability  density  function.  Control  engineering

and loop  analysis  perspective  fits  into  the  univariate  as-

sumption. Normality  assumptions  result  in  many  al-

gorithms,  as  for  instance  Z-scores  and  modified

Z-scores[11],  interquartile  range  (IQR)[23],  Grubbs′ test[20],

Tietjen-Moore  test[24],  minimum  covariance  deter-

minant[25], extreme studentized deviate (ESD) test[26], and

Thompson Tau test consisting of two steps[27]. Robust re-

gression[9, 28] brought forward the fact that classical mean

square method is sensitive even to a single outlier.

This observation led to further investigations utilizing

new robust location and scale estimators, like Z-scores us-

α

ing median and MAD (median of the absolute deviations

about the median[11]), Hampel filter[29], power law tail in-

dex  estimates[30].  Finally, -stable  distribution  can  be

considered  as  an  underlying  generation  mechanism.  This

function  exhibits  a  lot  of  attractive  properties[31]. Re-

search  shows  that  it  may be  frequently  validated  as  the

real  statistical  process  behind  signal  generation,  also  in

control engineering[32]. It includes not only scale and loca-

tion  but  also  stability  factor  responsible  for  tails  and

skewness coefficient.

Recently,  research started  to  exploit  developments  in

data mining. There are dozens of approaches[16, 33–37]. One

may distinguish  three  different  types  of  algorithms.  Su-

pervised methods utilize for training historical data about

normal and  abnormal  objects.  Semi-supervised  ap-

proaches utilize for learning only normal or abnormal ex-

amples.  No  training  data  is  utilized  in  the  unsupervised

methods.  The  next  distinction  takes  into  consideration

method  reference  resolution,  i.e.,  the  difference  between

global  versus  local  range.  In  fact,  some  approaches  lie

between. The  next  division  uses  method  output.  La-

belling gives binary value, naming the objects either nor-

mal  or  abnormal.  Scoring  results  in  continuous  output,

like the probability of being an outlier.

Finally, the  method  can  use  direct  information  hid-

den in data (data-driven distance, density or angle-based

approaches) for detection, or there exists an intermediate

stage of  modelling.  Thus,  labelling  is  performed  accord-

ing to the derived model (rational or sample model-based

approaches).

ψ

α

α

The main goal of  the presented research is  to exploit

an opportunity to use statistical outlier detection and la-

belling in an engineering task of  control  performance as-

sessment  (CPA).  Furthermore,  three  novel  modifications

in  already  existing  methods  are  proposed.  The  well-

known  MDist  algorithm  is  improved  with  robust  M-es-

timator  using  logistic -function.  The  second  MDist

modification  uses -stable  tail  crossover  estimation.  The

third  proposal  modifies  the  classical  interquartile  range

algorithm with tail index  modelling. The proposed out-

lier  detection  task  is  validated  on  real  industrial  data,

while  properties  of  proposed  algorithms  are  compared

with classical ones.

The presented  research  starts  with  selection  and  de-

scription  of  the  applied  statistical  methods  (Section  2).

Analysis included in section 3 consists of simulations and

the discussion of obtained results. It is followed by indus-

trial validation in Section 4. Section 5 summarizes the pa-

per and addresses open issues.

2   Statistical outlier detection

The issue of outliers and their statistical detection can

be  traced  even  to  the  19th  century[17]. The  research  fol-

lowed through  the  following  decades.  Thereby,  the  sub-

ject literature is quite extensive, but its main popularity

has disappeared. Currently, data-mining approaches have

P. D. Domański / Study on Statistical Outlier Detection and Labelling 789 

 



gained the largest publicity[38]. However, it should still be

remembered that statistical approaches share formal sim-

plicity  and  rigorousness.  Additionally,  recent  findings  in

the area of non-Gaussian and robust statistics[39, 40] have

brought a new impact and improved methods′ reliability.

Comprehensive  reviews  of  the  statistical  outlier  analysis

can be found in several studies[15, 41–43].

Statistical methods mostly depend on properties of the

assumed probabilistic  model  of  the  underlying  stochastic

process. As there are so many methods, one has to select

those  which  are  the  most  appropriate  in  the  considered

situation. This  paper  focuses  on  control  engineering  ap-

plications, which may be further used in the CPA task or

during  the  controller  tuning  procedure.  Research  shows

that  the  majority  of  such  time  series  data  exhibit  fat-

tailed  properties[32, 44],  which  can  be  efficiently  modelled

with stable distributions. Simultaneously, Gaussian mod-

els are still existent, although in the minority of observed

situations. Thus,  the  selected  methods  should  be  appro-

priate in such cases. There is one more issue that should

be  taken into  account:  asymmetry.  In  several  situations,

the  signals  demonstrate  asymmetric  properties[45]. Con-

sequently, the selection includes methods, which are able

to  address  this  issue.  Concluding,  we  have  to  keep  in

mind an idea[46] that, the notion of outliers has to be con-

sidered  not  by  itself  but  in  connection  with  underlying

scheme. The following six methods have been chosen for

the analysis:

M.1  MDist-G:  Elementary  Z-score  method  assuming

normality

M.2  MDist-rHub:  A  method  utilizing  robust  location

and scale M-estimators

α αM.3 MDist- : -stable tail crossover method

M.4 ESD: Generalized extreme studentized deviate

M.5 IQR: Interquartile range method

α αM.6 IQR- : -stable tail index modelling method.

α α

The  above  methods  are  used  for  outlier  detection.

Three of them are well known from the literature (MDist-

G,  ESD  and  IQR),  while  three  others  (MDist-rHub,

MDist-  and  IQR- )  are  new  proposals.  All  addressed

methods are compared with each other against for differ-

ent types  of  outliers  and  finally  validated  using  real  in-

dustrial datasets.

These methods allow initial data preprocessing before

control performance assessment, cleaning process data be-

fore  the  main  CPA  task.  Furthermore,  labelled  outliers

may  be  further  analyzed,  as  they  potentially  bring  into

the picture additional knowledge about the process itself.

2.1   MDist-G

X N(x̄, σ2)

Z = (X − x̄)/σ N(0, 1)

Z-scores approaches found in [11] (sometimes denoted

as  MDist[15])  seem  to  be  the  earliest  proposed  methods.

They  use  the  well-known  normal  distribution  property

that  if  is  distributed  using ,  then

 is distributed with .  Thus, we can

x1, x2, · · · , Xntake the Z-scores of the observations ,

zi =
xi − x̄

σ
(1)

DG = 3

x̄±DGσ

99.7%
370

as an algorithm to label outliers. The common rule uses a

Z-score  value  of  and  labels  observations  that

exceed  respective  borders  as  outliers.  It

indicates  that  of  data  are  considered  inliers  and

only  rare  events  at  approximately  1  of  samples  are

identified as an outlier.

This approach is very simple and attractive. However,

normal mean and standard deviation are very sensitive to

outliers. The  above  statistics  are  evaluated  for  the  com-

plete  dataset,  also  including  outliers.  Thus,  we  use  the

MDist approach  to  determine  the  outliers,  while  ob-

tained  results  are  simultaneously  influenced  by  them.

Modifications  with  robust  estimators[9] should  minimize

that influence.

2.2   MDist-rHub

ψ

xMH0

Robust statistics have proposed a lot of new estimat-

ors for time series affected by outliers[28] apart from clas-

sical median or MAD. M-estimators with Huber or logist-

ic -functions give such an opportunity[47]. Location M-es-

timator  is  defined  as  a  solution  to  the  equation

(2)：

N∑
i=1

ψ

(
xi − x̄

σ̂0

)
= 0 (2)

ψ(.) µ

σ̂0

where  is  any  non-decreasing  odd  function,  is  a

location estimator and  is a preliminary scale estimator,

like MAD (3).

MAD = mediani {|xi − x̄|} . (3)

ψ

M-estimators  are  affine  equivariant  and  (2)  can  be

solved using the sample median as a starting point.  The

logistic smooth  function is defined as (4).

