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Abstract: This paper proposes a novel less-conservative non-monotonic Lyapunov-Krasovskii stability approach for stability analysis
of discrete time-delay systems. In this method, monotonically decreasing requirements of the Lyapunov-Krasovskii method are replaced
with non-monotonic ones. The Lyapunov-Krasovskii functional is allowed to increase in some steps, but the overall trend should be de-
creasing. The model of practical systems used for stability analysis usually contain uncertainty. Therefore, firstly a non-monotonic sta-
bility condition is derived for certain discrete time-delay systems, then robust non-monotonic stability conditions are proposed for un-
certain systems. Finally, a novel stabilization algorithm is derived based on the introduced non-monotonic stability condition. The Lya-
punov-Krasovskii functional and the controller are obtained by solving a set of linear matrix inequalities (LMI) or iterative LMI based
nonlinear minimization. The proposed theorems are first evaluated by some numerical examples, and then by simulation and imple-

mentation on the pH neutralizing process plant.
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1 Introduction

One of the most important methods for stability ana-
lysis of time-delay systems is the Lyapunov based ap-
proachl! 2, which has been very successful and applicable
in control engineering. Nevertheless, the determination of
a proper and less conservative Lyapunov functional (LF)
for different types of systems is still a serious challenge.
This will be more challenging in time-delay systems.
Time-delay systems depend not only on the present states
but also on the past d steps of the states. Therefore, sta-
bility analysis of time-delay systems requires Lyapunov-
Krasovskii functional (LKF) rather than Lyapunov func-
tion. Many studies have focused on Lyapunov-Krasovskii
stability methods to reduce conservatism by some modi-
fications(?l. These modifications are usually completed by
adding new summation terms to the equations that arise
in the stability analysis procedure. Therefore, a popular
conservatism reduction method is estimating a smaller
upper bound for common summation terms appearing in
the forward difference of a Lyapunov—Krasovskii func-
tional8l. Considerable progress has been made in finding
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an LKF for stability analysis and controller design for
discrete-time-delay systems. However, in many cases, this
common LKF approach has been found to be still very
conservative and should be improved more. The free-
weighting matrix (FWM) approach[ and the Jensen-
based inequality (JBI) are among the early approaches to
reduce the conservatisml’l. This problem was followed by
relaxation of derived inequalities in [6, 7]. Also, an im-
proved summation inequality and an Abel lemma-based
finite-sum inequality were derived in [8, 9] respectively,
by providing tighter bounds of summation term.

In all the aforementioned articles, the LKF and its
time derivative include a combination of present and past
states of the delay system which are difficult to deal with.
Besides, some summation terms will appear in the stabil-
ity procedure, which are usually replaced by an upper
bound. These mentioned problems and monotonically de-
creasing requirements lead to conservatism. An alternat-
ive approach to reduce conservatism is using non-mono-
tonic Lyapunov techniques, in which monotonically de-
creasing conditions are replaced by non-monotonic one.
This way, the m-step difference of LKF should be calcu-
lated instead of 1-step. Therefore, the functional is al-
lowed to increase locally, but the overall trend should be
decreasing. In this way, LKF is chosen among a larger
space of functionals. This technique was first introduced
as finite-step Lyapunov method in [10]. The same ap-
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proach was introduced in [11] for stabilization of a class
of fuzzy models. The term non-monotonic Lyapunov was
first used in [12]. They established global asymptotic sta-
bility in discrete time systems by replacing some condi-
tions. Similarly, a discrete non-monotonic Lyapunov
method is introduced in [13] by relaxing the monoton-
icity requirement of Lyapunov’s theorem for stability ana-
lysis of fuzzy control systems. The non-monotonic Lya-
punov function was developed in [14] for discrete-time
switching linear systems. This was followed by present-
ing a robust H, control for switched systems, which was
called N-step ahead Lyapunov function approach(l®. Also,
the non-monotonic technique was proposed to design con-
trollers such as optimal controller6], robust output feed-
back controller!”], robust state feedback controller(!8l, and
robust H, control for a class of discrete-time nonhomo-
geneous Markovian jump linear systems/!9].

Uncertainty is a major issue in practical problems as
it causes the unwanted changes in the system model. Sev-
eral researchers addressed uncertain discrete time-delay
systems in their works. Hui et al.20) proposed improved
delay-dependent robust stability criteria for uncertain
systems with interval time-varying delay. The problems
of robust stability analysis and robust stabilization of dis-
crete time-delay systems with norm-bounded parameter
uncertainties were considered in [21]. Robust stability is
studied in [22] for a class of uncertain discrete-time state-
delayed systems in state space realization using general-
ized overflow arithmetic. Then, Shafai et al.23] focused on
a class of non-negative discrete-time-delay systems and
showed that the uncertain time-delay systems are asymp-
totically stable if and only if an associated nonnegative
system without delay is asymptotically stable. In [24], the
delay-dependent robust stability problem of a class of un-
certain discrete-time systems with time-varying delay,
and nonlinear perturbations using Lyapunov functional
approach was investigated. Finally, the robust preview
tracking control and the problem of robust stabilization
were proposed in [25, 26] respectively, for uncertain dis-
crete-time-delay systems.

This paper introduces a novel stability analysis theor-
em for linear discrete time-delay systems to reduce the
conservatism, which is called non-monotonic Lyapunov-
Krasovskii (NMLK). Due to the Lyapunov function be-
coming functional in delay systems, mathematical manip-
ulation of LK methods in delay systems cannot easily be
applied to the NMLK problem. One of the challenges ap-
pears when LKF is calculated for m-step difference and
how to deal with the states z (k+j), j=1, ---
order to extract the LMI conditions. Some tricks are used
in this paper to extract the stability conditions. Also, the
robust stability analysis for the same problem is provided
using NMLK-based stability criteria. Due to the model
changes caused by uncertainty, the LKF can be incre-
mental in some steps which leads to instability. This is
one of the problems that our proposed technique can
overcome, because the robust NMLK does not need

,m, in
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strictly decreasing LKF. In the robust version of NMLK,
novel lemmas are introduced and used in the proposed in-
novative procedure for deriving LMI criteria. Finally, sta-
bilization criteria are derived based on the NMLK theor-
em. The stabilization conditions are achieved through tar-
geted manipulation which are explained throughout the
proof. In this regard, a controller is designed for a pH
neutralizing process plant and applied experimentally on
a laboratory pilot plant using the proposed stabilization
theorem. This practical implementation helps to investig-
ate the efficacy of the derived stabilization algorithm.
The NMLK-based stability analysis and controller design
usually lead to an optimization or linear matrix inequal-
ity (LMI) based nonlinear minimization problems, which
can be solved either using LMIs approaches.

The rest of this paper continues by reviewing some
definitions and required preliminaries in Section 2. Then,
Section 3 provides the main results of the study, which
are the NMLK stability and robust stability conditions.
The stabilization criterion is derived based on NMLK
method in Section 3.3. Numerical examples evaluate the
efficacy of the proposed algorithms in Section 4. Section 5
provides some simulation and experimental results. A dis-
cussion of the innovations and novelty of the paper is
provided in Section 6. The paper is concluded in Section 7.

Notations. Throughout this paper, for matrices X
and Y, the notation X > Y (respectively, X >Y) means
that the matrix X — Y is positive semi-definite (respect-
ively, positive definite). Matrices are assumed to have
compatible dimensions if their dimensions are not expli-
citly stated. Amax (A) is the maximum eigenvalue of the
matrix A. I, is the identity matrix. For simplicity, we
Amax (ATA) with ||A]
throughout the paper. The notation * represents symmet-
ric terms in a symmetric matrix.

show the spectral norm |A|, =

2 Preliminaries and definitions

In this article, the objective is to reduce the conservat-
ism of Lyapunov-Krasovskii (LK) stability analysis of dis-
crete-time state-delay (DTSD) systems using a non-
monotonic decreasing technique. LK stability theorems
are extensively used to study the stability of delayed sys-
tems. In the stability analysis using NMLK functional, it
is not necessary for the functional to decrease monotonic-
ally. Instead, it is sufficient to prove that its trend is de-
creasing, while it allows increasing locally for a few steps.
Let VO € [—d, 0] : «(k+0) € C which C:[-d, 0] - R"
is the space of functions with supremum norm. Let
= (z(k)", zk-— d)T)T. Consider the DTSD system (1)
as follows:

z(k+1) = Az (k) + Agz (k — d) .
{m(ﬁ):@(@),&:fd,fdJrl,---,0 &)

where A and A; are system coefficient matrices with
appropriate dimensions and @ (0) are the initial
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conditions. Then, the standard monotonic LK theorem
was presented as follows.

