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Abstract: Aiming to differentiate between mild cognitive impairment (MCI) patients and elderly control subjects, this study pro-
poses an integrated framework based on spectral-temporal analysis for the automatic analysis of resting-state electroencephalogram
(EEG) recordings. This framework firstly eliminates noise by employing stationary wavelet transformation (SWT). Then, a set of fea-
tures is extracted through spectral-temporal analysis. Next, a new wrapper algorithm, named three-dimensional (3-D) evaluation al-
gorithm, is proposed to derive an optimal feature subset. Finally, the support vector machine (SVM) algorithm is adopted to identify
MCIT patients on the optimal feature subset. Decision tree and K-nearest neighbors (KNN) algorithms are also used to test the effective-
ness of the selected feature subset. Twenty-two subjects are involved in experiments, of which eleven persons were in an MCI condition
and the rest were elderly control subjects. Extensive experiments show that our method is able to classify MCI patients and elderly con-
trol subjects automatically and effectively, with the accuracy of 96.94% achieved by the SVM classifier. Decision tree and KNN al-
gorithms also achieved superior results based on the optimal feature subset extracted by the proposed framework. This study is condu-

cive to timely diagnosis and intervention for MCI patients, and therefore to delaying cognitive decline and dementia onset.
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1 Introduction

Background. Alzheimer's disease (AD) is the most
common form of neurodegenerative dementia accounting
for up to 75% of all dementia caseslll. Despite its preval-
ence, thus far, no cure exists for AD. To make things
worse, the diagnosis of Alzheimer’s disease is often missed
or delayed in clinical practice. The early detection of de-
mentia would provide opportunities for early interven-
tion and symptomatic treatments. Recent studies have
demonstrated that AD has a pre-symptomatic phase that
can last for years, known as mild cognitive impairment
(MCI)[25l. Obviously, detecting MCI is essential and ef-
fective for potential patients. However, the symptoms of
MCIT are easily dismissed as normal consequences of age-
ing, which makes the medical diagnosis of MCI difficult.
The objective of this study is to identify MCI patients
and elderly control subjects automatically and efficiently
using resting-state electroencephalography (EEG) signals.

Resting-state EEG signals. EEG-based methods
have emerged as non-invasive alternative techniques for
the detection of MCI. Via multiple electrodes placed on
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different areas of the scalp, the electrical activities of the
brain are recorded in EEG signals, which are in the form
of time series of voltage fluctuationsl®l. Based on diverse
recording conditions, EEG signals can be divided into two
groups: event-related potentials (ERPs) and resting-state
EEG recordings. The former is recorded in relation to the
occurrence of some specific events, while the latter are
spontaneous EEG signals recorded without any kind of
stimulus. Resting-state EEG recordings are very easy and
rapid to carry out in a clinical environment. Furthermore,
it is more comfortable and less stressful for patients, espe-
cially for elderly individuals(”. In this study, resting-state
EEG signals are adopted.

Literature review. The EEG signals of each subject
contain dozens of channels and each channel consists of a
huge amount of data points(8l. Traditional specialist-led
approaches are struggling to reach a correct decision effi-
ciently® 10, Therefore, automatic detection methods
based on machine learning algorithms are getting more
and more attention. A typical MCI detection method
consists of four steps, namely data pre-processing, fea-
ture extraction, feature selection and classification. The
most widely used EEG pre-processing methods include
visual inspection, resampling, re-referencing, filtering,
smoothing, channel selection and data segmentation. De-
pending on the purpose and the data acquisition condi-
tions, some of these techniques can be selected to refine
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the EEG signals. Usually, band-stop filters are a good
choice for removing power grid interference (50Hz or
60Hz, depending on the region). Band-pass filters can be
used to enhance only EEG-related spectral components[!1:12],
Feature extraction is generally performed after data pre-
processing. There are many widely used techniques to ex-
tract features, such as statistical indices[!3], spectral ana-
lysis[}4 15 and spectral-temporal analysis/!6-18. The third
step, feature selection based on relevance and redund-
ancy analysis, is optimal, depending on the total amount
of epochs and featuresl!9 20, In the final step, a classifier
is trained and evaluated based on machine learning al-
gorithms to differentiate between MCI patients and eld-
erly control subjects. The most commonly used machine
learning algorithms in MCI detection include artificial
neural networks (ANNs)21-23] k-nearest neighbourl?, de-
cision treesll®l, support vector machine (SVM)24 and
neuro-fuzzy inference system(® 25, Although there is a
large amount of researches on MCI detection, their per-
formance is still not satisfactory. Furthermore, to our
best knowledge, there are no standard procedures com-
monly accepted in the area as yet. Most of the existing
methods are still in the exploratory stage. So, for specific
applications and specific data, experienced data pro-
cessing scientists and engineers need to investigate fur-
ther to achieve desirable performance.

Proposed method. In this study, we propose an in-
tegrated spectral-temporal analysis based framework for
MCI detection using resting-state EEG signals, aiming at
improving the accuracy of detection. Compared to existing
algorithms, our method has several noteworthy aspects:

1) Removing noise of EEG signals based on the spec-
tral characteristics of raw EEG signals. According to do-
main knowledge, we eliminate baseline drift and other
low-frequency noises by removing 0-0.5Hz components of
EEG signals, and also eliminate high-frequency noises in-
cluding grid interference by removing 32 Hz—128 Hz com-
ponents, so as to denoise the EEG signals.