ψlog (x) =
ex − 1

ex + 1
(4)

ψlog(x) = 2F (x)− 1

F (x) = 1/(1 + e−x)

which  may be  reformulated  as ,  with

 denoting  a  cumulative  distribution

function of the logistic distribution, known as the sigmoid

function.  The  scale  M-estimator  can  be  defined  as  a

solution to (5).

1

N

N∑
i=1

ρ
(xi − x̄0

σ

)
= κ (5)

0 < κ < ρ(∞) ρ(.)

σ

x̄0

where ,  is even, differentiable and non-

decreasing  on  the  positive  numbers  loss  function,  is  a

location  estimator  and  is  a  preliminary  location
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ψ

ρ(.) ψ

DH = Dg = 3.0

estimator, like the median. While the logistic  function (4)

is taken as , we obtain the logistic  scale estimator.

Functions implemented in Matlab LIBRA toolbox[48] have

been  utilized  in  the  considered  research.  There  is  an

ongoing  discussion  about  estimator  robustness  and  the

appropriate  multiplier,  despite  object  is

used, i.e., the same values as in the MDist-G case.

α2.3   MDist-

α

α

In  some  situations,  the  underlying  normal  stochastic

process may not be appropriate.  CPA research and ana-

lysis of control error variables indicate that in many cases

an -stable  distributions  better  represent  the  generation

mechanism. Domański[31] shows that it exhibits many at-

tractive features. An -stable distribution does not exhib-

it closed  probabilistic  density  function  (PDF).  It  is  ex-

pressed with a characteristic equation (6).

F stab
α,β,δ,γ (x) = exp {iδx− |γx|α (1− iβl (x))} (6)

l (x) =


sgn (x) tan

(πα
2

)
, for α ̸= 1

−sgn (x)
2

π
ln |x| , for α= 1

0 < α ≤ 2

|β| ≤ 1 δ ∈ R
γ > 0

where  is  called  a  characteristic  exponent  or  a

stability  index,  is  a  skewness  factor,  is  a

location and  is a scale or dispersion factor.

There are special cases with a closed form of the PDF

(6):

α = 2

α = 2 β = 0 γ = 1 δ = 0

1)  reflects  independent  realizations,  especially

for , ,  and ,  we  get  exact  normal

distribution equation.

α = 1 β = 02)  and  denote  the  Cauchy  case  that  is

considered in details in the following paragraph.

α = 0.5 β = ±13)  and  denote α=0.1，β=1  case,

which is not considered in the analysis.

αEstimation  of -stable  PDF  parameters  can  be  done

with  different  methods,  like  McCuloch′s (percentile)  ap-

proach[49], iterative Koutrouvelis method using character-

istics  function  estimation[50],  logarithmic  moment

method[51] or  maximum  likelihood  algorithm[52].  The

quantiles method  has  been  utilized  in  the  considered  re-

search.

α

β = 0

γ = const α

a1 a4

The -stable PDF  exhibits  crossovers  only  for  sym-

metric  shape  ( ),  while  the  scale  is  constant

( ) and stability index  varies (see Fig. 1). The

outer ones (denoted as  and ) might reflect positions,

where the  tail  starts,  so  they  might  be  used  as  the  out-

lier detection thresholds. They are evaluated numerically.

Dα = 1.468

Finally, the outlier threshold must be agreed with the

Z-scores  multiplier  for  normal  case.  It  gives  the  relation

.

2.4   ESD

n

N

The generalized extreme studentized deviate test pro-

posed in  [26] can be  applied  to  data  drawn from an ap-

proximately normal distribution to find out one or more

outliers. The test assumes the upper limit for the outliers

number  in  contrast  to  the  Grubb′s[20] and  the  Tietjen-

Moore[24] tests,  which  demand an  exact  definition  of  the

outliers number. Knowing the upper limit of the outliers

number n, the test performs  separate tests: for one out-

lier, for two outliers, and so on up to  outliers.

N

X N
n T1, T2, · · · , Tn Ti

X1 = X

x̄i Xi σi Xi

Therefore, we test the null hypothesis that there is no

outlier versus the alternative one, saying that there are 

outliers at most.  For a data set  with  elements,  we

generate  test  statistics ,  where  each 

forms a two-sided Grubbs′ statistics,  defined as ,

 is the mean of  and  is a standard deviation of .

Ti =
max {|x− x̄i| : x ∈ Xi}

σi
(7)

Xi+1 = Xi − xi xi ∈ Xi |x− x̄i|and ,  where  such  that  is

maximized.  ESD test  is  the sequentially applied Grubb′s
test,  but  adjusted  for  the  critical  values  based  on  the
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number  of  tested  outliers.  The  method  is  robust  to  the

significant masking effect.

2.5   IQR

Q3

Q1

LL = Q1 − 1.5 HH = Q3 + 1.5

25%

The majority  of  data  is  not  normal  enough  to  con-

sider  it  as  being  drawn  from a  Gaussian  distribution.  A

possible  statistic  in  such  case  is  the  interquartile  range

(IQR)  method[23].  It  is  calculated  as  the  difference

between  upper  75th  (denoted )  and  lower  25th  (de-

noted )  percentiles  of  the  data.  IQR  may  be  used  to

find outliers. They are considered as observations that fall

below  IQR or above  IQR.

They  are  often  presented  in  a  box-plot:  the  highest  and

lowest  occurring  values  are  indicated  by  whiskers  of  the

box  and  possible  outliers  are  as  individual  points.  The

breakdown point for IQR is equal to .

µ± 2.698σ

Once data are drawn from Gaussian distribution, the

method  gives  more  outliers  than  Gaussian  MDist-G  as

the outliers lie outside the range .

α2.6   IQR-

α

α

α

α

The  IQR-  method  can  be  found  under  the  name  of

Pareto tail modelling and is used for skewed data[53]. Ac-

tually,  it  is  a  general  IQR  approach,  but  it  assumes -

stable PDF as  an  underlying  outlier  generating  mechan-

ism. Observations that are larger than a certain quantile

of the fitted -stable distribution are declared to be out-

liers.  The IQR-  approach is  acceptable  for  heavy-tailed

distributions, but  does  not  cope  well  with  data  that  ex-

hibit point-wise outliers lying far away from the centre[54].

α

5%
0.5%
α5%

α0.5%

Once the -stable function is fitted to data, there re-

mains only  a  question  of  what  quantiles  should  be  con-

sidered  as  thresholds.  The  literature  is  not  clear  at  that

point.  Danielsson  at  al.[54] suggest  to  use  quantiles,

while  Alfons et  al.[53] propose to use the  quantiles.

Both variants are tested specified as IQR-  and IQR-

, respectively.

3   Simulation study

The  study  presented  in  this  paper  focuses  on  control

engineering,  generally  on  the  CPA  preprocessing.  There

are  two  options  to  design  simulation  experiments.  The

first approach is to simulate complex and non-linear pro-

cesses.  It  should  be  properly  designed  to  reflect  possible

scenarios  that  may  generate  different  kinds  of  outliers.

The other way is to properly generate signals that reflect

possible control errors that might be met in reality (also

reflected by complex simulation). Both approaches would

finally result in the same signals being analyzed, with the

same generating mechanisms.

There is one more reason to support applied decision.

During the  realization  of  true  industrial  projects,  an  en-

gineer is never sure what is behind the data and the con-

trol error variable. Thereby, it is important and practical

to know what may be observed and why. Once we simu-

late  different  signals  exhibiting  different  properties,  we

imitate  certain  situations  met  by  an  engineer.  Thus,

she/he may trace the reasons and perform root-cause ana-

lysis.

Both ways,  i.e.,  complex  process  simulation  and  sig-

nal generation end up with the same signals, similar ana-

lysis  and  finally  the  observations.  Because  signal-based

scenarios  are  closer  to  real  CPA  and  allow  faster  root-

cause analysis, this approach has been finally selected.

ε(t)

ε(t)

N(0, σ2)

σ2

Consecutively  simulations  reflect  phenomena observed

in  control  practice.  Univariate  control  loop  sketched  in

Fig. 2, although  very  basic,  reflects  the  majority  of  con-

trol  structures  in  the  process  industry.  Its  performance

may  be  observed  and  measured  using  various  different

measures  and  approaches[55].  These  measures  generally

use  control  error  signal  during  the  calculation.  The

underlying  hypothesis  says  that  good  controller  design

results  in  characterized  by  normal  distribution

, i.e.,  with  a  zero  mean  and  control  error  vari-

ance  equal  to .  The  best  tuning  exhibits  the  smallest

variance.