Theorem 1. The solution z = 0 of the system (1) is
asymptotically stable if there exist continues LKF
V:R"™ —- R and continues non-decreasing functions v
and w : RT — R with feature v (0) = w (0) = 0, v (s) > 0
and w > 0V s > 0, such that Vz, € R™:

1)0 <V () < v ( |2])

2)V(0)=0

8) V (21) 2V (ws1) = V (2) < —w ( Ja]).

Lemma 1 is used for obtaining the new non-monotonic
based stability criterion.

Lemma 1.9 For a constant matrix Z € R"*" with
Z=27"> 0, integers 71 and ro with ro —ry > 1, the fol-
lowing inequality holds:

ro—1
. . 1 RIZS
STt G) 20 () = ol 2o+ Sovs Zus (2)
j=r1 gl €1£3
where (1 =ro—11,le =712 =71 — L, l3=r2 =11+ 1,7 (j) =
z(j+1)—z(j), vi==z(r2)—x(r1) and v ==z (r2)+

z(r1) — *Z?"nﬂlx( )
The main results of this study is provided in Section
3.

3 Main results

In the all of the available LK stability approaches, the
LK functional must be strictly decreasing. In this section,
the new non-monotonic Lyapunov-Krasovskii stability
criteria is introduced. In the NMLK theorem, m-step for-
ward difference is defined as (3):

AV (@) 2V (@1sm) = V (). (3)

The NMLK functional is permitted to increase locally
within every m-step, but it must be decreasing in gener-
al trend. The parameter m is called non-monotonicity
step. The state space representation of DTSD system is
assumed as system (1). In this regard, first the novel NM-
LK theorem is proposed for stability analysis of DTSD
systems. Then, the robust stability criteria for time-delay
systems is introduced in Section 3.2. Finally, a stabiliza-

tion criterion will be provided in Section 3.3 based on
NMLK technique.

3.1 Non-monotonic Lyapunov-Krasovskii
stability analysis method

In the non-monotonic stability approach, NMLK func-
tional can be up to m-steps incremental but the overall
trend must be decreasing. Using the forward difference
operator A,V (zr), Theorem 2 is obtained which gives
the sufficient conditions for delay-dependent stability of
DTSD system (1). Consider the NMLK functional can-
didate in the form of V = Vi + V5 + V3, which Vi, V2 and

V3 are expressed in (4a)—(4c):

Vi (k) = X" (k) PX (k) (4a)

>
|
-

Va (k) =

J

z" (j) Qz (j) (4b)

—d

Il
e

Z Z n" (4) Zn (i (4c)

0=—d j=k+6
where X = [ karl(k) :| and (j) =z (j+1)—z(j).
ZJ —r—a ()

Also, let us define the vectors £T (z) and e; as

@) =[zk),z(k—d),
k—1

z (k—md), Z

j=k—d4+m-—1

(k—2d),--,

" (4)] (5a)

€i = [Onx(ifl)n Ian 0n><(m+27i)n} 3

The selection of £T (z) should be such that simultan-
eously have suitable form for both stability analysis cal-
culations and stabilization condition extraction in Sec-
tion 3.3. More information can be found in Section 3.3,
followed by some discussion in Section 6.

Theorem 2. Linear DTSD system (1) is m-step non-
monotonic Lyapunov-Krasovskii stable, with 1 <m < d,
if there exist positive definite matrices P € R?"*?"

Q € R™™ and Z € R™*" such that:

U+ U +¥3 <0 (6)
where
¥, = 5{ PE, — 55 P5, (7)
m—1 T T
v= Y (L) QL) - (L3) L) (3)
j=0
m—1 T
U3= > (d—m+j+1)(Lj, — L)) Z(Ljy, —Lj) -
j=0
m—2 T
G+D)(Lin —L3) Z (L5 — L) -
j=0
m 3mds T
(om) " Z (pm) — (Im) " Z (1Im) 9)
I 0143
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L‘l
I

Ll
[6m+2 m1+2m1L1]’

€1
=y = 10a
: |:6m+2+zm 2L2:| ( )
4 2 2
O = e + — + L2 4 — —emi2 (10b)
2 2
Pm = €1 — LG—l (10c)

£1:d7m+1,£2:d*m,£3:d*m+2 (10d)

L=
(1) 611 1 (G=1,--,m)
Ly =ALj 1+ AaLj 1) 0
L, (10e)
(G=1-,(m—-1)
{L§ = ALj 1+ AaLj_11

in which L;71+(1) and L?*H(l) will be defined later in
Remark 2.

Proof. To analyze the stability of the system (1),
A,V should be extracted. In this regard, A, Vi, AnVe
and A,,V3 can be extracted separately using (4a)—-(4c),
and finally A,V = AnVi + A Va + A Vs < 0 yields the
stability criteria.

1) Calculation of A,,, Vi

Using (4a), the m-step forward difference is formu-
lated as the following equation:

AV =

X" (k4+m)PX (k+m)— X" (k) PX (k) (11)

which can be written as

z (k+m)
Z? 11 7T (G +m)

[ z (k+m)
Z? 11 7T (G +m)

Am‘/l =

O R RO
Sk at (9) Shoiaw() | (2
Using the state space representation (1), the m-step
ahead state z(k+m) is expanded as follows (see Ap-
pendix B):

z(k+m) = LLE (z) (13)

where L}, is defined in (10e). On the other hand, by
expanding the summation terms ZJ w_qT(j +m) and

Z?Z;_dx(y) (12), we have

k-1 k-1
Yoalitmy= > x()-
j=k—d j=k—d+m—1
m—1
(k—d+m-—-1)+ x(k+7) (14a)
3=0
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k—1 k—1 —d+m—2
z(j)= S x|+ D wx(k+j). (14b)
j=k—d j=k—d+m—1 j=—d

Using (5a), we have Z?;Ldﬁnq z (J) = em+2£ ().
Also, according to Appendix B, j-step ahead states
can be rewritten in the form of L’s. Then, (15a) and

(15b) are obtained by some manipulations:

k—1 m—1
Z z(j +m) <€m+2 — Ly 4y L;) £(z) (15a)

=0

7 z(j) = <6m+2 + 2 L?) £(z). (15b)
=, :

Then, using (13)—(15), equation (16) is reached:

T
Ly,

AV = T(x
1 5() |:€m+2 ml+zm1Ll

Ll

P m— 1 1
E€m+2 — ml+z L

€1 T
Em42 +Zm 2L2

€1
P ). 16
[em+2+zm2L2 )a() (16)
2) Calculation of A,, V2
A V2 is calculated using the m-step forward differ-
ence of (4b). Therefore,

AnVa= 3, @ (G+m)Qu(j+m)-
=" (j) Qx (). (17)

By expanding both sigma terms in (17) and removing

similar terms with opposite signs, we get

AmVZ:xT(k+m71)Qz(k+mfl)+...+
2T (k+1)Qu (k+1) + 2" (k) Qu (k) —

e k—d+m—-1)Qz(k—d+m—1)—-- —
T

Thk-—d+1)Qx(k—d+1)—z" (k—d) Qz (k—d)
(18)

n (18), j-step ahead states are calculated along with
the solution of system (1). Using (5a) and representing
each term in (18) in the form of L} and L3 (see Ap-
pendix B):



Y. Solgi et al. / Novel Non-monotonic Lyapunov-Krasovskii Based Stability Analysis and Stabilization of Discrete - 717

AnVo = €7 (x){( 0)TQLL Ly + -+ (L) QL+
(L) QLY — (L2, 1) QL2 —-- —
(L%)TQL% — (Lg) QLO} & (x). (19)