2) Establishing a three-dimensional discrete feature
space, based on stationary wavelet transform and de-
scriptive statistical analysis. Stationary wavelet trans-
formation (SWT) decomposed EEG signals into coeffi-
cients in the frequency domain and descriptive statistical
analysis extracts the spectral-temporal features from
those coefficients.

3) Proposing a new wrapper algorithm, named three-
dimensional (3-D) evaluation algorithm, to select an op-
timal feature subset instead of generating new features
based on existing features in the feature selection step. It
presents both individual and incremental evaluation on
three-dimensional feature space separately.

2 Methods
2.1 Dataset description

The EEG dataset! is an open source dataset, which

was collected from subjects who had been admitted to
cardiac catheterization units of Sina and Nour Hospitals,
Isfahan, Iran(26l. The data collection was ethically ap-
proved by the deputy of research and technology, Isfa-
han University of Medical Sciences, Isfahan, Iran2. It is a
collection of resting-state scalp EEG signals from 27 sub-
jects (16 cognitively healthy subjects and 11 with an
MCI) aged from 60 to 77 with elementary or higher edu-
cation and a history of coronary angiography over the
past year. To avoid generating an imbalanced dataset in
this study, we picked 11 MCI and 11 cognitively healthy
subjects to form a balanced dataset. Subjects with a his-
tory of substance misuse, major psychiatric disorders, ser-
ious medical disease, head trauma, and dementia were ex-
cluded.

All EEG signals were recorded in the morning for over
30 minutes while the subjects were resting comfortably in
a quiet room with their eyes closed but without being
drowsy during the procedure. EEG activities were recor-
ded continuously through 19 electrodes positioned on the
scalp according to the International 10-20 System, using
a 32-channel digital EEG device (Galileo NT, EBneuro,
Italy) with 256 Hz sampling ratel2. The collected EEG
signals consist of 19 channels, namely, Fp1, Fp2, F7, F3,
Fz, F4, Fg, Tg, Cg, Cz, 04, T4, T5, P3, Pz, P4, T6, Ol, 02-

In light of Peterson's criteria, all subjects underwent a
neuropsychiatric interview to diagnose MCI. A mini-men-
tal state examination (MMSE) was utilized to validate
the MCI diagnosis, where scores from 21 to 26 indicated
MCI and scores more than 26 indicated a cognitively
healthy subject. The neuropsychiatry unit cognitive as-
sessment tool (NUCOG) was also used to confirm the
diagnosis of MCII.

2.2 Methodology

2.2.1 Architecture

The objective of this work is to identify MCI subjects
and elderly control subjects using the resting-state EEG
signals. As shown in Fig. 1, the proposed framework con-
sists of 4 steps. The raw EEG signals are cleaned using
SWT-based methods in Step 1. A hybridized method is
proposed to extract spectral-temporal features based on
stationary wavelet decomposition and descriptive statist-
ical analysis in Step 2. Next, an optimal feature subset is
selected through the proposed 3-D evaluation algorithm.
Finally, an SVM model is chosen as the classifier in Step 4.
The subsequent parts of this section describe the imple-
mentation of each step in detail.
2.2.2 SWT based denoising

EEG signals contain kinds of noise, such as baseline
drift and power line interference. Mixing together with
EEG recordings, the large number of artefacts have dif-
ferent time-frequency properties. This study employs

IThe dataset can be downloaded from: http://www.biosigdata.

com/?download=eeg-signals-from-normal-and-mci-cases
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Fig.1 Work flow of the proposed framework

wavelet transform to provide information on both the
time domain and frequency domain, which makes it pos-
sible to preserve the characteristics of EEG signals while
minimizing noise.

Previous studies have shown that the most important
frequency bands of EEG signals are between 0.5Hz and
32Hz[27. Therefore, we decompose raw EEG signals into
coefficients with different frequency range using SWT,
setting an appropriate decomposition level. Then, the
high-frequency (>32Hz) coefficients and the low-fre-
quency (<0.5Hz) coefficients are removed as noisel28]. Fi-
nally, the cleaned coefficients are reconstructed into time
series signals as the denoised EEG signals via inverse sta-
tionery wavelet transformation (ISWT).

2.2.3 Spectral-temporal feature extraction

The goal of feature extraction is to obtain features
from denoised EEG signals. First of all, in order to form a
dataset with a large population, all channels of the de-
noised EEG signals are divided into small segments syn-
chronously.

Then, each channel in each segment is decomposed us-
ing 1-D SWT decomposition into four coefficients corres-
ponding to four frequency bands: fi(0.5Hz—4Hz),
f2(4Hz-8Hz), f3(8Hz—-16Hz) and f4(16 Hz—32Hz). Those
coefficients contain information in both time domain and
frequency domain, and thus are suitable to obtain spec-
tral-temporal features.

After that, the descriptive statistical analysis method
is used to extracted features from the decomposed coeffi-
cients in the previous step. Nine widely used descriptive
statistical features, namely, median (med), standard devi-
ation (std), mean (me), mode (mo), interquartile range
(igr), skewness (ske) , kurtoses (kur), first quartile (Q1)
and third quartile (Q3) are extracted from each coeffi-
cient. To reduce the impact of individual outliers, the de-
scriptive statistical features maximum and minimum were
not adopted in this work.