However, nothing  is  ideal  and  perfect  in  reality.  Ob-

servation of industrial variables show that the majority of

signals  do  not  agree  with  this  hypothesis[32].  The  signals

are often heavy-tailed, skewed or even hold more strange

shapes. In  general,  three  main  hypotheses  can  be  ob-

served and should be taken into account:

H1:  Control  error  has  underlying  symmetric  normal

distribution.

H2: Control error has underlying skewed distribution.

H3: Underlying generation process comes from heavy-

tailed distribution.

Hypothesis  H1  assumes  a  symmetric  main  process.

Tested  contamination  may  be  of  different  origins.  It

might  be  another  Gaussian  noise  with  varying  share  or

with differing variances. It can be symmetrical or skewed.

Such  scenarios  reflect  impact  of  external  processes  (dis-

turbances)  on  the  control  loop.  Other  contamination
 

Controller Process

Setpoint Control error MV: Manipulated variable

CV: Controlled

variable

Gaussian noise

+

−

+ +
++

DV: Disturbance variable

yo (t) ε (t) m (t)

z (t) d (t)

y (t)

Fig. 2     Univariate control loop
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schemes  will  represent  erroneous  observation  (measure-

ment  errors,  data  transfer  artifacts,  human

interventions).  In  such  cases,  some points  are  artificially

shifted away from the centre. In H2 hypothesis, the main

data is skewed, while contamination may be different.

α α

β

Hypothesis H3 means that control error is drawn from

the  process  similar  to  the  fat-tailed  distribution.  The

heavy tails  hypothesis  requires  more attention.  Actually,

the  heavy  tailed  distribution  has  a  tail  that  is  heavier

than  an  exponential  distribution[56]. Two  stochastic  pro-

cesses are tested: Laplace double exponential distribution

and -stable  distribution  with  varying  stability  index 

reflecting  tail  heaviness  and  varying  skewness  repres-

enting  asymmetric  behavior.  Tails  simulate  unknown,

varying and  uncoupled  correlations  and  persistent  dis-

turbing processes, while skewness reflects process non-lin-

earities, constraints or misfit in the operating point.

It  should be  noted that  there  are  some differences  in

views in  the  literature  about  a  connection  between  out-

liers and tail  heaviness. The rather common understand-

ing that  tails  represent  outliers  is  contested by some re-

searchers.  Klebanov  and  Volchenkova[57] say  that,  the

idea  on  connection  of  the  presence  of  outliers  with  the

heaviness  of  distributional  tails  is  wrong.  Thereby,  this

aspect remains  open  in  the  conducted  research.  The  fo-

cus remains on the characteristics of time series with cau-

tious results interpretation.

3.1   Gaussian control error (H1)

This section will be considered as the reference hypo-

thesis. It  is  assumed  that  Gaussian  control  error  repres-

X = {x1, x2, · · · , xN}

N(0, σ2
M ) σM = 0.6

N = 50 000

ents a  well  tuned  loop.  The  analysis  in  all  cases  is  con-

ducted for  a  simulated time series .

We assume that the underlying normal  data are distrib-

uted  with  and .  Dataset  length

 is kept constant in each simulation run. The

time  trend  for  the  first  2 000  points  of  original  signal  is

shown in Fig. 3. Histograms and fitted PDFs are shown in

Fig. 4(a).

α

5%

Results  of  outlier  detection  are  shown  in Table  1.

Graphical representation is sketched in Fig. 4(b). We no-

tice that MDist methods (M.1, M.2 and M.3) give simil-

ar indications minimizing detected outliers′ number, what

agrees with expectations. ESD (M.4) detects zero outliers.

Other  approaches  are  less  conservative.  IQR-  with lar-

ger confidence lever  is highly relaxed and labels a lot

of outliers.

Four types of scenarios are selected for further analys-

is,  as  they  reflect  situations  with  symmetric  or  skewed

contamination:

 

Table 1    Detected outliers for normal process (H1)

minTh maxTh leftPts rightPts outPerc

M.1 −1.80 1.80 74 62 0.27

M.2 −1.81 1.81 74 62 0.27

M.3 −1.77 1.78 82 66 0.30

M.4 n/d n/d 0 0 0.00

M.5 −1.62 1.62 177 166 0.69

M.60.5% −1.55 1.54 272 234 1.01

M.65% −0.98 0.98 2 656 2 554 10.42
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H1.1: Gaussian contamination – varying share

H1.2: Gaussian contamination – varying standard de-

viation

H1.3: Skewed contamination derived from gamma dis-

tribution

H1.4:  Injected  erroneous  observations:  one-sided  and

two-sided.
3.1.1   Contamination with Gaussian (H1.1)

N(0, σ2
c )

σc = 3 σM = 1.8

csh = [0.5%, 1%, 2%, 5%, 10%, 20%, 25%]

In this section, the effect of contamination with anoth-

er normal distribution is checked. The contaminating pro-

cess  has  standard  deviation  three  times  larger

than the main process, i.e., . The share of

the induced outliers, points of different stochastic process,

is  tested.  Seven  contamination  shares  are  used:

. Aggregated  res-

ults are  presented to  save  the  space  and show major  ef-

fects.

σ

σrob α γ α

σ σrob

γ

α

Contamination  changes  statistical  properties  of  the

obtained time series. It affects estimation of the standard

deviation and tail  properties.  Therefore,  it  affects outlier

detection results. Two types of the relation are presented

to  capture  these  effects.  At  first,  relationship  of  fitted

normal  standard  deviation ,  robust  standard  deviation

,  and  characteristic  exponent  and  scale  of -

stable  distributions  are  presented  in Fig. 5(a). Observa-

tion of the statistical properties relations agrees with ex-

pectations. Increasing  share  of  the  contamination  in-

creases normal  standard  deviation.  Scale  robust  estimat-

ors are less sensitive to the above effect, similarly to the

stable  distribution  scale  (see Table  2).  Normal  standard

deviation  changes by approximately 66%, while  by

approximately  22%  and  only  by  approximately  16%.

We see that larger contamination increases tails, which is

observed  by  decreasing  value  of  stability  factor  (ap-

proximately 23%).

Further  relations  present  how  many  new  outliers  are

detected  versus  a  contamination  share.  The  number  of

new outliers  is  a  difference  between the  total  number  of

outliers  found  for  some  selected  contamination  and  a

number for zero contamination. Fig. 5(b) presents this re-

lation for an original dataset.

α

α5%

α0.5%

σ

10%

Observation of the simulation results allows us to for-

mulate  initial  observations.  First  of  all,  IQR  method

(M.5) is the most sensitive to the range of the contamina-

tion  share.  Moreover,  two  other  robust  MDist  threshold

methods:  MDist-  and MDist-rHub are also significantly

sensitive.  These methods tend to detect more outliers  as

the original  time  series  is  more  contaminated,  in  con-

trary to the ESD algorithm and IQR- . These two ap-

proaches are fully robust, and their detection remains un-

changed. IQR-  goes even further, as it starts to de-

tect even fewer outliers. We notice that these approaches

consider observations  constituting  the  tail  as  normal  oc-

currences (inliers). Classical 3  threshold MDist-G meth-

od  increases  detection  up  to  share,  while  for  larger

contamination, the detection ability saturates.
3.1.2   Contamination with Gaussian (H1.2)

csh = 5%

σM = 0.6

σc = [0.9, 1.2, 1.5, 1.8, 2.1, 2.4, 2.7]

In this  section,  the  contamination  share  is  kept  con-

stant at , while the variance of the contaminat-

ing signal varies. As in the previous case, standard devi-

ation  of  the  original  signal  equals  to  and  this

signal  remains  exactly  the  same.  The  following  standard

deviations  of  the  contaminating  signal  are  simulated:

.