Then, simplifying the representation yields
m—1 T
sov=e {32 (o - w"ens) bew
j=0
(20)

3) Calculation of AV3

The m-step forward difference A,, V3 is calculated as

AnVe= 3 Z( (G +m) Zn (j +m) -

0=—d j=k+6
T G)Zn (). (21)
By expanding the summations, (21) can be represen-
ted as
AmVs =dn" (k) Zn (k) + -+
dn™ (k+m—1)Zn(k+m—1)—
k—1 k
IHOVIO R R C)
j=k—d j=k—d+1
k+m—2

nt () Zn(G). (22)

ZIOESEESEDY

j=k—d+m—1

Using (5a) and the result of Appendix B, A, V5 is

simplified as follows:

m—1
A Vs =¢€" (2) (Z(d—m—i—l—i—j) (Liy =)' x

=0
m—2 T

Z (Ljy1 — Z G+1) (L3, — L) x
=0

Z(L3 - L?))g (x)+T (23)

where I = mzj k—dim—17 T 5) Zn (5)-

The term I' in (23) is negative definite and can be
omitted in the stability analysis. But, instead of remov-
ing it, we try to calculate an upper bound for it, which
helps to lessen the conservatism. For this purpose, consid-
ering 7 (j) =z(j +1) —z (j) and using Lemma 1 (Abel

Lemma), we have

k—1

_—

j=k—d+m—1
ck—d+m—-1)"Z (k) —z(k—d+m—1))—

3777[2
l143

0" G) Zn () <~ () -

( (k)+z(k—d+m—1)— z(k —d+

Eg(

k—1

m—1)+ Z

j=k—d+m—1

z<—m(k—d+m—1)+ i w(j)>>~ (24)

j=k—d+m—1

m(]))) Z(m(k)+x(kd+m1)

Therefore, A,, V3 can be represented in the form of
(25) using the calculated upper bound.

A Va =

7823

=0

~L3)" Z (Lja — Lj) -

3 (J+1)(LJ+1*L2) Z(L3,—L3)—
" om) 7 () — 2 (17,)7 7 (1T,0) ) € ()
g Fm) A T gy m

(25)

where ¢, 1, £1, {2 and ¢3 are defined in (10b)—(10f).
A,V consists of A, Vi, AnVe and A, V3 which were
calculated in the previous parts. As we know, the system
(1) is stable if A,V =A,Vi +AnVa+ ALVs <0.

Replacing A, Vi, AnVe and A,,V3 from (16), (20)
and (25) and after some manipulations, the stability suffi-
cient conditions are obtained as stated in (6). o

Remark 1. Commonly, discrete Jensen's inequality
lemma is used in the stability analysis of time-delay sys-
tems. Abel lemma is used in this paper instead of Jensen's
inequality lemma to reduce the conservatism by provid-
ing a tighter lower bound!.

Remark 2. L; and L? are calculated using Al-
gorithm 1.

Algorithm 1. Calculating L}, (I = 1,2)

Ifl=1thenj=1,---,m

Ifl=2thenj=1,--- ,m—1

Stepl:Let—>Lé:el and k=0
Step 2 Find L§€+(1> by shifting column
ep 2:
e;s in LL one step to the right

Step 3. {Let — Lk+1 ALk —+ Ade+(1)
andk=k+1

Step 4 : Continue Steps 2 and 3 until &k = 5
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In Algorithm 1, L,L_(l) and Li+(1) mean that the in-
dexes of e;s in L} are shifted one step to the right. For in-
stance, the first three steps of Algorithm 1 are represen-
ted in the following:

1) Li=e

2) L% = AL[l) + AdL(l)Jr(l) = Ae; + Ad61+1 = Ae1+Agzes

3) Ly = ALy + ALy, 1y =

A(Aer + Agez) + Aq (Aery1 + Ageat1) =
A2€1 + AAges + AgAhes + A363.

Remark 3. Non-monotonicity step in Theorem 2 can
reduce the conservatism in the cost of increasing the cal-
culations. Therefore, choosing a proper value for the
parameter m is a trade-off. As m increases, the conser-
vativeness decreases but the calculation will increase. Our
experience shows that even a 2-step of non-monotonicity
significantly decreases the conservatism, while has less
computations compared with larger value for the m-step.
This means, in many applications, it might be sufficient
to have 2-step non-monotonicity. In this regard, Corol-
lary 1 renders the 2-step NMLK stability condition of the
system (1).

First, let e; (+ = 1, 2, 3,4) be n X 4n block-row vec-
tors of the n x n identity matrix so that e; = [0 x(i—1)n
Inxn Onx(47i)n]-

Corollary 1. Linear DTSD system (1) with the giv-
en initial condition is 2-step non-monotonic Lyapunov-
Krasovskii stable if there exist positive definite matrices

P ecR™? QeR"™"and Z € R"*" such that
U W+ W3 <0 (26)
where
¥ = 5{ PS5, — 5, P5, (27)

W, = (L)) QLY + (L) QL — (£3) QL2 - (L?)TQ(L?)
28

Wy = (d—1) (L1 — Lb)" Z (Li — L) +
d(Li—1)) ' Z (Ls—LY) — (13 - 13)" 7 (12 - 12) -

2 T 6(d—2) _r
Zps — ————115 ZII
d—17? 2P T @@ 2 (29)
L} e1
El = 1 1 9 ,EQ = 2 (30&)
L0+L1—L1+€4 L0+@4
L(l) = e, L% = Ae; + Ages
Ly = A’e; + (AAg + AgA) ea + Ades
Lg = €2
L} = Aes + Ages
@2 = (Lo — L1) (30b)
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d
(d—2)

2
d—2)

I, = Lj+ L3 - (30c)

3.2 Robust non-monotonic Lyapunov-Kra-

sovskii stability analysis method

Almost all the practical systems that are modeled in
the terms of mathematical equations are subject to uncer-
tainty. Therefore, providing a stability analysis approach
that takes the uncertainty into account is an important
step of stability analysis in any control system. In this
section, we give the results on the robust non-monotonic
Lyapunov-Krasovskii (RNMLK) stability analysis for the

uncertain time-delay system (31):

w(k+1) = (A+0A (k) z (k) +
(Aa+6Aq (k) (k — d) (31)
z(0)=&(0),0=—d,~d+1,--,0

where @ (0) are the initial conditions, 0A (k) and dAq4 (k)

are uncertainty matrices in the form of:

[ GA(k) 6Aa(k) ]=MF(k)[ Na Na]  (32)

in which Na, N4 and M are constant matrices and F (k)
is the uncertainty matrix that satisfies the following
inequality:

Fk)"F(k)<I. (33)

Theorem 3 implies the RNMLK stability theorem with
the non-monotonicity step m = 2.

Theorem 3. Linear discrete uncertain time-delay sys-
tem (31) is 2-step RNMLK stable if there exist positive
definite matrices P € R*™*?" Qe R"*", Z e R"*"
ande; >0, ¢=1,---,5such that:

O4n X4n [\11?2]

Wi+
[W1g] Woo

<0 (34)

where
vl = [efzn, mizy, (1) oM,
_ T
(2 -13)" 20, (1)) VA= 1(Ta- 1) oo

va(Li- ), =
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04n><4n 04n><n O4n><n
07L><4n )\ - d - 1>\
N _ 0n><4n —\/d— 1A (d— 1))\
2 On><4n \/&)\ —\/d(d — 1))\
071><4n Onxn 0n><n
On><4n A 7\/ﬁ)\
O4n><n [ 04n><n O4n><n }
VA [ Onxn A ]
—/d(d=1DX [ Onxn —Vd—1X ] (35)
dx [ Onxn  VdA]
Onxn 0n><n Onxn
VA Onxn A
Uy = diag{(w + @ + sgl(NAel + Ndeg)T(NA€1+
2 T 6(d — 2)
N, - M ZM — -
dez))? (d—l)( 61)7 d(d—l)
(MTZM —&3), —~(M"QM — &3), —(M" ZM—
64)57Q7177Z7177Z7177P71} (35b)
o 2 6d T
W= <(d71)81+(d72)(d71)82+53+54>J1J1
2 T G(d— 2) T T 2
——— o Lo — ———= 115 Z1I, — (L Li—
@02 gk (1) e
(L3 - L3)" 2 (13 - L}) (35¢)
_(tW\ThHrl  =Tp- 2\T ~r2
w = (Lo) QLO — Z9 P._Q - (Lo) QLO (35d)
L