Through this way, a discrete feature space with 3 di-
mensions, namely, channel (Ch), frequency bands (FB)
and descriptive statistical feature (DSF), are formed, as
shown in Fig. 2.

The value ranges of the three dimensions are shown in
the following lists:

Ch = {FplvFP2vF7aF37FZ7F47F87T37C3,
CZ7041T47T57P37PZ7P47T67O]-702} (1)
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Fig.2 Three-dimensional discrete feature space

FB = {f1, fo, fs, f1} ()

DSF = {med, std, me, mo, iqr, ske, kur,Q1,Qs}.  (3)

The discrete feature space is denoted as F
e RVXVXW where U denotes the number of channels, V
denotes the number of frequency bands, W denotes the

number of descriptive statistical feature, and then
n=UxVxW (4)

denotes the total number of features extracted from each
segment. As shown in Fig.2, F(u,v, w) (u€[l, U],
v €[1, V], we[1,W]) is a point or a specific feature in
the discrete feature space F, representing the w-th
statistical feature extracted from the v-th frequency band
of the w-th channel. Fig.2 also demonstrates that the
feature subsets denoted as F(u,:,:), F(:,v,:) and F(:,:,w)
are planes in the discrete feature space, where the symbol
stands for all elements in the corresponding

semicolon
dimension.

After extracting features from all segments, a dataset
[X|y] is generated. The input matrix X € R™*XU*xV*W
and the output vector y € R™, where m denotes the total
number of segments. The i-th (i =1,---,m) sample in
this dataset is [X(i,:,:,:)|y:), where y; € {0,1}, and "1"
means MCI samples, "0" means elderly control samples.
X(4,::,:) denotes all features extracted from the i-th
sample (segment). So,

X(7‘7 Hoh :) :[X(Z717171)7X(1717172)7 )
X(i7uavvw)7"' 7X(i7U7 V7 W)] (5)

2.2.4 Feature selection based on 3-D evaluation
algorithm

Too many features might lead to bias and over-fitting
for MCI classification. Intensive computation and time
overheads are other possible problems. Moreover, some of
the extracted features might be correlated and therefore
provide no new information, and thus need to be re-
moved. Compared with those algorithms, such as princip-
al component analysis (PCA) and linear discriminant
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analysis (LDA), which derive new features from existing
features, we proposed a wrapper method, named a 3-D
evaluation algorithm, to choose an optimal feature sub-
set from the existing feature space F' to maintain the in-
terpretability of features.

The basic idea of wrapper algorithm is that the classi-
fier is considered as a black box and its performance is
used to select the optimal feature subset. Based on the
3-D discrete feature space F' established in Section 2.2.3,
the proposed 3-D evaluation algorithm evaluates the ele-
ments in three dimensions specified in (1)—(3) individu-
ally and incrementally.

Algorithm 1. Individual and incremental evaluation
on channel dimension

1) Input: X € R™XUXVXW oy p e RVXVXW m U,
vV, W

2) Output: OptFeaSub, Max Acc, MaxSens, MazSpec
/* inationalization */

3) OptFeaSub = (), MazAcc = 0, MazxSens = 0,
MaxSpec = 0;

4) for each u € [1,U] do
/* individual channel assessment */

5) Xeva:X[:7 u, :, :]7 Yeva=Y;

6) Xeva= reshape(Xeyq, [m,1 x V x W])

7) Randomly separate dataset [Xeva | Yeva] into three
parts: [Xirain | Ytrainly, [Xvat | Yvail, [Xtest | Ytest] in a ratio
of 0.6 : 0.2 : 0.2;

8) Train a SVM classifier using [Xtrain | Ytrain)

9) Evaluate the trained SVM classifer using [Xya: |
Yval], and calculate Ace, Sens, Spec;

10) if Acc > MaxAcc then

11) OptFeaSub = F(u, :, :);

12) MaxzAcc = Acc, MaxzSens = Sens, MaxSpec =
Spec;

13) end if
/* Incremental channel assessment */

14) Xeva=X[:,1: u, 3 1), Yeva =Y;

15) Xeva= reshape(Xeva, [m,u X V x W1);

16) Randomly separate dataset [Xeva | Yeve) into three
parts: [Xtrain | Ytrain)y [Xval | Yvai], [Xtest | Ytest] in a ratio
of 0.6 : 0.2 : 0.2;

17) Train a SVM classifier using [Xirain | Ytrain;

18) Evaluate the trained SVM classifer using [Xyq |
Yval], and calculate Ace, Sens, Spec;

19) if Acc > MaxAcc then

20) OptFeaSub=F(1: u,:,:);

21) MaxAcc = Acc, MaxSens = Sens, MaxzSpec =
Spec;

22) end if

23) end for

24) return OptFeaSub, MaxAcc, MazxSens,
MaaxSpec.