Statistical  properties  behave  according  to expecta-

tions (see Fig. 6(a)) similarly to the previous case. Grow-

ing polluting  variance  increases  normal  standard  devi-

ation.  Scale  robust  estimators  are  less  sensitive  to  the

above  effect,  similarly  to  the  stable  distribution  scale.

Larger  contamination  increases  tails,  which  is  observed

by  the  diminishing  value  of  the  exponential  factor.  The

range of this effect is indicated in a summarizing Table 2.

 

Table 2    Scope of changes for statistical factors (H1), robust
results in bold

Hypothesis σ MAD σrob α γ

H1.1 66.3% 44.0% 22.7% −23.5% 17.0%

H1.2 94.8% 61.3% 30.5% −28.1% 23.3%

H1.3 92.5% 59.0% 22.1% −34.2% 6.6%

H1.4 (one) 58.2% 37.8% 11.0% −42.5% −8.5%

H1.4 (two) 61.6% 35.4% 10.5% −18.6% 6.3%
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The diagram in Fig. 6(b) presents how many new outliers

are detected versus a contamination varying standard de-

viation for a resulting dataset.

α5%

α

σ α0.5%

Observations are exactly the same as previously. The

ESD algorithm and IQR-  do not label new contamin-

ating observations as outliers  and tend to consider them

as  inliers.  IQR,  MDist-  and MDist-rHub  are  signific-

antly more sensitive, especially IQR. We notice that this

dependence is linear with the contaminating standard de-

viation. MDist-G method initially increases detection, but

larger  results  in  constant  robustness.  IQR-  de-

tects even fewer outliers.
3.1.3   Asymmetric contamination (H1.3)

N(0, σ2
M )

k θ k = 5.0

θ = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

Asymmetry  in  the  contaminating  process  is  analyzed

in  this  section.  The  underlying  time  series  remains  the

same as . However, time series pollution is gen-

erated  using  asymmetric  mechanism  drawn  from  the

gamma  distribution[58] characterized  by  shape  parameter

 and  scale .  Shape  factor  is  kept  constant  as .

Different scales,  which increase contaminated data skew-

ness are analyzed, i.e., .

γ α

Statistical properties of the asymmetrically contamin-

ated time series for an original dataset are summarized in

Fig. 7(a).  We  see  that  contamination  with  skewed

stochastic processes  originating  from  gamma  distribu-

tions have direct effects on the total skewness. The most

proper reaction is visible with a  scale factor of -stable

σrob

γ

α

distribution,  which  remains  fully  robust  to  asymmetry

and one-sided tails. Gaussian standard deviation signific-

antly increases, what may cause misinterpretation and in

consequence  improper  outlier  detection.  Robust  es-

timate behaves  also  properly,  though  it  is  not  as  con-

stant as . Skewed tail causes decrease in stability factor

.

Differences  between  distributions  are  reflected  in  the

outlier detection results. Observing the definition of these

algorithms, we notice that some of them are symmetrical

in  a  definition,  like  MDist  approaches  (M.1,  M.2  and

M.3) and ESD. The algorithms using quantiles, i.e., IQR

variants  (M.5  and  M.6),  take  into  account  skewness  of

data.  It  is  better  visible  on  time  series  histograms  with

added detection threshold shown in Fig. 8.

α

0.5%

The  Gaussian  MDist-G  method  is  mostly  biased  by

the tails in both domains and it labels as outliers only the

most extreme  observations.  The  other  two  robust  ver-

sions  of  the  MDist  approach behave  slightly  better.  The

ESD method (M.4),  as  in all  previous cases,  is  the most

conservative always  detecting  the  most  extreme  realiza-

tions.  Quantile-based  algorithms,  i.e.,  IQR  (M.5)  and

IQR-  (M.6)  work  quite  properly  in  both  domains,

however  quantiles  selection  impedes  results.  The 

margin is extremely conservative detecting only the most

extreme observations.  Moreover,  it  increases  its  conser-

vativeness  with  increasing  contaminating  skewness.  In
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5%contrary, the  confidence margin is not affected by the

induced outliers.

α

Concluding, we  may  notice  that  skewed  contamina-

tion creates bigger challenges for outlier detection than a

symmetrical one. In such case, it is suggested to compare

the  results  between  IQR  approach  applied  to  original

skewed  data  with  robust  MDist  methods  (MDist-rHub

and  MDist- ).  A  serious  question  arises.  How  to  detect

opposite situation, i.e., skewed original data and symmet-

ric contamination?

3.1.4   Contamination with erroneous observations

(H1.4)

csh

The issue of the erroneous observations is addressed in

these simulations.  Once  there  are  some  unknown,  artifi-

cial problems with the measurement unit, data collection

system  or  communication  loss,  target  data  may  include

some clearly invalid observations,  which often appear on

system limits  and always  have the  same value.  We may

distinguish two  such  cases:  artificial  outlier  (errors)  ap-

pear on one side (upper or lower limit) or on both sides

simultaneously. These  effects  are  investigated  in  the  fol-

lowing paragraphs,  analyzing  the  effect  of  varying  num-

ber (share) of such a contamination .

One-sided erroneous observations.

xi = 3

To address this issue, the data are contaminated with

randomly injected constant values . Seven different

contamination  shares  are  investigated: csh =  [1%,  2%,

γ

3%, 4%, 5%, 6%, 7%]. Aggregated simulation results are

presented below. Fig. 9(a) shows the relationship between

the  number  of  injected  error  observations  and  the  main

statistical  factors  for  both  datasets.  Robustness  of  scale

indexes  is  confirmed.  We  notice  that  stable  distribution

scaling factor  even decreases (Table 2).

csh ≤ 6%
csh = 7%

α

The signal  histogram  shows  these  erroneous  observa-

tions clearly. However, the use of MDist scores might not

work properly. It is shown clearly in Fig. 10. The Gaussi-

an method works properly for shares , while for

 the injected  wrong  observations  are  not  detec-

ted. It is also visible in Fig. 9(b) showing the aggregated

summary. It shows that the use of low confidence IQR-

may fall under the same risk.

The  review  of  results  shows  that  the  robust  MDist-

rHub approach is the safest and unbiased, minimizing the

risk around the peak of outliers. The standard IQR meth-

od might be useful as well, but with a tendency to label

more observations as outliers. This simulation shows that

even  detection  of  the  simplest  looking  outliers  is  not  so

straightforward  using  automatic  measures.  Additional

risk  lies  in  the  fact  that  one  sided  outliers  affect  mean

value and  robust  estimates  are  required.  Manual  inspec-

tions are inevitable.

Two-sided erroneous observations.

xi = ±3

Next,  data  are  contaminated  with  randomly  injected

constant values . Seven contamination shares are
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csh = [1%, 2%, 3%, 4%, 5%, 6%, 7%]

γ

α

investigated: . Aggreg-

ated  results  and  observations  are  presented  below.  The

statistical  relationship  is  investigated  at  first. Fig. 11(a)

summarizes  the  main  statistical  factors  for  a  varying

share  of  injected  errors.  Two-sided  extremes  increase

standard  deviation,  while  other  estimators  (especially )

give  robust  estimations,  despite  the  number  of  injected

outliers. Furthermore,  they  cause  tails,  which  are  detec-

ted by diminishing stability factor .

Two-sided errors seem to be simpler in detection than

previous asymmetric case. Although two-sided outliers do

not affect  mean  estimation,  it  is  still  safer  to  use  ap-

proaches  utilizing  robust  estimators  (Fig. 11(b)). Ob-

α

α

0.5%
5%

serving exemplary histograms sketched in Fig. 12, MDist-

rHub and MDist-  are suggested to be used in such situ-

ations. It  is  further  confirmed by a summary of  the res-

ults.  Thereby,  IQR-  is  very  sensitive  to  the  confidence

ratio selection. The literature suggestion  seems to be

too conservative, while  is over-relaxed.