[

L+ L+ L te
L(l) = el,Li = Ae; + Ages
L?) = eo, L% = Aes + Ages (356)

1

Lz = (IlAI* + 2/[ Al ||| Nl + IM]]*|| Nall*) e+
2([[AAall + ([ MI[[|Nall + M| Nal [l Aal|+
[[MI[|INa[[[|MI[||Nall) e2+

(Il A4al* + 2/| Aall||M][[| Nal | + [|M]]*|| Nal|*) s (35)

LY = (Al + HANMININal + IMINAl Aall+
IMNNA[[MI[||Nal[) e2+
(Il Aall* + 2[| Aal[IM][[[Nal| + [IM][*|| Nal|*) es  (35g)

d
(d—2) d—2
Ji = Naes + Nages, X=esMM". (35h)

2= (Lo — L3) , Il = L+ L7 —

€4

Proof. Considering the uncertain coefficient matrices
A=A+ 6A(k), Ag= Ag+6A4(k) and taking the same
procedure as the proof of Theorem 2, the 2-step stability
condition of the uncertain time-delay system (31) is giv-

en as follows:

Uy + 0 + W5 <0 (36)
where

=57 PE, -5, P5, (37a)

By = (L) QI + (1d)"QLd — (13)"Qud — (12) @i?
(37h)

By = (d—1) (L - Lg)Tz (Bt - L18) +d (i;ii)T _
7 (Eb - BY) - (B2 - Lg)Tz (B2 - 13) -

2

ﬁ@gZSZ’z - 387:31?;21?2 (37¢c)
and
- L} B e
B 7 N ’:2:[(L3+e4>
b= (b= 1) o= Lh+ st = g

Lo =e1, L1 = Aey + Ages, LT = Aes + Ages
.Z/é = /1261 + (AAd =+ AdA) e + Ageg, Lg = es.

In the above conditions, the parameters with a tilde
(~) contain uncertain matrices A or Ad. So, the uncer-

tain parts are Z§ PZ1, defined parameter dw which is

sw=—(12) QL% — (13 - 13) 2 (It~ 13) ~ 726 Zps-

6(d—2)
d(d—1)

I:J%, E%, E% In order to extract the robust stability condi-

IIF ZII, and the other parameters containing

tions, first, an upper bound will be calculated for the un-
certain parts =f P51, L?, L} and éw according to Ap-
pendix A. Therefore, using (A15), (A16), (A20) and
(A32) in Appendix A, inequality (36) can be written as

follows:

~ ~ ~ ~ T ~
By + 0y + 05 < (d— 1) (L}—L})) Z(L}—Lé)—i—w—i—

o+ 21P5 + (11) QL +a(Li~ I}) z (14 L})
(38)

where w, @ and = are defined in (35¢)—(35e). Then, using

Schur complement Lemma, the following is yielded:
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w4+ w (i%)T
- - - * -Q !
Ui+ W + W3 < " "
* *
* *
a—1(14 - E})T va(it _Lg)T 5T
0 0 0
—z71 0 0
* —z 1! 0
* * —pt

Now, substituting A = A4 6A (k) and Ay = Aq + A4 (k)
into L} leads to L1 = (A+ A (k) er + (Aq + A4 (k)) ea.

By rearranging some terms, L1 is rewritten in the form of

Li= Li+6L; (40)

where L} = Ae; 4+ Agea and 6L = 6A (k)er + 6Aq (k) e2
denote the certain and uncertain parts, respectively.
Thus, using (40), the term Wi 4+ Wy 4+ W3 in (39) can be

separated as follows:

Uy + Uy + s < o)+ 61 (41)
in which:
I 0 ST
SL1 0
50 —V/d—=16L} 0
a VS 0
0 0
SL1 0
VA= T6L" JdsI" [ 0 5" ] T
0 0 [0 0]
0 0 [0 0] (42a)
0 0 [0 0]
0 0 0 0
0 0 0 0 |

@ Springer

w + dw (L%)T

* -Q!
P = * *
* *
* *
VIT(Es - L) va(ri-ry)T  EF
0 0 0
-zt 0 0
* -zt 0
* * —p!

(42b)

Therefore, (36) holds if for any & € R*™ and

gi € an i= 27 767 g: [€1T7 5;[‘763’1"&-}‘755’1‘756'1‘7]T7 51 ?é
0, we have

E' (W + o) E=ETPE+ETSPE< 0 (43)

Then,

ETpE < —ET . (44)

Considering 67 from (42a), we have

ET6pE = —2(& 6L & — VA — 16,7613 &+
Ve TS0 ey + 67O &6). (45)

Replacing §L1 from (40) and using (32), (44) and (45)
implies that

M€ < —2max{&," (Naer + Naea) " (FT (k) M ¢5—
VAd—=1F" (k) M" &3 + VAF™ (k) M" €4+
FT (k) M &)|[F" (k) F (k) <1} <0 (46)

Equivalently,

(€7 9€)* > Amax{[&1 " (Naex + Naea) " (F* (k)M &—
Vd—1F" (k)M & + VdFT (k)M ¢4+
FY (k)M )| F*(k)F(k) <T}. (47)

Using Lemma A.2 in [27], the following inequality
holds:

(STwE)Q >4 [flT(NAm + Nge2)" (Naer + Nd62)§1] X
[(FT (k) MT ¢, — Vd—1F" (k) M ¢ + VAF™ (k) M ¢4+
FY(kyM ¢)" (F" (k) M ¢, —Vd —1F" (k) M &3+
VAFT (k)M ¢y + FT (k) MT&6)|[FT (k) F (k) < I].  (48)

In recent inequality, considering F7T(k)F(k)<1T
yields:
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(€70€)" — 41ea)" [(Naer +
Nae2)" (Nae1 + Naez)] [€1]

& 1" MMT —d—1MM"T
& —d—1MM?* (d=1)MM?T
& VaMM*® —/d(d—-1)MM"
& MMT —d—1MMT"
VAMM?T MMT &
—Vad-1MM" —d—IMM" || &
dMMT VAMMT & =0
VdMM™ MMT &6
(49)

By using Lemma A.3 in [27], there exists a constant

scalar €5 > 0 such that:

b+ st (Naex +Nd62)T (Nae1 + Nge2)  Oanxsn } n
O5nx4n O5nx5n
[ Oanxan O4nxn O4nxn
Onxan A —vd— 1A
Onxan  —Vd—IA  (d—1)A
“1 O Vax  —Jdd—TDx
Onxan Onxn Onxn
o) 1] [
Otnxn [ Oanxn  Oanxn | ]
VA [ Onxn A
—Vd(d—1X [ Opxn —Vd—1X ] —0
dA [ Onxn VA ] (50)
Onxn Onxn  Onxn
[ VA } [Onm A ]

where A is defined in (35h). Then, (34) is obtained by
some manipulations, and the proof is completed. ]

Remark 4. The robust stability condition (34) con-
tains Q' Z7' P71, 5g1 which causes nonlinearity.
Thus, the obtained robust stability condition is not LMI.
Therefore, the problem is solved by following the Al-
gorithm 2 which converts the non-convex BMI problem
into an LMI-based nonlinear minimization problem[28].
Defining R = P™', Ro=Q ', Rs=Z"" and Ry =¢; ",
Algorithm 2 can be used for the respected BMI problem
(34).

Algorithm 2. Solving BMI problem

Minimize : Trace {PR1 + QR2 + ZR3} + Trace {es R4}
subject to (34) and
P >0, Q >0, Z >0, e >00@=1,---,5)

>
P I Q I z I
|:>k R1:|>07|:* R2:|>0’|:>(< }{3:|>07

€5 1
R

3.3 Stabilization based on non-monotonic
Lyapunov-Krasovskii method

The NMLK stability condition for state-delay sys-
tems given in Section 3.1 can be applied to design a state
feedback controller for the input/output delay systems.
Assume the following discrete-time input-delay system:
{ac (k+1)= Az (k) + Bu(k —d) (51)
y (k) = Ca (k).