More specifically, the pseudocode of individual and in-
cremental assessment on channel dimension is described
in Algorithm 1. The inputs are the dataset [X|y] formed
after feature extraction, the feature space F' and a series

of scalars, m, U, V, W. After initialization, we conduct
individual channel assessment via evaluating the perform-
ance of SVM classifier on the feature subset F(u, :, :)
(vwe[1,U]) (Steps 5-9), then seek out OptFeaSub,
MazxAcc, MazxSens, MazxSpec (Steps 10-13),
where OptFeaSub denotes the selected optimal feature
subset, and MaxAcc, MaxSens, MaxSpec denote the
corresponding accuracy, sensitivity and specificity
achieved on this optimal feature subset. The definitions of
accuracy, sensitivity and specificity are specified in Sec-
tion 2.3. Then, similarly, conduct incremental channel as-
sessment on the feature subset F(1: u, :, :), where 1:u
means all elements between the first element to the u-th
element on the channel dimension. As u changes from 1
to U, the number of features in feature subset
F(1:u,: :) increase incrementally. At last, OptFeaSub,
MazxAcc, MaxSens and MaxSpec are returned as out-
puts.

The pseudocode of the whole 3-D evaluation al-
gorithm is specified in Algorithm 2. After the evaluation
in channel dimension, we conduct evaluation in the fre-
quency band (FB) and descriptive statistical feature
(DSF) dimensions in order, as described in Steps 10-23
of Algorithm 2. Individual assessment on feature subset
F(:;,v,:) (we[l,U]), F(: w) (ue[l, W]) and also in-
cremental assessment on feature subset F'(:, 1 : v, :) and
F(::, 1 : w) are carried out.

It should be noted that, when evaluating the latter
two dimensions, the initial values of OptFeaSub,
MazxAcc, MaxSens, and MaxzSpec should be the re-
turned values from the previous dimension evaluation, in-
stead of @ or 0, as described in Steps 10 and 17 of
Algorithm 2.

Algorithm 2. 3-D evaluation algorithm

1) Input: X € R™XUXVXW oy p e RUXVXW o U,
vV, w

2) Output: OptFeaSub, MazxAcc, MaxSens,
MaxSpec
/* initialization */

3) OptFeaSub =0, MaxAcc=0, MaxSens=0,

MaxSpec=0, seed=1;
/* feature subset selection on channel dimension */

4) for each u € [1,U] do

5) Individual channel assessment on feature subset
F(u,:, :);

6) Seek out OptFeaSub, MaxAcc, MaxzSens,
MaxSpec as described in Steps 10-13 of Algorithm 1;

7) Incremental channel assessment on feature subset
F(1:u,:,:);

8) Seek out OptFeaSub, MaxAcc, MazSens,
MaxSpec as described in Steps 20-23 of Algrothm 1;

9) end for
/* feature subset selection on FB dimension */

10) Initiate =~ OptFeaSub,  MazAcc,
MaxSpec as the result of Step 8;

11) for each v € [1,V] do

MazxSens,
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12) Individual FB assessment on feature subset
F(:,v,:);

13) Seek out OptFeaSub,
MaxSpec similarly as Step 6;

MaxAce, MaxSens,

14) Incremental FB assessment on feature subset
F(:,1:0,:);

15) Seek out OptFeaSub, MaxAcc, MazSens,
MaxSpec similarly as Step 8;

16) end for
/* feature subset selection on DSF dimension */

17) Initiate OptFeaSub, MazxAcc, MazxSens,

MaxSpec as the result of Step 15;

18) for each w € [1,W] do

19) Individual DSF assessment on feature subset
F(, :, w)

20) Seek out OptFeaSub,
MaxSpec similarly as Step 6;

MaxAce, MaxSens,

21) Incremental DSF assessment on feature subset
F(:y i1 w);

22) Seek out OptFeaSub, MazxAcc, MaxSens,
MaxSpec similarly as Step 8;

23) end for

24) return OptFeaSub, MazAcc, MaxSens,

MazxSpec.
2.2.5 Classification based on SVM

SVM has been widely used in pattern recognition and
regression due to its computational efficiency and good
generalization performancel2% 30, The core of the SVM al-
gorithm for binary classification is mapping the input
data into a linearly separable space using a kernel func-
tion. It also applies a minimization algorithm to minim-
ize the objective function and maximize the margins
between two classes at the same time. SVM is stable and
effective at dealing with the small or medium scale of
data, because only support vectors are used to construct
the separating hyperplane. Considering the scale of our
dataset, SVM is chosen as the classification algorithm.

In order to further demonstrate the effectiveness of
the extracted and selected optimal feature subset, two
well-known machine learning classifiers (decision tree and
KNN), are also adopted to verify the classification per-
formance of the proposed framework.

2.3 Performance evaluation

To evaluate the proposed algorithm and compare it
with other state-of-the-art algorithms, three widely used
metrics in this domain based on the confusion matrix are
adopted. A confusion matrix C' is a square matrix whose
size k is equal to the total number of classes to be classi-
fied. The element C(i,7) is the count of samples known
to be in class ¢ (true condition) and predicted to be in
class j (predicted condition), where ¢=1,2,---, k and
i=12,-- k.

The confusion matrix for binary classification is shown
in Table 1. The element Ci: is also known as true

@ Springer

negatives (TN), which indicates the count of observa-
tions predicted to be negative and also known to be neg-
ative in the true condition. Similarly, we can get the
meaning of false positives (FP), false negatives (FN) and
true positives (T'N). Obviously,

Total Population =TN + FP+ FN + TP. (6)

Table 1 Confusion matrix for binary classification

Total population Predicted negatives Predicted positives

True negatives TN FP

True positives FN TP

The three metrics to evaluate the performance of a
classifier are defined as (7)—(9) respectivelyBl. Sensitiv-
ity (Sens) is a measure of the capacity to correctly
identify true positives. Specificity (Spec) reflects the ca-
pacity to correctly identify true megatives and accuracy
(Acc) is the proportion of correct classified instances.