3.1.5   Summary of H1 hypothesis

γ

α

γ

Results of the H1 hypothesis analysis are summarized

in Table 2. We see that scaling factor  drawn from the

-stable  distribution  is  the  most  robust  in  all  analyzed

scenarios. It suggests that  is the most promising coeffi-

cient for further consideration.
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3.2   Asymmetric underlying process (H2)

Previously considered scenarios  assumed that  the un-

derlying  process  is  symmetric,  while  the  contaminating

generator might be any. Now, the roles are inverted. The

basic process is skewed. There exist many scenarios, with

different combinations  between  the  main  data  and  con-

tamination. The following contamination scenarios are se-

lected:

H2.1: Gaussian with different shares

H2.2: Gaussian with varying standard deviation

H2.3: Skewed  process  derived  from  gamma  distribu-

tion

H2.4: One-sided injected erroneous observations.

x̄ = 0

σM = 0.6 β = 0.7

5.4 N = 50 000

The  underlying  stochastic  process  is  generated  with

Pearson  distribution[59] having  parameters:  mean ,

standard deviation ,  skewness  and kur-

tosis equal to . Dataset length  is kept con-

stant  during  each  simulation.  Time  trend  for  first  2 000

points is shown in Fig. 13. Histogram together with fitted

probabilistic density functions is sketched in Fig. 14 (a).

Results  of  outlier  detection  are  shown  in Table  3.

Graphical representation of thresholds for each method is

indicated in Fig. 14 (b).

α5%

We  notice  that  MDist  methods  (M.1,  M.2  and  M.3)

give  similar  indications  minimizing  detected  outliers′
number, which  agrees  with  expectations.  ESD (M.4)  de-

tects  only  extreme  outliers.  Other  approaches,  especially

classical  IQR  (M.5)  and  high  confidence  IQR- ,  are

less conservative.
3.2.1   Gaussian with different shares (H2.1)

In  this  section,  the  simplest  contamination  scheme is

N(0, σ2
c )

σc = 3σM = 1.8

csh = [2%, 4%, 6%, 8%, 10%, 12%, 14%]

analyzed. Original  asymmetric  data  are  affected  by  nor-

mal  Gaussian  process  with its  standard  devi-

ation three times larger than the one of main process, i.e.,

.  Seven  contamination  shares  are  used:

.  The  impact  of

analyzed  contamination  on  final  data  statistics  is  shown

in Fig. 15(a).

γ

First of all, we see that the increasing number of con-

taminating data increases final scaling estimates. This re-

lation seems to be linear. Furthermore, the robustness of

stable  distribution  scaling  is  confirmed.  We  also  see

that an increasing share of points drawn from a symmet-

rical  contamination  process  decreases  final  skewness.  A

summary of these results is sketched in Table 4.

csh

Changes in the properties of the statistical factors af-

fect outlier  detection  methods,  as  they  use  them.  Ob-

tained  results  are  quite  in  line  with  previously  observed

relations. Both robust MDist methods (M.2 and M.3) to-

gether  with IQR increase  number of  detected outliers  as

the  contaminating  share  increases.  In  contrary,  the

 

Table 3    Detected outliers for skewed process (H2)

minTh maxTh leftPts rightPts outPerc

M.1 −1.81 1.81 62 435 0.99

M.2 −1.65 1.61 110 690 1.60

M.3 −1.52 1.59 164 728 1.78

M.4 3.33 3.38 1 45 0.09

M.5 −1.48 1.43 196 1 056 2.50

M.60.5% −1.30 3.06 435 36 0.94

M.65% −0.85 1.05 2 823 2 511 10.67
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α

0.5%
5%

ESD  method  considers  all  new  observations  as  inliers.

Performance of the IQR-  strongly depends on the selec-

ted confidence value. Small confidence  does not de-

tect  new  outliers,  while  behaves  similarly  to  robust

MDist  approaches.  Exemplary histograms with detection

thresholds are presented in Fig. 16.

3.2.2   Gaussian with varying variance (H2.2)

csh = 4%

σM = 0.6

σc =

Now  contamination  share  is  kept  constant  at

, while the variance of the contaminating signal

varies.  The  standard  deviation  of  the  original  signal

equals  to  and  this  signal  remains  exactly  the

same. The following standard deviations of the contamin-

ating  signal  are  simulated:  [0.9,  1.2,  1.5,  1.8,  2.1,

2.4, 2.7].

Statistical properties  behave  according  to  expecta-

γ

tions and are shown in Fig. 17(a). Relations are similar to

H2.1 scenario.  Growing  polluting  variance  increases  nor-

mal  standard  deviation.  Scale  robust  estimators  are  less

sensitive to  the  above  effect,  especially  stable  distribu-

tion scale . Their increase is no longer linear and starts

to  be  exponential.  Larger  contamination  increases  tails,

which is  observed by the  diminishing  value  of  the  expo-

nential factor.  Simultaneously,  an  overall  skewness  de-

creases toward symmetric behavior. The range of this ef-

fect  is  indicated  in Table  4.  The  diagram  in Fig. 17 (b)

presents  the  number  of  new  detected  outliers  versus

standard deviation for resulting data.

σc

σM

The results are quite in line with previously observed

relations. The only difference is at the start. The contam-

inating signal is hidden inside of the main process, i.e., 

is close to the main signal . Fluctuations are faster but

the relationship  becomes  linear  for  larger  variances.  De-

tection  methods′ performance  exhibits  similarly  to  the

previous scenario.  Exemplary histograms with thresholds

are sketched in Fig. 18.

3.2.3   Skewed contamination (H2.3)

k θ

k = 5.0

Asymmetry  in  the  contaminating  process  is  analyzed

now.  The  underlying  time  series  remains  normal.

However,  time  series  pollution  is  generated  using  an

asymmetric mechanism drawn from the gamma distribu-

tion  characterized  by  shape  parameter  and  scale .

Shape factor is kept constant as . Different scales,

 

Table 4    Scope of changes for statistical factors (H2), robust
results in bold

Hypothesis σ MAD σrob α γ

H2.1 42.6% 27.9% 13.8% −14.0% 11.4%

H2.2 80.5% 53.6% 26.8% −22.4% 22.2%

H2.3-right 93.4% 67.8% 25.7% −28.5% 10.5%

H2.3-left 93.2% 60.1% 21.0% −33.0% 5.6%

H2.4-right 245.9% 147.8% 12.4% −59.6% −49.7%

H2.4-left 92.4% 55.5% 10.7% −47.1% −16.6%
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θ = [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]

which increase contaminated data skewness are analyzed,

i.e., . While  the  underly-

ing process is asymmetric and skewed to the right, there

is expected difference depending on the side of contamin-

ation. Thereby, two versions of the simulations have been

performed, with  right-skewed  and  left-skewed  contamin-

ating signal.

γ α

σrob

γ

α

Right-sided skewed contamination. Statistical  proper-

ties of the right-sided contaminated data are summarized

in Fig. 19.  We  see  that  contamination  with  skewed

stochastic  process  originating  from  gamma  distribution

have direct effects on the total skewness. The most prop-

er reaction is visible with  scale factor of -stable distri-

bution,  which  remains  fully  robust  to  asymmetry  and

one-sided tails. Gaussian standard deviation increases sig-

nificantly.  It  may  cause  misinterpretation  and  improper

outlier detection. Robust  estimate behaves also prop-

erly, though it is not as constant as . Skewed tail causes

decrease  in  stability  factor .  The  range  of  changes  is

summarized  in Table  4. The  resulting  skewness  coeffi-

cient  reflects  impact  of  the  asymmetric  contamination

process.

α

Outlier  detection  methods  perform  similarly  to  the

previous cases with MDist-rHub, MDist-  and IQR work-

ing consistently.

Left-sided skewed contamination. Opposite-side  con-

tamination does  not  make  changes  in  the  outlier  detec-

tion properties.  Statistical  properties  behave  as  previ-

ously,  with  an  exception  for  the  skewness  factor  which

changes in the opposite direction (Fig. 20(a)). Such a per-

formance  causes  similar  detection  represented  in

Fig. 20(b).

Comparison  between  the  impact  of  opposite  sides  is

shown  in Fig. 21.  Observation  of  the  methods′ perform-

ance suggests that robust MDist methods (M.2 and M.3)

seem to be the most reliable with M.2 (MDist-rHub) be-

ing more conservative.
3.2.4   One-sided erroneous observations (H2.4)

Erroneous  observations  are  addressed  in  this  section.