The control input with an output feedback controller
is assumed as

u(k) = —Fy (k) +r (k) (52)

where r (k) is the input reference. Using (52), the
resulting closed-loop system is derived as a state-delay
system shown in (53):

z(k+1)= Az (k) — BFCx (k—d)+ Br (k).  (53)

The following result will present a less conservative
technique to design the controller gain F.

Theorem 4. The closed-loop input delay system (53)
is globally asymptotically 2-step non-monotonic stabiliz-
able if there exists a controller gain vector F € R™*! and
positive definite matrices P € R*"*?", Q € R™*" and
Z € R™*"™ such that the following holds:

(e, @) [yt @] vaiei -y’
* -Q! 0 0
* * > 0
* * * -zt
* * * *
| * * * *
vas -t =7
0 0
0 0 <0 (54)
0 0
—z71 0
* —p! ]

where 4 = 4 and Ad = —BFC and
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=T 2 6(d—1) T
= —E5PE, — 20" 2o — ——— 1Y 71T —
; 2 2 d<,02 P2 d(d+ 1) 2 2
1T 1 2\ T 2
(Lo) QLj — (Lo) QLj (55a)
-1 -1
5= [ SR (550)
2 _Q Q -7
_ L% _ €1
=1 = , =0 =
LY+ L —13+ey (L3 +ea)
2
¢2 = (L — L), I, = Ly + L§ — Ter (550)
Ly =e1, L} =Aes + Ages,
= A261 +4 (AAd + ANdA) es + A363
LE =€y, L3 = Aey+ Ages. (55d)

Proof. System (53) is in the form of system (1), hav-
ing an extra input term. This term has not any effect on
the stability. So the proof can be carried out with a simil-
ar procedure to the proof of Theorem 2. More specifically,
AVi and AV, are similar to the ones in the Theorem 2,
but AV3 is calculated as follows:

AoVs =" (z)((d — 1) (L1 — Lo) " Z(L1 — Lo)+
d(Ly — L))" Z(L3 — L)+

(LF - 13)" Z(L7 -

_2277

Jj=k—d
(56)
Using Lemma 1 for the summation term, we have
AsVy < €7 (2)((d = 1)(L1 = Lo)" Z(L1 — Lo)+
d(Ly — L1)" Z(Ly — Ly) + (LY — L3)" Z(L% — Lg)—
g9z Zy2 - d(d+ )Uz Z1I5)&(x) (57)
where 2 = (Ly— L3) and Ilo=Ly+ L§— = 2 T

Finally, ¥; + W2 + W3 < 0 is attained for the s‘cabiliz_ation7
as follows:
U+ Uy + W5 < ETPE) — 5T PEs + (L) QLE+
(L) QL - (13)"QLE - (L3) QL3 + (a-
(L - L8) " 2 (L} — Ld) + d(Lh — 1Y) Z(Li—
LY+ (L3 -13) 2 (13 - 12) - %WTZW_

6(d—1) 1
mnz ZI> <0 (58)

where the parameters are defined in (55c) to (55d). By
some manipulations, (58) can be written as follows:

@ Springer

=FPE, - 21 PE, + (L4) QLY + (1}) " QLI+

T T
(d—1) (L1 = Lo) " Z (L1 — L) — (L§) QL3+
d(Ly-1) "z (Li - 1) +

L3 Z-Q -Z L? 2@ 20
2T g
L} -z  Z L2 d
6(d—1)
113 711
d(d+1) 2 2 < 0. (59)

Finally, using the well-known Schur complement
Lemma, condition (54) is attained. ]
Remark 5. Converting the term (L% —L%)TZ(L% —Lg) -

T
T ) L? Z-Q —-Z L? |,
(L(Q)) QL% in (58) to |: L% _z 7 Lé in

(59) is to reduce the conservatism. The term f(L%)TQL%

is negative definite and cannot be used in Schur comple-

ment. Also omiting this term can increase the conservat-
Z-Q
—Z Z

that its obtained inverse in using Schur complement

ism. On the other hand, is the only form

lemma (the parameter ), in (55b)) is linear and does not
convert the condition to BMI.

Remark 6. The obtained stabilization conditions in
Theorem 4 are BMI due to the term L3, and definitions
of A and A,. Therefore, by defining the new variables
F=BFC,U, = F?, H=BH, U, = FH, the matrix L}
can be written as (60), which removes the second order

terms.
o [ A~ AF—-FA-U,-HC AH-Uy+H
= . - e+
? —CA+CF—-C —CH+ Ty |
[ —AF — FA+2U, —- HC FH
- - ex+
2CF —C+CA —ci |
R
~ €3.
| CF 0
(60)

Then, F and H can be easily obtained using calcu-
lated FF = BFC and H = BH. Also, due to the presence
of inverse parameters (Q~',Z~! and P~') in (55b) and
(54), the derived conditions in Theorem 4 are not LMI.
Thus, Algorithm 2 in Remark 4 can be used.

Remark 7. Having different connected process units
causes various streams of materials in some large-scale in-
dustrial plants. Model (61) represents such processes:

{x(kJrl) = Az (k) + Bu (k) (61)
y (k) = Cz (k) + Cx (k — d).

Applying an output feedback controller to this pro-
cess ends to a state-delay closed loop system. Moreover,
using an integrator can eliminate the steady state error.
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If we show the output error with e (k), then the integrat-
or dynamic model of the controller is

e(k+1)=e(k)+ (r(k)—y(k)). (62a)

Using the state space representation (61) in (62a), we
have e(k+1)=e(k)+ (r (k) — Cz (k) — Cz (k — d)),
then the feedback control law is assumed as

u(k) = He (k) — Fy (k) +r (k) (62b)

in which F and H are output feedback controller and
integrator gains, respectively. r (k) is the reference input.
Therefore, the closed loop augmented system is derived as
(62c):

z(k+1)] [ A-BFC BH (k)
e(k+1) | -C Irxr e (k) *
—BFC 0 z(k — d) B B} 0
-C 0 e(k — d) * Loscr k). (62)

The controller gain F' can be designed as stated in Co-
rollary 2.

Corollary 2. The closed-loop time-delay system (62c)
is globally asymptotically 2-step non-monotonic stabiliz-
able if there exist a controller gain F' € R™*!, an integ-
rator gain H € R'™! and positive definite matrices P €
R*™ ™ Q c R"*™ and Z € R™ "™ such that (54) holds,

A—-—BFC BH and A, — —BFC 0
—C  Lx, T —c o
Proof. Considering the system coefficient matrices in

where A =

(62c), the stabilization conditions are obtained by apply-
ing Theorem 4 on (62c). ]

4 Illustrative examples
4.1 Numerical examples

This section provides numerical examples evaluating
Theorems 2 and 3. In this regard, Examples 1 and 2 in-
vestigate the stability analysis of two DTSD systems by
Theorem 2. Moreover, using Theorem 3, the robust sta-

1.0

—— State X1

—— State X2
0.5
< 0

S
-0.5
-1.0
0 500 1 000 1500 2 000

Iterations

Fig. 1 States of the system (a=0.65)

bility of an uncertain DTSD system is investigated in Ex-

ample 3. Also, the proposed NMLK based stabilization al-

gorithm in Theorem 4 is evaluated in Example 4.
Example 1. Consider the following DTSD system:

X(k+1)= [ I }X(k)Jr
| s Tox]Xt-a e

where a € R. This example investigates calculation of
maximum admissible upper bound of delay d using
Theorem 2. In this plant, as a increases, maximum
admissible d decreases to retain stability. Stability
conditions in Theorem 2 are LMIs, which can be solved
using YALMIP toolbox in MATLAB software [29]. Table 1
shows the efficacy of Theorem 2 in the stability analysis
compared with references [9], [30], and [31].