TP
Sens = m x 100% (7)
TN
Spec = m X 100% (8)
Ace TP+ TN x 100%. )

“TPLFNY+TN+ FP

Obviously, accuracy is the average of sensitivity and
specificity, so we only take accuracy into account when
comparing the performance of two algorithms. Sensitiv-
ity and specificity are used as a reference to determine
whether an algorithm is biased towards a single category.

3 Results

All the experimental works are simulated and imple-
mented under the Matlab 2018a software environment.
Some built-in functions are called from the "Wavelet
Toolbox" and "Statistics and Machine Learning Toolbox".
The following parts of this section describe the paramet-
er settings and the experiment results.

3.1 Results of SWT-based denoising

3.1.1 Setting of SWT decomposition

SWT decomposition and reconstruction are implemen-
ted by calling the built-in functions "swt" and "iswt" from
the "Wavelet Toolbox" of Matlab. The mother wavelet
basis function used in this work is sym9, which is chosen
from the Symlets mother wavelet family, because sym9
is reported to be suitable for denoising, decomposition, re-
construction, and sub-band feature extraction32l. Since
the sampling rate of the collected EEG signals is 256 Hz,
the decomposition level, following the Nyquist criterion, is
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Fig.3 A level-8 SWT decomposition diagram of EEG signal
set to 8 to obtain the coefficients with the appropriate Fig.5 illustrates the denoisin rocess in the fre-
pprop g g P

frequency band. Fig.3 demonstrates the level-8 1-D SWT
decomposition process. SWT applies low-pass and high-
pass filters to decompose the input signals and produces
two time-series sequences, namely, approximation coeffi-
cient A; and detail coefficient D; at level 7. The two coef-
ficients have the same length as the input signal to be
composed. In Fig.3, SR denotes the sampling rate of the
EEG signals; and H; D and L, D denote the high-pass
and low-pass decomposition separately. Levels 6 and 7 are
omitted.

3.1.2 Results of denoising

As described in Section 2.2.2, in the denoising stage,
after decomposing via SWT, we keep the components
with the frequency of 0.5Hz—32Hz, and remove compon-
ents with other frequency.

First, we call the "swt" function to decompose each
channel of the raw EEG signals to obtain coefficients:
As (0-0.5Hz), D2(32Hz—64Hz) and D;(64Hz-128Hz).
Then, we reconstruct them to get the time series signals
which are the noise signals to be removed, by calling the
"iswt" function in Matlab. Finally, the reconstructed
noise is subtracted from the original EEG signals to get
the denoised EEG signals.

Fig.4 demonstrates the 19-channel EEG signals of an
MCI subject in the time domain. Subplot Fig.4(a) shows
the raw EEG signals, and subplot Fig.4(b) is the de-
noised EEG signals.
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Fig. 4 The 19-channel EEG signals of an MCI subject in time
domain (Color versions of the figures in this paper are available
online)

quency domain. The signals in Fig.5 are transformed
from time series signals by Fourier transform. The differ-
ent coloured lines represent different channels. Fig.5 (a)
shows the raw EEG signals in the frequency domain. It is
obvious that the frequency components from 0 to 0.5Hz
are extraordinarily large, which is chiefly caused by
baseline drift. Furthermore, there is a peak amplitude of
50 Hz, which is mainly caused by power line interference.
Fig.5(b) shows the low-frequency noise to be removed in
0-0.5Hz. The partially enlarged detail in Fig.5(b) shows
that the components with the frequency less than 0.5Hz
will be eliminated. Fig.5(c) presents the high-frequency
noise to be removed in 32 Hz-128 Hz including the obvi-
ous 50Hz power line interference. Since there are no ideal
bandpass filters, some components < 32Hz are removed
too. However, their amplitudes are too small to interfere
with the results, as shown in the partially enlarged detail
of Fig.5(c). Fig.5(d) are the denoised signals after re-
moving signals in Figs.5(b) and 5(c) from Fig.5(a). As a
schematic diagram, Fig.5 is plotted based on a 4-second
segment split from an MCI object.

3.2 Results of spectral-temporal feature
extraction

As mentioned in Section 2.2.3, we do segmentation be-
fore feature extraction. The length of the sliding window
and the overlap ratio between two neighbour segments
are two factors which need to be considered in the seg-
mentation process. Considering the basic information of
our dataset (30 minutes’ duration, 22 subjects and a quite
large number of features will be extracted), we tried sev-
eral possible values, i.e., 0.5s, 1s, 2s, 4s, of window
length. Finally, the window length is fixed at 2s in this
work due to the performance of MCI detection. The over-
lapping rate is set to 0% to avoid bias result. In this case,
the stride of the sliding window is equal to the length of
the window. So, the total number of segments (samples)
in our experiments is

+ 1| X nsg
(10)

m— {floor (szgnal length —'wmdow length
stride

where signal length is the total lasting seconds of a signal,
which equals to 1800s in our experiments; window length
means total lasting seconds of a segment, which equals to
2s; stride = 2s means the interval between two segment
starting points and ns = 22 denotes the number of
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subjects. According to (1), m = 19800.