As the main process is not symmetric, it is interested in

how  one-sided  errors  would  affect  detection.  Thus,  we

consider two cases:  artificial  observations (errors) appear

on the left or on the right side.

xi = +8

csh = [1%, 2%, 3%, 4%, 5%, 6%, 7%]

γ

Right-sided errors. To address this issue, the data are

contaminated  with  randomly  injected  constant  values

. Seven different contamination shares are invest-

igated: .  Aggregated

simulation  results  are  presented  in Fig. 22,  which  shows

the relationship between the number of injected error ob-

servations and the main statistical factors. Robustness of

scale  indexes  is  confirmed  (stable  distribution  scaling

factor  even decreases) and summarized in Table 4.

α α

Outlier  detection  methods  perform  similarly  to  the

symmetric  considerations  (hypothesis  H1.4).  The  risk  of

missing the peak by the threshold is serious for the most

relaxed methods, i.e., MDist-  and IQR-  with large con-
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5%fidence interval . It is caused by biased location estim-

ate used by the method.

Left-sided  errors.  Opposite-side  contamination  does

not  make  any  fundamental  change  in  outlier  labelling.

Statistical properties behave as previously, with an excep-

tion of the skewness factor which changes in the opposite

direction  (Fig. 23(a)).  Such  a  performance  causes  similar

detection as in Fig. 23(b). The risk of wrong labelling ap-

pears, but to a smaller extent. It is due to the lesser im-

pact of the biased location estimate.

Comparison between opposite sides impact is shown in

Fig. 24.  Observation  of  the  methods′ performance sug-

gests that MDist-rHub method is the most reliable.

Similarly  to  the  symmetric  underlying  process  results

analyzed with the hypothesis H1.4, we may conclude that

automatic  statistical  detection  of  the  constant  erroneous

observations may pose the biggest challenge.

3.2.5   Summary of H2 hypothesis

γ α

γ

Observations done during the analysis of H2 hypothes-

is are summarized in Table 4. We see that scaling factor

 drawn  from  the -stable distribution  is  the  most  ro-

bust  in  all  analyzed  scenarios.  It  suggests  that  is  the

most  promising  coefficient  to  be  further  considered  in

evaluations.

3.3   Fat-tailed underlying process (H3)

All above  considered  contamination  scenarios  as-
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sumed  that  the  underlying  basic  stochastic  process  is

thin-tailed.  In  this  case,  simple  approaches  using  fat-

tailed underlying generating mechanisms are analyzed:

H3.1: Laplace double exponential process

αH3.2: -stable stochastic process

α

α

H3.3: -stable stochastic process with varying charac-

teristic exponent 

α

β

H3.4: -stable stochastic  process  with  varying  skew-

ness 

In  these  cases,  there  is  no  contamination  artificially

induced,  as  it  is  assumed  that  the  outliers  are  hidden

within the tails.

3.3.1   Laplace underlying generation process (H3.1)

Laplace distribution is also called double exponential.

It  is  symmetrical  and  forms  a  function  of  a  difference

between two  independent  variables  with  identical  expo-

nential  distributions.  Its  probability  density  function  is

given by (8).

PDFµ,b =
1

2b
e−

|x−µ|
b (8)

µ ∈ R b > 0where  is  location  factor  and  is  scale

parameter. Its shape decays exponentially and depends on

parameter b.
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Fig. 22     Skewed data with right-sided errors impact (H 2.4)
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N = 50 000

2 000

α

Dataset  length  is  kept  unchanged.  Time

trend for first  points is shown in Fig. 25. Histogram

together  with  fitted  normal,  robust  normal  and -stable

probabilistic density functions is sketched in Fig. 26(a).

Estimated statistical factors are presented in Table 5.

We  see  that  double  exponential  distribution  has  heavy

tails. It is expected that outlier labelling using a Gaussi-

an approach might not be efficient.

α 5%

0.5%

Results of outlier detection are shown in Table 6 and

a  graphical  diagram  representing  detection  thresholds  is

sketched  in Fig. 26(b).  We  notice  that  Gaussian  MDist

method  minimizes  detected  outliers′ number, while  ro-

bust estimators label more observations. The ESD (M.4)

detects only a few outliers. ESD approach is less conser-

vative.  IQR-  with  larger  confidence  level  is ex-

tremely relaxed and labels  a very high number of  obser-

vations as outliers. In contrast, the  confidence level

is very conservative. It labels only the most extreme ob-

servations as outliers.
α3.3.2   -stable underlying generation process (H3.2)

α

0 < α ≤ 2

|β| ≤ 1 δ ∈ R
γ > 0

-stable  distribution  belongs  to  the  family  of  stable

distributions. It has more degrees of freedom as it is para-

metrized  by  four  parameters:  called  stability

index,  called factor,  as distribution location

and  as its scale.

N = 50 000
α = 2.0 β = 0.0 γ = 0.6/

√
2

δ = 2.0 2 000

α

Dataset length  is kept the same. The fol-

lowing  parameters  are  set: , , 

and . Time trend for first  points is shown in

Fig. 27.  Histogram  together  with  fitted  normal,  robust

normal  and -stable  probabilistic  density  functions  is

sketched  in Fig. 28(a).  The  extreme  values  and  resulting

heavy tails are well visible.

Estimated statistical factors are presented in Table 7.

We  see  significant  impact  of  extreme  values  influencing

the tails. It is expected that outlier labelling using Gaus-

sian approach might not work as wished.

Outlier  detection  numerical  results  are  sketched  in

Table  8 and  graphical  diagram  showing  detection

thresholds is presented in Fig. 28(b). Still Gaussian based

MDist-G approach  significantly  minimizes  detected  out-

liers′ number, which agrees with expectations. ESD (M.4)

 

Table 5    Estimated statistical properties of Laplace process

Min Max x̄Mean  Median x̄robRobust 

−10.48 10.76 0.005 0.004 0.006

σ σrob MAD Kurtosis Skewness

1.415 1.062 0.998 6.13 −0.01

α β γ δ

1.458 −0.002 0.701 0.003
 

 

Table 6    Detected outliers for Laplace process (H3.1)

minTh maxTh leftPts rightPts outPerc

M.1 −4.25 4.25 364 378 1.48

M.2 −3.19 3.20 1 031 1 012 4.09

M.3 −2.97 2.96 1 299 1 287 5.17

M.4 −6.98 6.92 20 30 0.10

M.5 −2.78 2.78 1 581 1 534 6.23

M.60.5% −9.75 9.56 3 4 0.01

M.65% −2.26 2.23 2 668 2 645 10.63
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Fig. 25     Normally distributed control error (H3.1)
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α

α 5%
starts to be quite comparable with low confidence IQR- .

IQR-  with  large  level is  extremely  relaxed  and  la-

bels a  very high number of  observations  as  outliers.  Ro-

bust  MDist  approaches  together  with  IQR  give  similar

results.

At  this  point,  it  is  important  to  remember,  whether

heavy  tails  are  outliers  or  not,  whether  they  are  drawn

from the  underlying  scheme  or  not[46].  This  decision  has

large consequences. Once we assume that they are in con-

nection with the underlying scheme we should use conser-

α5%

α

vative approaches,  like ESD or IQR . If  we have any

external  indications  or  knowledge  that  the  tails  do  not

originate from the main generating mechanism, we should

use other methods, as MDist-rHub, MDist-  or IQR.
α3.3.3   -stable process with varying stability factor
(H3.3)

α

α = 2.0

α = 1.0

0.1

In  this  section,  the  analysis  using  the  underlying -

stable stochastic generating process is continued. The ef-

fect of tail heaviness is then analyzed. Thereby, all para-

meters are kept constant (as in scenario H3.2) and char-

acteristics  exponent  varies  from  the  uncorrelated

stochastic  process  reflected  by  value  up  to  the

one reflecting Cauchy distribution  with an incre-

ment of . Thus, eleven simulations run have been per-

formed and analyzed.

α

α

Results  presented  in Fig. 29 are  very  interesting.  We

may  observe  that  there  are  two  kinds  of  detection.  The

robust  detection  approaches,  i.e.,  MDist-rHub  (M.2),

MDist-  (M.3) and  IQR (M.5)  have  a  tendency  to  con-

sider any new observations in the tails  (decreasing  in-

creases  tails).  They  take  into  account  the  idea  that  the

fat-tailed distribution is not an underlying stochastic gen-

eration mechanism.