Table 1 Maximum admissible d

a = 0.65 a=1.12
(30] 5 4
[31] 5 4
9] 7 4
Theorem 2 8 5

The states of the system are plotted in Fig.1 with the
initial condition X (—8)=X (-7)=---=X (0) =[1 —1]7,
where a = 0.65. Fig.2 shows the NMLK functional, in
which non-monotonically decreasing is depicted in the

magnified part.

%103

12
'§ 125 [X10° ——Example 1: NMLKF
Q
=]
10 120
g 115
s 8 11
2
E, 6 1.10
2 1.05
g 4
S k80
S ﬂ 170 190
g 2
£ H\
(=}
Z 0

0 500 1 000 1500 2 000
Iterations

Fig. 2 Non-monotonic Lyapunov functional (a=0.65)

Fig.3 demonstrates the number of consecutive steps
which the NMLK functional locally increases. Since the
non-monotonicity step is m = 8, increasing steps are less
than 8. Most of the increasing steps in this system are 2
and 3.
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10 T T
| —— Example 1: Increasing steps|

R
g
5
£ 6
Q
=
9]
S 4
=]
g
§2
Z

0

0 500 1000 1500 2 000
Iterations

Fig. 3 The increasing steps in NMLKF for (a=0.65)

Example 2. Consider the following state-delay system:

X+ = { 09685 0(.)9 }X(k)Jr
{:8:; 6. }X(k—d)- (64)

Table 2 compares the maximum upper bound of delay
d obtained by Theorem 2 in this article, stabilization cri-
teria derived using Lyapunov functional in [5], a finite
sum inequality based approach in [32], utilization of zero
equalities in [33] and Abel lemma based method in [9], for
two values of p. The first 3 rows show that methods
presented in [5], [32] and [33] cannot prove the stability
for p = 0.056, while [9] provides a reasonably good stabil-
ity margin. To apply Theorem 2, m is selected to be 57.
For both values of p, Theorem 2 provides less conservat-

ive margin compared to all others.
Table 2 Maximum upper bound of d

p=0 p = 0.056
5] 17 -
(32] 18 -
(33] 19 -
9] 4430 57
Theorem 2 o 58

Example 3. Consider the following uncertain DTSD
system:

X (k+1)=(A+06A) X (k) + (Aa+642) X (k —7) (65)

in which considering the uncertainty matrices (32):

—-0.8 —0.5 03 0.1
A= { 04 0.8 } ) Aa= { 01 -0.1 }

0.3
M:[O.l}
Na=[015 01 ], Na=[02 01 ].

The robust stability of system (65) is investigated us-

@ Springer

ing Theorem 3 and Remark 4. The trend of the robust
NMLK functional is plotted in Fig. 4 with the initial con-
dition X (=7) =X (—=6)=---= X (0) =[10 10]". As it
is demonstrated in Fig.4, sometimes the functional in-
creases for one step, but the trend of that is decreasing.

10 |

1.8
8 I.
14

1.2
4 140

/o8

— RNMLKF

Robust non-monotonic
Lyapunov functional

o LY
20 40 60 80 100 120 140 160 180 200

Iteration

Fig. 4 Robust non-monotonic Lyapunov functional of Example 3

Example 4. A first order plus time delay (FOPTD)
model of a coupled tank apparatus is obtained in [34]

515 _,s
= 919 455 T
109s +1° ©

discrete state space representation of G (s) with sample
time 7' = 0.1s is as follows:

with a transfer function of G (s)

{X(k+1):AX(k:)+Bu(k—d) (66)

Y (k) = CX (k)

with A =0.9991 B =0.0999, C =0.0472. Considering
e (k) and u (k) as (62a) and (62b), respectively, the state
space representation of the closed-loop augmented
controller system is achieved as follows:

{X(k—kl)}:A[X(k)}_i_gd[f(k_d)] (67)

e(k+1) e (k) (k—d)
~ A 0 ~ —-BFC BH
where A = C L., and Ag = 0 0

Therefore, using Remark 6 and applying Theorem 4
with the non-monotonicity step m =2, the controller
gains are obtained as F' = 9.8435 and H = 0.0301. Fig.5
compares the step response of NMLK based controller
and simulation results of first order PI (FOPI) controller
designed in [34]. Two disturbances of 1.5¢m and —1.5cm
are applied at ¢ = 600s and t = 1300s, respectively.
Fig.5 illustrates that NMLK based controller performs
better in rise time, overshoot and disturbance rejections.

5 Implementation on pH neutralization
process

The pH neutralizing pilot plant is a highly non-linear
process shown in Fig.6. In this section, a controller is de-
signed based on Corollary 2 for a pH neutralizing pilot
process. Then, simulation and experimental implementa-
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20
E” 15 ’L\ Y
N ir e
é &
= —— NMLK based cntroller
£ 10 { — = FOPI controller
o
k3
5 5
= !
=

0 1 1 "
0 500 1 000 1500 2 000
Time (s)

Fig. 5 Stepresponse of the coupled tank with +=10% disturbance

y

Fig. 6 Neutralization pH process plant

tion are presented.
5.1 pH neutralization process

The pH neutralizing process is a nonlinear plant with
a highly challenging control problem. Figs.6 and 7 show
the picture and flow diagram of the understudy pH neut-
ralization pilot plant. It consists of three inlet stream of
tap water, acetic acid (CH3COOH as acid), sodium hy-
droxide (base) materials, a continuous stirred tank react-
or (CSTR), three dosing pump, an outlet pump, two out-
let pipes for the effluent streams and a pH sensor. Acid,
base, and water are injected into the CSTR by corres-
ponding dosing pumpsB® 36], where there is a motorized
mixer in order to have a well-mixed liquid. The CSTR
content is pumped out of the CSTR using an outlet
pump. The output of the pump can be transport through
two outlet pipes with different delay times: a direct path
and a delayed path. The delayed path imposes transport-
ation delay to the process. These two streams are com-
bined again, where the pH sensor is located. The propor-
tion of the flow through each of the paths can be adjus-
ted using a three-way valve.

The block diagram of the control system is illustrated
in Fig.8. The pH of the combined output stream is con-
trolled by the flow rate of the base inlet, while the flow
rate of the acetic acid is constant. Tap water is added to
the process to control the level of the reactor. The

........... ROFIBU

|
=)

From water tank

4 L PLC
Water dosing pump | | 1! +!§i—[EMENS-S7
From acid tank R | s H
; =t +04] From base tank
Acid dosing pump || i =3
peeeasas H . i Base dosing pump
Direct path E

Fig. 7 Schematic diagram of the pH neutralization process

effluent stream flow rate is kept constant and equally di-
vided between the two outlet pipes. The pH of the efflu-
ent stream is controlled using output feedback with an in-
tegral controller. The dynamic model of the augmented
closed loop control system is as explained in Remark 7.

Acid flow rate

pH ;
Base flow

setpoint
Advanced controlle
_ rate
Level PI Water flow
Setpoint ?_ controller rate

Fig. 8 Control loops in pH neutralization process

Level

pH process pH

In our experiment, acid and output stream flow rates
have been set to 0.45mlit/s and 1.45mlit/s, respectively.
The concentration of the acid solution has been con-
sidered 1.5mlit/lit which is led to the acid pH of 3.
Moreover, the base concentration is 1.0gr/lit that is led
to a base solution with pH=12. The sampling time is 5s.

In this article, the focus is on designing a controller in
order to control the pH value. Therefore, a PI controller

20
with a transfer function Cj(s) = 0.2+ — is used as the
s

level controller to maintain the CSTR level in h=11 cml36l.
5.2 Simulation results

In this section, the mentioned pH neutralization pro-
cess is controlled using the proposed stabilization theor-
em. A first-order dynamic model is constructed for the
plant by applying sequential steps to the open loop sys-
teml37). As was mentioned in the previous sub-section, the
effluent stream is the combination of the two outlet path.
Thus, the effect of the state appears on the output with
two different delays:

{;1: (k4+1) = Az (k) + Bu (k) (68)
y (k) =Cz (k) + Czx (k—5)

@ Springer



726 International Journal of Automation and Computing 17(5), October 2020

with A=097 B=0.02, C=1. The state space
representation of the closed-loop controlled system is
achieved as (62c). Applying Corollary 2 with the non-
monotonicity step m =2, the controller gains are
obtained as F' = 14.3438 and H = 0.531 in 11 iterations,
as represented in Fig. 9.