For each segment, every channel specified in (1) is de-
composed into four coefficients: As (0.5Hz—-4Hz),
Ds(4Hz-8Hz), D4(8Hz-16Hz) and D3(16 Hz-32Hz) via
1-D SWT. The mother wavelet basis function is still set
to sym9 and 5 is the appropriate decomposition level to
achieve the desired frequency resolution, as shown in
Fig. 3.

Fig. 6 demonstrates the spectral-temporal characterist-
ics of Channel O1, which is picked from a segment of an
MCI subject after denoising. Fig.6(a) presents 5 signals
in time domain, namely, the denoised channel O; and its
4 coefficients of D3, D4, Ds, As. Fig.6(b) shows those 5
signals in frequency domain.

As shown in Fig.6, the decomposed coefficients re-
flect the spectral-temporal characteristics of EEG signals.
We employ descriptive statistical analysis to extract fea-
tures from those coefficients. Specifically, 9 descriptive
statistical features listed in (3) are extracted from each
coefficient by calling the corresponding built-in functions
in Matlab. Therefore, the total number of features is ex-
tracted from each segment n = 19 x 4 x 9 = 684 accord-
ing to (4), where 19 denotes the number of channels, 4 in-
dicates the number of frequency bands, and 9 means the
number of descriptive statistical features.

3.3 Results of 3-D evaluation algorithm for
feature selection

The proposed 3-D evaluation feature selection meth-
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od is a kind of wrapper model. An SVM classifer is used
as a black box and its performance is used to select the
optimal feature subset. We implement the SVM classifer
using the built-in functions in "Statistics and Machine
Learning Toolbox" of Matlab. Particularly, we create a
"ClassificationSVM" object as the binary classier, and
train it with the "fitcsvm" function, then use the "predict"
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function to make predictions with the trained SVM clas-
sifer. In order to simplify calculation, the "KernelFunc-
tion" is set as "polynomial" and "PolynomialOrder" is set
as 2. "KernelScale" is set as "auto", "BoxConstraint" is set
as 2, and "Standardize" is set as true. Other parameters
are set as default. The SVM models share the same set-
tings in Step 3 (3-D evaluation) and Step 4 (classifica-
tion) of the proposed framework, as shown in Fig. 1.

As described in Algrothms 1 and 2, we evaluate the
feature subset in channel dimension first. Fig.7(a) and
the left part of Table 2 show the results of individual as-
sessment. The solid lines in Fig.7 gives the performance
on training set while the dash lines is on validation set.
As emphasized with bold text in Table 2, after individu-
al evaluation, OptFeaSub = F(13,:,:) and MazAcc =
75.28% on the corresponding validation set. Obviously,
using features extracted from any single channel cannot
achieve good MCI detection performance. When evaluat-
ing incrementally on channel dimension, as marked by
bold text in the right part of Table 2, we get the best
F(1:19,::), which means that
F(1:19,::) and MazAcc = 94.74%.
Since we have 19 channels in total, the evaluation results

performance on
OptFeaSub =
on channel dimension indicates that the best perform-
ance is achieved on the whole feature set.

The evaluation results on frequency band dimension
are show in Fig.8 and Table 3. We emphasized the best
performance of individual assessment and incremental as-
sessment with bold-type, and both of them are no better
than MazAcc = 94.74%. According to the description in
Algorithm 2, still OptFeaSub = F(1:19,::)
MaxAcc = 94.74%.

As for the evaluation results on the descriptive statist-
ical feature dimension, we demonstrated those in Fig.9

and

and Table 4. The best performance of individual evalu-
ation is marked in bold-type, and it is the best one so far.
So, OptFeaSub = F(:, :, 5) and MazxAcc = 97.45%. The

65 L oG X X
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best performance of incremental evaluation is also marked
in bold-type, and it is deprecated because it is less than
97.45%.

As a conclusion, the final optimal feature subset selec-
ted is OptFeaSub = F(:, :, 5), which means the 5th de-
scriptive statistical feature, i.e., interquartile range, ex-
tracted from all frequency bands listed in (2) and all
channels listed in (1). The total number of features in the
extracted optimal feature subset is

Nopt =U XV x1=19x4x1="72. (11)

Considering the total number of features n = 684 cal-
culated by (4), the suppression ratio of the proposed 3-D
evaluation feature selection algorithm is

Suppression ratio = Towt o 100% =
n

2 100% = 11.11.%.

684 (12)

3.4 Results of classification

Finally, we test the performance of the proposed
framework on the test set and compare it with other MCI
detection algorithms based on EEG signals.

As described in Section 3.3, F(:, :, 5) is the final op-
timal feature subset. So, in this stage, we only picked the
data with feature subset F(:, :, 5) to test the classifica-
tion performance. In order to get an unbiased results, we
test the performance on the test set [Xiest|ytest], which
has not been seen by the classifier when training.