α

α > 1.5

α < 1.5

In  contrast,  Gaussian  MDist  and  IQR-  approaches

consider  observations  in  tails  as  samples  generated  by  a

valid underlying  process.  Thereby,  the  number  of  la-

belled outliers is kept quite constant. The generalized ex-

treme studentized  deviate  test  exhibits  somehow  bal-

anced results. Relatively thin tails ( ) increases de-

tection only a little bit, while the number of newly detec-

ted outliers saturates for small stability factors ( ).
α3.3.4   -stable process with varying skewness (H3.4)

αIn  this  section,  the  analysis  using  an  underlying -

 

αTable 7    Estimated statistical properties of  -stable process

Min Max x̄Mean  Median x̄robRobust 

−143.83 29.38 −0.001 −0.001 −0.001

σ σrob MAD Kurtosis Skewness

1.178 0.611 0.568 4 525.56 −36.11

α β γ δ

1.701 −0.014 0.416 −0.003
 

 

αTable 8    Detected outliers for  -stable process (H3.2)

minTh maxTh leftPts rightPts outPerc

M.1 −5.18 5.20 97 99 0.39

M.2 −1.83 1.83 722 733 2.91

M.3 −1.75 1.75 806 807 3.23

M.4 −3.38 3.38 208 219 0.85

M.5 −1.61 1.61 983 981 3.93

M.60.5% −3.13 3.13 238 244 0.96

M.65% −1.10 1.10 2 598 2 615 10.43
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Fig. 27     Normally distributed control error (H3.2)
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β = −1.0 β = +1.0

0.2

α0.5% α5%

stable stochastic generating process is continued. The ef-

fect  of  asymmetric  behavior  is  under  consideration.

Thereby, all parameters are kept constant (as in scenario

H3.2),  while  the  skewness  coefficient  changes  from  the

left-skewed  up  to  the  right-skewed 

with an increment of . Simulation results are summar-

ized in the relations depicted in Fig. 30(a). These simula-

tions  show  that  methods  distinguish  between  different

properties and an interpretation of the underlying genera-

tion mechanism. ESD is robust to skewness. We may in-

terpret  it  in  such  a  way  that  skewed  observations  come

from valid  underlying  processes.  Similar  behavior  is  ex-

hibited for the IQR-  approach. The IQR-  meth-

od exhibits opposite properties. It labels skewed observa-

tions as outliers.

β

Robust  methods  give  rather  unintuitive  conclusions.

Left-sided or right-sided skewness decrease the number of

new labelled  outliers.  It  is  caused  by  the  asymmetry  ef-

fect  being  overlapped  with  the  tails. Fig. 30(b) presents

separate  relationships  between  left-sided  and  right-sided

numbers  of  the  detected  outliers  versus  the  skewness

factor .

We see  that  each  robust  method  performs  asymmet-

rically.  When the time series  is  left  skewed,  the increase

in  number  of  detected  outliers  in  the  left  side  is  smaller

than the number of lost (not detected any more) outliers

in  a  right-sided  tail,  and  opposite.  Skewness  makes  the

tail thinner from one side than the opposite one. This ob-

servation  shows  that  outliers  analysis  should  consider

both  sides.  The  observations  in  tails  are  considered  as

outliers (labelled  and  truncated),  while  skewed  observa-

tions fall under the label of inliers.

3.4   Simulation study conclusions

α

α α

The first conclusion is relatively simple, as there is no

single  universal  outlier  detection  algorithm.  We  may

group the methods according to their robustness. MDist-

rHub, MDist-  and IQR are the robust ones, as MDist is

very  sensitive  to  the  outliers.  The  generalized  extreme

studentized deviate  test  ESD  performs  very  conservat-

ively and detects only extreme values. Interquartile meth-

od  based  on  the -stable  distribution  (IQR- )  strongly

depends on the chosen value of the confidence level.  Ac-

tually, this effect requires further analysis. Especially, the

impact of difference confidence values need to be investig-

ated.  Values  suggested  in  the  literature  seem to  be  case

dependent, and  their  generalization  to  any  case  is  ques-

tionable. We may identify four main issues that have ap-

peared during the simulation study:

1)  Interpretation  of  tails,  i.e.,  generated  by  the  main

mechanism or a contamination
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2) Asymmetry in data

3) The most extreme samples

4) Erroneous observations.

α

The tail  interpretation requires further process know-

ledge,  as  simple  applications  of  some  methods  may  lead

towards incorrect interpretations, i.e., inliers might be la-

belled as  outliers  or  they  could  not  be  detected.  Asym-

metry poses  a serious challenge,  because the user  should

know, whether the observed skewness represents contam-

ination  or  the  underlying  generating  mechanism.  In  the

case of skewed data, it  is  suggested to compare observa-

tions between IQR and robust MDist-rHub or MDist- .

α

Constant  errors  that  appear  in  data,  although  they

are the simplest in manual detection, can pose big prob-

lem  for  the  analysis.  First  of  all,  one  has  to  remember

that such extreme values may bias estimation of location

and scale. In particular, the location estimator has to be

reviewed and it is suggested to apply robust ones. In such

cases, the -stable scale factor should be considered as it

seems to be the most robust. Once a researcher focuses on

the extreme values, the ESD test is suggested.

4   Industrial data validation

N = 65 521

1 000

α = 2.0

α = 1.76

α = 1.69

α = 1.46

Industrial  validation  is  based  on  real  process  control

error  time  series  data.  Data  length  is  recor-

ded with sampling interval of 10 s. Examples of data are

presented in Fig. 31 on time trends showing the first 

points. Data are selected in such a way that they reflect

different  properties.  Var2 data reflects  control  error  of  a

relatively  good loop,  with  a  shape  similar  to  the  normal

bell  shape  ( ),  with  only  a  few  potential  outliers.

Var1 has fatter tails ( ), while Var3 reflects even

heavier  ones  ( ).  The  last  signal  Var4  has  the

most heavy tails with stability index .

x̄

σ

ψ

x̄rob
ψ

σrob

α

α, β, γ and δ

The  first  step  of  analysis  requires  simple  statistical

validation of data, i.e., quantitative evaluation of the ba-

sic  statistics  and  qualitative  review  of  the  histograms.

Statistical factors can be found in Table 9 and validation

of  the  histograms are  shown in Fig. 32.  Table  9  includes

simple  statistics  like  min  and  max,  Gaussian  mean ,

standard deviation ,  kurtosis  and skewness,  two robust

location estimates as median and M-estimator using log 

function  denoted  as  median  and ,  and  two  robust

scale estimators,  i.e.,  MAD and M-estimator using log 

function  denoted  as . Additionally,  there  are  at-

tached  factors  of  the  fitted -stable distribution  estim-

ated with percentile method, denoted as .

α βstab

We  see  that  data  are  not  skewed  significantly.  The

skewness  factor  from  the -stable  distribution  ( )

shows  values  rather  close  to  zero  with  Var1  being  the

most  skewed  (see Fig. 32).  Three  of  the  datasets  exhibit

tails, i.e., Var1, Var3 and Var4 characterized by the fat-

test tails. Var2 time series is the closest to the Gaussian

density  function,  although  detailed  normality  hypothesis

tested  with  three  tests  (Kolmogorov-Smirnov,  Lilliefors

and Shapiro-Wilk) rejects time series normality. Var3 and

Var4  histograms  are  symmetrical  and  very  well  fitted

with stable  distribution.  It  also  shows  good  effect  of  us-

ing robust scale estimators which effectively neglect tails.

Initial observations of the industrial control errors and

their  statistical  properties  show  that  the  signals  exhibit

various properties.  Their  investigation  should  give  fruit-

ful  comments  about  applied  outliers  detection  methods.

Detection results are grouped and presented in Tables 10

and  11. Table  10 shows  thresholds  determined  by  each

method  together  with  the  number  of  labelled  outliers.

Table  11 presents  the  percentage  of  points  labelled  as

outliers. Visual  representation  of  the  methods  perform-

ance can be reviewed with the thresholds put on the his-

togram plots shown in Fig. 33.