22 I I I I I
20 [ —— Controller gain (F)] |

18
16
14

5 ! — Integrator gain (H)l,_

1 2 3 4 5 6 7 8 9 10 11
Iterations

Fig.9 The convergence procedure of the controller gain (F)

and integrator gain (H)

Moreover, the stabilizing matrices P, Q and Z are as
following:

[ 0.0074 0.0 0.0 0.0
» 0.0 00074 0.0 0.0
B 0.0 0.0 0.0074 0.0
0.0 0.0 0.0  0.0074
[0.0090  0.0008 0.004 0.0
Q= . 7= . (69)
| 0.0008  0.0038 0.0 0.004

In the first step, the closed-loop system is simulated
by the above designed controller. The closed-loop re-
sponse and the control signal (base feed rate) are shown
in Figs.10 and 11, in which a zero-mean Gaussian white
noise with variance 0.01 is added to the output of the

process.
6.0
5.5 TP “‘1}
! ||
50 :’ [ S
. W L e b
: j
T 45 Hebikwssrinm o
z
40 —— Controlled output (pH) ||
35 - - - Input reference
3.0
0 1 000 2 000 3000 4000 5000

Time (s)

Fig. 10 Reference tracking response
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Fig. 11  Control signal (Base feed rate)

Fig.10 illustrates the reference tracking of the control
system. The reference signal consists of 3 different steps
around pH=4.5 to 5.5. The output of the system, which is
the pH of the CSTR, follows the reference precisely. The
controlled output tracks the reference fast enough with
vary small overshoots. Also there are some reasonable
overshoots in control signal.

The trend of the Lyapunov-Krasovskii functional can-
didate is depicted in Fig.12. Non-monotonic decreasing is
obvious in this plot, especially in the early time steps.
However, as expected, the incremental steps are less than
non-monotonicity step m = 2.

x10%
8 T T 7

I
—— NMLKEF of pH sim
6 \\
2 4
=
Z
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N

—
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Fig. 12 Non-Monotonic Lyapunov-Krasovskii functional

5.3 Experimental results

An experimental test was conducted on the men-
tioned pH neutralizing process. There are many challen-
ging issues in this plant that are fascinating for the re-
searchers in the process control systems such as 1) being
extremely nonlinear, 2) containing a wide source of dis-
turbances and noise, 3) the pH of the water is considered
to be 7 in the models, but it measured to be 7.8 during
the experiment, 4) uncertainty in the concentration of the
materials inadvertently every time that they are manu-
ally prepared, 5) slowly acid neutralization during the
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time, 6) changes in the temperature of the room, 7) meas-
urement noise in the pH sensor. These practical facts in a
pH neutralization process make this apparatus one of the
most challenging problems in the process control study.
So, we try to reduce the effect of some of the above prob-
lems in our experiment. To keep the process maintained
in a less nonlinear operating area, the reference is in the
pH value of [4.5,5.5]36. We try to maintain the duration
of the experiment short enough to prevent any needs to
extra material preparation. The pH neutralization pro-
cess is controlled using the proposed NMLK based stabil-
ization method. The designed output feedback controller
in Section 5.2 is applied to this plant. The combination of
direct and delayed paths constructs the effluent stream in
the CSTR, which the pH value is measured. The refer-
ence following is depicted in Fig.13.

6.0
—— Controlled output (pH)
————— Input reference
5.5
L 50 .
45 MWNM
4.0
0 1 000 2 000 3000 4000 5000

Time (s)

Fig. 13 Reference tracking response in the experimental study
of pH neutralization

Although there is the effect of noise and disturbances
in the output response, the pH of the CSTR tracks the
reference with a practically overdamped response. Fig. 14
illustrates the control signal, which is the base feed rate.
The dynamic of the pH neutralization process is highly
dependent on the volume of the liquid in the CSTR. The
level of the liquid in the CSTR is depicted in Fig. 15. It is
seen that the level is kept reasonably constant.
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Fig. 14 Control signal (Base feed rate) in the experimental
study of pH neutralization
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Fig. 15 Level of CSTR in pH process plant

6 Discussions

NMLK based theorems in this paper were proposed
for stability, robust stability and stabilization of state-
delay systems. Mathematical manipulations in proofs are
not routine and need some careful considerations. Some
key issues in the extraction of the proposed stability and
stabilization LMIs are mentioned in the following:

In the proposed NMLK stability approach, there were
many difficulties in calculating AV, and AVs. It needed
many manipulations to reach an appropriate form. Fur-
thermore, the term I' in (23) was too important to deal
with. It is a negative definite term and it could be easily
omitted. But, removing this part could increase the con-
servatism. A remedy is to find an upper bound for it,
which is a challenging step. The upper bound must have
two characteristic. It must have as little conservatism as
possible. It must be in an appropriate form in order to
factorize T (x). Also, the stabilization conditions were
carried out similar to the proof of Theorem 2 for the
closed loop time-delay system described by (53). Finally,
Uy + Wy + W3 < 0 is attained for stabilization. This stabil-
ization condition is not an LMI because of the terms A
and A4 which contain the controller gain F multiplied by
the unknown matrices P, QQ or Z. It is expected that us-
ing Schur complement will lead to LMI. But this is pos-
sible only if a carefully designed form of £T (z) is selected.
Therefore, the selection of £ (z) should be such that sim-
ultaneously have suitable form for factorization in A,,V3
calculations and finding the upper bound of summation
term of T in (23). Selecting ¢7 (z) as stated in (5a) leads
to a stabilization conditions which reduces the conservat-
iveness by replacing the negative definite terms by their
upper bound.

1) Some unique manipulations are necessary in the
proof of stabilization Theorem 4, e.g., calculating »_, in
(59) which is explained in Remark 5.

2) Algorithm 1 in Remark 2 is a novel point of view in
calculating past states. Using this algorithm simplifies the
LMI conditions programing. In robust stability procedure,
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the technique of separating the certain and uncertain
parts and novel lemmas were provided.

3) Although many researches address state-delay sys-
tems stabilization, there are not many state-delay sys-
tems in nature. However, input delay systems as modeled
in (51), are appeared frequently in the industries. The ap-
plication of Theorem 4 on designing state-feedback con-
troller for these systems, opens a new horizon of applica-
tion of the NMLK based stabilization in industry.

4) The numerical examples emphasis that the NMLK
based theorems are less conservative compared with simil-
ar approaches. In addition to numerical simulation ex-
amples, experimental implementation on a pH neutraliza-
tion process is presented for the evaluation of the pro-
posed theorems. This shows that the proposed stabiliza-
tion theorem is completely applicable and can be used ex-
perimentally.

7 Conclusions

The novel non-monotonic Lyapunov-Krasovskii (NM-
LK) theorem was proposed for stability analysis of DTSD
systems. In this theorem, the strictly decreasing trend is
not necessary for the Lyapunov-Krasovskii functional. In-
stead, it can increase in a few steps, while the overall
trend is decreasing. In this regard, stability and stabiliza-
tion theorems were presented based on NLMLF. In the
proposed NMLK based theorems, a non-monotonicity
step is defined, which is the upper bound for admissible
incremental steps in NMLK functional. Increasing the
non-monotonicity step can directly lessen conservatism at
the cost of increasing computations. Furthermore, a non-
monotonic robust stability theorem was derived for un-
certain time-delay systems. Numerical examples showed
that conservatism is reduced compared with some other
available methods, and the feasible space is enlarged. Sta-
bilization theorem was used to design a stable output
feedback controller for a pH neutralizing process. Experi-
mental results illustrate the efficacy of the applied con-
troller.

Appendix A

In this appendix the upper bounds of L} and L? are
calculated in Section Aa. The upper of Zf PZ; is calcu-
lated in Section Ab and the upper bound of dw is calcu-
lated in Section Ac.