Besides SVM, we also implement two well-known al-
gorithms3] (decision tree and KNN) to verify the effect-
iveness of the selected feature subset in the classification
stage. All those three classifiers are implemented by the
built-in functions in the "Statistics and Machine Learn-
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Fig. 7 Evaluation results on frequency band dimension
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Table 2 Numerical results of feature subset evaluation on channel dimension (performance on validation set)

Individual evaluation

Individual evaluation

Feature subset Accuracy Sensitivity Specificity Feature subset Accuracy Sensitivity Specificity

F(,:,:) 69.44% 66.14% 72.65% F(1,::) 69.44% 66.14% 72.65%
F(2, 1) 68.10% 73.06% 63.28% F(1:2,: ) 76.24% 78.91% 73.64%
F(3,: ) 63.52% 66.75% 60.39% F(1:3,:,:) 80.13% 80.91% 79.37%
F(4,:,:) 64.86% 63.62% 66.07% F(1:4,:,:) 83.37% 84.61% 82.16%
F(5,:, ) 66.48% 58.95% 73.79% F(1:5,: ) 85.06% 86.40% 83.76%
F(6,:,:) 66.96% 65.67% 68.21% F(1:6,:,:) 85.97% 86.92% 85.05%
F(7,: ) 67.42% 73.27% 61.73% F(1:7,::) 88.52% 89.99% 87.10%
F(8, 1) 68.20% 64.19% 72.10% F(1:8,: ) 90.34% 91.59% 89.14%
F(9,: ) 67.52% 64.70% 70.25% F(1:9,::) 90.34% 91.59% 89.14%
F(10, :, 3) 68.63% 67.16% 70.05% F(1;10, ;, :) 90.60% 91.94% 89.29%
F(11, :, %) 68.63% 67.98% 69.26% F(1:11,::) 90.65% 92.30% 89.04%
F(12, 1) 73.66% 73.32% 73.99% F(1:12,:, ) 91.96% 93.28% 90.68%
F(13,:, ) 75.28% 74.81% 75.73% F(1:13,:, ) 93.91% 94.61% 93.22%
F(14, :, %) 71.54% 69.98% 73.04% F(1:14,: ) 93.58% 94.61% 92.58%
F(15,:, ) 71.71% 75.63% 67.91% F(1:15,:, ) 93.98% 94.92% 93.07%
F(16, 3, ) 69.89% 73.22% 66.67% F(1:16,:,:) 94.19% 94.97% 93.42%
F(17,:, ) 74.60% 75.89% 73.34% F(1:17,:2) 94.14% 95.02% 93.27%
F(18, 1, ) 71.99% 75.68% 68.41% F(1:18, ) 94.08% 95.18% 93.02%
F(19, :, ) 72.65% 80.71% 64.82% F(1:19,::) 94.74% 95.90% 93.62%

o S Similarly, we use fitctree to implement and optimize the

?5 lgg S/e/f*e/{) : decision tree classifier and the parameter MinLeafSize

g 80(- X g is set to 9.

é’ = : g The classification results are shown in the last three

X X
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Fig. 8 Evaluation results on frequency band dimension

ing Toolbox" of Matlab. The SVM classifier keeps the
same setting described in Section 3.3. We use the built-in
function fitcknn to optimize the hyperparameters auto-
matically for the KNN classifier. As a result, the optim-
ised NumNeighbors is set to 5 and the Distance is set
as seuclidean. Other parameters keep the default setting.

@ Springer

rows of Table 5. We can see that, with the right features
OptFeaSub selected by the proposed framework, all the
three classifiers can achieve superior performance com-
pared with other similar works 3437 reported recently,
especially the work in [2] which uses the same dataset
with us. Among those three classifiers, the SVM classifier
has a narrow lead.

4 Discussions

4.1 Effectiveness of the spectral-temporal
feature extraction method

The spectral-temporal characteristics of each channel
are reflected on the four decomposed coefficients, i.e., Ds,
Dy4, Ds, As. The present study extracts descriptive stat-
istical features from those coefficients, so the extracted
features contain information in both time domain and fre-
quency domain.

As shown in the last row of the right parts of Tables 2—4,
F(1:19,::) = F(;,1:4,:) = F(;,:,1:9) denotes the
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Table 3 Numerical results of feature subset evaluation on frequency band dimension (performance on evaluation set)

Individual evaluation

Incremental evaluation

Feature subset Accuracy Sensitivity Specificity Feature subset Accuracy Sensitivity Specificity
F(;,1,7) 75.53% 80.66% 70.55% F(: 1, ) 75.53% 80.66% 70.55%
F(:2,1) 79.90% 84.09% 75.83% F(:,1:2,) 82.86% 85.79% 80.02%
F(:3,) 83.37% 86.51% 80.32% F(:;,1:3,:) 89.13% 91.64% 86.70%
F(, 4,0 88.62% 89.12% 88.14% F(,1:4,0) 94.62% 95.84% 93.42%

Table 4 Numerical results of feature subset evaluation on descriptive statistical feature dimension
Individual evaluation Incremental evaluation