α5%

We see that all the methods label the least number of

outliers for data exhibiting almost normal properties, i.e.,

for Var2 dataset in the considered case.  Actually follow-

ing general Gaussian assumptions, it is expected that al-

most zero outliers should be detected in this case as the

underlying  generation  mechanism is  normal.  ESD is  still

the  most  conservative,  while  IQR-  is the  most  re-

laxed. It is also interesting to notice that Var1 being not

well fitted by any of the PDFs delivers quite a lot of out-

liers, derived with each method. More right-sided outliers

is  the  most  tempting  hypothesis.  But  the  question  is

whether the skewness originates from the baseline under-

lying  data  generation  mechanism or  from the  anomalies,

i.e.,  they  are  generated  by  the  same  mechanism  as  the

outliers. Thereby in the first case, the robust and non-ro-

bust  methods  should  indicate  opposite  directions,  while

the common one would be suggested in the other one. In

our case,  we get  the second observation:  asymmetry ori-

ginates from the baseline statistical process. Effect of tails

is  compliant  with  simulations.  We  notice  a  difference

 

Table 9    Statistic factors for industrial control error data

Var1 Var2 Var3 Var4

Min −6.71 −3.95 −6.75 −3.63

Max 7.15 7.06 6.35 4.47

x̄ 0.005 −0.006 0.001 0.005

Median −0.014 0.003 0.004 −0.003

σ 0.705 1.073 0.411 0.324

Kurtosis 18.63 2.54 66.17 48.30

Skewness 0.086 −0.005 −1.044 1.828

x̄rob 0.000 −0.005 0.003 −0.001

σrob 0.540 1.166 0.193 0.137

MAD 0.478 0.886 0.203 0.157

α 1.762 2.000 1.686 1.462

β 0.39 −0.11 −0.06 0.10

γ 0.367 0.835 0.131 0.090

δ 0.022 0.003 0.001 0.005
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α

α

between  MDist-rHub  and  MDist- . The  first  one  con-

siders  tails  as  outliers,  while  MDist-  considers  them as

inliers.

5   Conclusions and further research

The  presented  work  consists  of  extended  simulations

of different outlier labelling approaches and their applica-

tion to the CPA task. Furthermore, three novel modifica-

tions into already existing methods are proposed and val-

idated on real industrial data. Properties of proposed al-

gorithms are compared with classical ones.

Methods are applied to the engineering task of outlier

detection  in  control  engineering  and  the  assessment  of
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control  loops  quality.  The  analysis  focuses  on  four  main

aspects that are frequent on those applications: interpret-

ation of  tails,  asymmetry,  extreme samples  and artificial

erroneous observations.

These effects  reflect  common  effects  in  control  sys-

tems. Tails are often generated by non-linearities and sig-

nal  limitations,  interactions  with  internal  and  external

disturbances and  an  influence  of  other  stochastic  pro-

cesses which may be internally fat-tailed. Asymmetry of-

ten  originates  from  non-linear  process  properties,  active

constraints or  improper  operating  point  selection.  Ex-

treme samples  may have different origins:  system errors,

process breakdowns, human interventions or an impact of

persistent disturbances, like weather conditions. Data er-

rors  are  often  caused  by  a  system  (communication  and

storage) or a human (somebody may cut a cable).

α

There is one main observation. There is no single ideal

method and it is suggested to use a combination of differ-

ent  methods.  This  selection  can  consists  of:  classical

Gaussian MDist Z-scores method, its robust MDist-rHub

variant based  on  location  and  scale  M-estimators,  in-

terquartile  range (IQR) method and MDist- .  Balancing

these methods should enable reasonable detection in con-

nection with external knowledge about the process. Such

information is crucial, as any hint about existing mechan-

isms, disturbances and interconnections is inevitable.

The generalized  extreme  studentized  deviate  test  ex-

hibits otherwise and should be used with a different goal,

as it  focuses  on  labelling  of  the  most  extreme  observa-

tions.

αFinally,  some  discussions  are  required  about  IQR- .

This method is potentially very powerful,  but an impact

and  interpretation  of  the  confidence  interval  is  required

and  should  be  further  investigated.  Current  literature  is

not comprehensive and some suggestions of the threshold

selection would be very helpful.

The practical application procedure should start with

the visual  inspection  of  time  trends  that  should  be  fol-

lowed by simple statistical analysis. These tests ought to

include  evaluation  of  normal  distribution  parameters

(min, max,  mean,  standard  deviation)  together  with  ro-

bust estimators  (median,  MAD,  M-estimators).  Histo-

grams should  be  further  reviewed  accompanied  with  fit-

ting  of  potential  probabilistic  density  functions  (Gaussi-

an,  robust,  stable,  Laplace).  Observations  brought  up

from  this  analysis  should  allow  to  formulate  subsequent

actions:

α1)  The  ESD  and  IQR-  with  a  very  low  confidence

coefficient methods detect and remove only the most ex-

treme values.

2)  Erroneous  observations  can  be  manually  removed

quite easily with the support of the histogram plot.

3)  Once  the  time  series  exhibits  close  to  the  normal

process, MDist-G is enough.

4)  IQR method combined robust  estimators  helps  for

skewed data.

α

5)  Heavy  tailed  data  require  the  coordinated  use  of

IQR, MDist-rHub and MDist- .

Unluckily,  obtained results cannot be considered as a

closed  subject.  There  is  still  a  need  to  understand  the

tails  and  the  mechanisms  behind  them.  This  subject  is

rather  rare  in  control  engineering  research.  Therefore,

there  is  a  need  to  investigate  approaches  and  methods

proposed  in  other  scientific  contexts,  like  economy  or

statistics.  The  authors  intentionally  excluded  from  the

analysis  data-mining  approaches  as  they  often  require

models. In non-linear, complex and cross-correlated envir-

onments,  biased  by  human  interventions,  this  approach

seems to be practically less promising.

Successive research is required for multivariate analys-

is.  For  instance,  robust  multi-variable  relations  analysis

will  help  to  model  adaptive  equipment  static  curves,

 

Table 11    Percentage of data labelled as outliers

Methods Error1 Error2 Error3 Error4

M.1 1.40 0.08 1.85 2.05

M.2 2.29 0.05 4.46 5.53

M.3 2.46 0.05 0.05 0.00

M.4 0.69 0.01 1.53 1.53

M.5 2.99 0.08 5.23 6.92

M.60.5% 1.26 0.14 2.47 1.61

M.65% 10.52 5.61 10.41 10.45
 

 

Table 10    Outlier labelling: minimum (minT) and maximum (maxT) thresholds and number of outliers minN and maxN

Methods
Error1 Error2 Error3 Error4

minT minN maxT maxN minT minN maxT maxN minT minN maxT maxN minT minN maxT maxN

M.1 −2.110 457 2.119 461 −3.226 25 3.214 30 −1.232 628 1.234 585 −0.967 630 0.977 711

M.2 −1.620 743 1.619 758 −3.502 9 3.492 22 −0.577 1 490 0.584 1 433 −0.412 1 649 0.411 1972

M.3 −1.534 817 1.578 793 −3.535 8 3.541 22 −5.871 24 5.873 12 −5.867 0 5.877 0

M.4 −2.944 239 2.965 213 6.165 3 7.065 1 −1.397 520 1.408 480 −1.237 479 1.237 521

M.5 −1.444 921 1.431 1 038 −3.231 24 3.222 30 −0.511 1 742 0.517 1 688 −0.360 2 043 0.357 2 492

M.60.5% −1.836 592 2.697 234 −3.039 47 3.045 42 −1.018 814 0.963 803 −1.108 550 1.275 502

M.65% −0.885 3 498 0.995 3 397 −1.940 1888 1.945 1 788 −0.350 3 382 0.348 3 439 −0.273 3 436 0.298 3 414
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which  further  results  in  better  maintenance  policies.  It

would  be  useful  for  the  life-cycle  analysis,  predictive

maintenance and fault detection. Finally, an aspect of cy-

ber security  of  control  systems  must  be  seriously  con-

sidered through anomaly detection.
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