Aa. Calculating upper bounds of i% and i%

The parameter L) can be written in the following

form:

Lb = Ldier + Lhes + Lhges = (A+ 54)%er+
((A+6A) (Ag+5A4) + (Aq + 6Aq)
(A+06A))es+ (Ag+ 6A4) es. (A1)

Now, Lemma 2 is introduced.

@ Springer

Lemma 2. Considering the matrix W € R™*", the
following inequality holds for the spectral norm:

W <||W||I,. (A2)

Proof. If = is the eigenvector corresponding to the
maximum eigenvalue Amax (W), then Wx = Apaxx. This
yields [Amax] [[z]| < [[W][[|x]], so:

| Amax| < [[W]]. (A3)

On the other hand, by considering U € R" — {0} and
the properties of eigenvalues, we have 3T WU < AmaxOT 0.
Therefore, uT (W — AmaxIn) U < 0. This inequality im-
plies that

w S ‘)\max|[n~ (A4)

Therefore, using (A3) and (A4), (A2) is obtained. O

Then, using Lemma 2, we have

Ly = (A+6A)° < |[(A+ 6421, <
(IIA]I* + 2/|Al|[|6 Al + [|6A]|*) I (A5)

L3y = (A+6A) (Ag + 6Aq) + (Ag + 6Aq) (A + 6A) <
2| (A +6A) (Aq + 6Aa) || <

2(|[AAal| + [[ASAal| + [[6AAql| + |[5A5 Aql]) I
(A6)

Lis = (Aq +6Aa)* < ||[(Aq + 0A44)%1, <
(I Aal|* + 21| Al[||6Aal| + [|6Aa]|*) In. (A7)

Considering (32), it is obvious that |§A||*> =
[|MF (k) N4||*. Then using the properties of spectral norm,

I6A[[* = |IMF (k) Nal[* < [|M|[*||F (k) [I”]| Nall*. (A8)

Using the inequality (33) and considering ||F' (k) || =
VAmax (FT (k) F (k)), we conclude that ||F (k)|| < 1. So,
the following inequality holds:

I6AII* < [[M][*|Nal*. (A9)
Similarly, it is simple to show that
16 Aal] < || M][|| Nall (A10)
[16Aall* < [IM]]*|| Nall*. (A11)
As a result, (A5)—(AT) can be written as

Loy < (AP + 21| A|IM || Nal| + ||M|*||Nal[*) In
(A12)
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Las < (| Aall* + 2/ A [ M][|[ Nal| + || M|[*|| Nal %) I
A13)

Lks < 2 (||AAall + |AS Al + [ISAAl| + 5ASAdl|) I, <
2| AAall + [[AII M Nall + (1M1 Nalll Adl [+
|| N al[[M][[Nal ) o (A14)

Finally, using the calculated upper bounds of I:%l, L,
and L, the upper bound of L} is obtained as follows:

Ly < Ly = (JIAI[® + 2| Alll| M| Na]| + [|M[[*||Nal|?) e+
2(|| AAd|| + [|AIIM]||| Nal| + || M| Nal ||| Aal [+
[|MI[[[Na ||| M][]| Nal |2+

(1144l + 21| Agll|| M| Nall + |MI*|Nal|*) es.  (A15)

Similarly, L?, the upper bound of L2, can be obtained
as follows:

= (1Al + [[ANM[[[Nall + [[M[[[Nal[l| Aal|+
IMNNA[[MI[[|Nal[)e2+
(Il Aall* + 2[| Aal|[[M]|[| Nal | + [IM][?]| Nal |*) €5

(A16)
Ab Calculating the upper bound of Ef PZ;

= is a %n X 4n  matrix. So7 we have the equality

ErPE, = %1 PZ4, in which 5 and P are as follows:

83N

él = P 02n><2n
= P = . A17
! { 02nx4n ] ’ [ O2nx2n  O2nx2n } (A7)
Then, considering calculated L3 and LI in (A15) and
(A16):
L} 0
— L% + €4 0

[nn

— ~ <
! { L+ L} =

L} 0 _
Lo+ Li+ L +es 0

L} 0 0
{ Ly+Li+Li+es O ]+{6L}]' (A18)
Then, we have

~ ~T
Tps, =5, P5, <

I o T\,
Lo+Li+Li+es O
i) o1\
L0+L1+L1+€4 0
Ly Lo i
Ly+Li+ 13+ ea SLi

L N 0
L+ LI+ L} + e 6L |)-

Finally, the upper bound of ZF P=; is derived as fol-

(1.

N/~ U

—

A19)

lows:
EfPEI < (B1+651) P (51 +651) (A20)
here =1 = do=; =
WHORE =1 = Ly L 4 L2 ey | OO [6L}
Ac. Calculating the upper bound of dw
dw can be written as follows:
0w = dw1 + dwa + dws + dwy (A21)
. . 2 _ _6@d-2)
in which dw; = - 1<p2 Zpa, Odwe = d(d= )
5T 7 75 =2\ T 172 2 T
MY 21, 6ws = —(Ll) QL2 and bws = (L Lo) x
Z (i? - La).
Therefore, it is easily seen that:
_ 2 1 72\7 172
owy = d_1 (Lo L1) Z (Lo Ll) . (A22)

Considering L§ = e; and L? = Aes + Ages, we have

owy = — %(A@Q + Ages —e1 + MF (k) Jl)TZX
(Aeg + Ages —e1 + MF (k) Jl) (A23)
which J1 = Naes + Nges. Therefore, by some
manipulations:
_ 2 T T
dun = — == {(¢2) " Zeat (p2) ZMPF (k) Ji+
JLFT (k)M Zpy +JTFT (k) MY ZMF (k) Jy

(A24)

In this regard, Lemma 3 is introduced to simplify the
recent equation.

Lemma 3. Let M, A, F and N be matrices of appro-
priate dimension in which FTF < I,,. Let Z be a positive
definite symmetric matrix satisfying (MTZM —el,,) >
0 in which € > 0. Then, the following inequality holds:

—AYZMFN — NTF™MT2A - NTFTMTZMFN <
-1
AT zM (MTZM - EIn) MTZA - eNTN (A25)

Proof. Define )
Y= (M"ZM —cl,) *M"ZA+ (M"ZM —¢l,,)

[N

FN.
Considering YTY > 0, we can obtain:
ATZMFN+NTFT*MT ZA+NTFT (MTZM—dn) FN+

-1
ATZM(MTZM - sIn) MTZA>0
(A26)

Rearranging some terms, the lemma is proved. O
Now, using Lemma 3:
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— ()" ZMF (k) Ji — JLF" (k) M" Zpo—
JLFY (kyMYZMF (k) J; <
-1
(p2)"ZM (MTZM - 51) M Zpy — e JT . (A27)

Thus,

—1
Swr < %((@)TZM(MTZM - 51) M" Zipy—

E1JiI‘J1 — QOQTZL,OQ). (A28)
Similarly,
G(d_ 2) T T -1oT
< —— = — _
dwz < ) {(Hz) ZM(M"ZM — &) M"ZI

N
U
||
V)
~——
[V

€2J;FJ1 — HEZHQ} (A29)

sws < (L) QM (MTQM - 53)71MTQLf_

esJi i — (L3)T QL3 (A30)

1
bws < (L3 = 13)"ZM (M™ZM — 21)  x

MTZ(L3 - 13)" —eydt T — (L3 - 13)" 2 (L3 — L3)
(A31)

where ITs, L}, L3, @2 and J; are defined in (35h). Finally
Sw<m (A32)

where @ is defined in (35c¢).

Appendix B

In order to simplify the representation, the state vec-
tor of the system (1) is demonstrated as follows:

z (k) = er€ (z) = Lo€ (z) (B1)

where ¢ (x) and e; are defined in (5a) and (5b),
respectively. Then the one-step ahead state is:

2 (k+1) = Az (k) + Agz (k — d) = Aes + Ages = LI¢ ().
(B2)

Similarly, the m-step ahead state x(k+ m) can be
represented as

z(k+m)=Az(k+m—1)+ Agx (k+m — d) = L& (x)
(B3)

using model (1) repeatedly. L} in the above equations are
defined in Remark 2.
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