Feature subset Accuracy Sensitivity Specificity Feature subset Accuracy Sensitivity Specificity
F(, 1 1) 68.30% 76.40% 60.44% F(:, 0 1) 68.30% 76.40% 60.44%
F(: 5, 2) 96.94% 97.43% 96.46% F(:y 5 1:2) 89.79% 92.00% 87.64%
F(, 1 3) 64.61% 77.37% 52.22% F(:;:1:3) 88.47% 90.30% 86.70%
F(, 1, 4) 91.94% 93.89% 90.03% F(:, 1, 1:4) 90.34% 92.25% 88.49%
F(:,:5) 97.45% 97.74% 97.16% F(:: 1:5) 94.41% 95.43% 93.42%
F(, 1, 6) 66.56% 70.81% 62.43% F(:;: 1:6) 93.20% 94.56% 91.88%
F(,: 1) 64.11% 68.55% 59.79% F(, 1 1:7) 92.75% 94.30% 91.23%
F(;,:, 8) 97.14% 97.38% 96.91% F(:,:1:8) 93.63% 94.97% 92.33%
F(, 5 9) 96.79% 97.38% 96.21% F(;,:1:9) 94.69% 95.84% 93.57%

Table 5 Performance comparison

Algorithms Accuracy Sensitivity Specificity Classification
NF-KNN(2 88.89% 100% 83.33% MCI versus healthy control
Lehmann et al.[34] 88.5% 89% 88% MCI versus healthy control
McBride et al.[3%] 92.59% 100% 84.61% MCI versus healthy control
Rossini et al.[36] 93.46% 95.87% 91.06% MCI versus healthy control
Wavelet+SVMB7] 91.7% 91.7% 91.7% MCI versus healthy control
SVM 96.94% 96.89% 96.99% MCI versus healthy control
OptFeaSub + Decision Tree 95.47% 95.38% 95.55% MCI versus healthy control
KNN 96.89% 97.25% 96.54% MCI versus healthy control

whole feature space F. The accuracy is located in the
range of [94.62%, 94.74%] on the whole feature space F,
which outperforms algorithms proposed by others listed
in Table 5. Thus, the proposed spectral-temporal feature
extraction strategy is quite effective.

There is no large deviation between the sensitivity
and specificity of the proposed framework, which indic-
ates that the strategy of choosing a balanced data set is
effective in reducing the inconsistency caused by the data
structure. Moreover, the accuracy achieved on the whole
feature set F'is slightly different, ranging from 94.62% to
94.74% as shown in Tables 2-4. The reason behind is
that, when evaluating on different dimensions, the order
we incrementally add into the feature subset is different,

thus the initialization state of the SVM classifier is differ-
ent. However, this slight difference does not affect the
consistency of results.

4.2 Discussion on 3-D evaluation al-
gorithm

Ranking all channels in descending order of accuracy
based on the individual evaluation results in the channel
dimension, the result is: Ts, Ts, T4, O2, O1, P, Ps, Py,
Fpl, Cz, C4, 7137 FPQ, C3, Fg, F‘47 Fz, ]‘7‘37 Fr. COIlSideI‘iIlg
the location of the 19 channels on the scalp as shown in
Fig.10, we discover that the temporal and occipital areas
are more effective for MCI detection than the frontal and
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Fig.9 Evaluation results on the statistical feature dimension

Frontal

Fig. 10 International 10-20 system of electrode placement

central areas. Similarly, the frequency band sequence in
descending order is D3, D4, Ds, As, which means coeffi-
cients of higher frequency bands are more effective than
lower ones in the frequency scope of 0.5 Hz—32 Hz for MCI
detection. The descending order of the descriptive statist-
ical feature sequence is iqr, lstq, std, 3rdq, mode,
median, ske, mean and kur in the statistical feature di-
mension. Fig.9(a) and the left part of Table 4 further
demonstrates that @1, std and Qs are also quite effective
in differentiating subjects with an MCI and those who are
cognitively healthy.

The results of the individual evaluation on channel
and frequency band dimensions show that a single chan-
nel or a single frequency band can hardly achieve good
performance in MCI detection. As for descriptive statist-
ical feature dimension, the optimal feature subset is
F(:,:,5) which contains only one descriptive statistical
feature, i.e., iqr, but includes all channels and frequency
bands. So, we can draw the conclusion that every chan-
nel and frequency band has unique information for MCI
detection, whereas the statistical features are highly re-

@ Springer

dundant and igr is the properly selected descriptive stat-
istical feature in this problem.

The presented 3-D evaluation algorithm is efficient
and effective for feature selection, because with a suppres-
sion ratio of 11.11%, the selected feature subset F'(:, :, 5)
can obtain the best performance, which is even better
than that on the full feature space. Conversely, with the
same number of inappropriate features, e.g., the feature
subset of F'(:, :, 7), the accuracy is only 64.11%, as shown
in Table 4 marked with bold-type.

4.3 Limitations and perspectives

Although the aforementioned advantages, this work
also suffers from a problem of the limited dataset. The
total number of subjects involved in the experiments is
22, which means the trained model can hardly be used in
non-patient specific scenes. In future work, we plan to
collect more data and try the automatic feature extrac-
tion method based on deep learning algorithms. Multi-
class classification between MCI, healthy control and AD
patients will also be involved.

5 Conclusions

A systematic framework is proposed to identify MCI
patients and elderly control subjects using resting-state
EEG signals. The proposed scheme can efficiently elimin-
ate the baseline drift and power line interference from the
raw EEG signals. It also takes advantage of extracting in-
formation from both time domain and frequency domain,
and a set of highly representative spectral-temporal fea-
tures are extracted. Moreover, an effective feature subset
is selected through the proposed 3-D evaluation al-
gorithm. Extensive experiments were conducted based on
clinical data. The results show that, compared with oth-
er similar works, our method achieves a better perform-
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ance.
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