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Abstract: Pneumatic artificial muscles (PAM) have been recently considered as a prominent challenge regarding pneumatic actuat-
ors specifically for rehabilitation and medical applications. Since accomplishing accurate control of the PAM is comparatively complic-
ated due to time-varying behavior, elasticity and ambiguous characteristics, a high performance and efficient control approach should be
adopted. Besides of the mentioned challenges, limited course length is another predicament with the PAM control. In this regard, this
paper proposes a new hybrid dynamic neural network (DNN) and proportional integral derivative (PID) controller for the position of the
PAM. In order to enhance the proficiency of the controller, the problem under study is designed in the form of an optimization trend.
Considering the potential of particle swarm optimization, it has been applied to optimally tune the PID-DNN parameters. To verify the
performance of the proposed controller, it has been implemented on a real-time system and compared to a conventional sliding mode
controller. Simulation and experimental results show the effectiveness of the proposed controller in tracking the reference signals in the

entire course of the PAM.

Keywords: Dynamic neural network (DNN) control, hybrid control, pneumatic muscle, particle swarm optimization, sliding mode

control.

1 Introduction

Pneumatic artificial muscle (PAM) is a type of pneu-
matic actuator that has many advantages such as light
weight, low mass to force ratio and inherent compliance.
Due to mentioned benefits, the PAM has been utilized in
various applications in the field of robotics and medical
industry. Despite these characteristics, the dynamics of
the flow and pressure as well as the time-varying behavi-
or have increased the nonlinearity of the PAM, which
play a crucial role in control of the pneumatic actuators.
Extracting the dynamic model covering the entire course
of the actuator is a key challenge in terms of modeling
and control of the PAM.

Besides the above mentioned challenges, limited
course length is another predicament with the PAM con-
trol. Maximum displacement of a PAM is about 25 per-
cent of its initial length and that is why a couple of pro-
posed models and control methods have ineffective per-
formance. Thus, using the PAM in various applications
leads to enlarging the device dimensions.

Consequently, to overcome the aforementioned draw-
backs, many approaches have been employed by the re-
searchers to control the pneumatic muscle. In some early
research, the linear state space model around a fixed
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equilibrium point has been consideredl!: 2. Owing to the
nonlinear nature of the pneumatic muscle, these ap-
proaches have never introduced a high efficiency and ac-
curate response. As a consequence, adaptive control ap-
proaches have been used in [3, 4]. The well-known pro-
portional integral derivative (PID) control is also presen-
ted in the conventional studies for control of the pneu-
matic musclesl® 6. Krichle et al.[l' and Shenl® developed
the nonlinear model-based control for the PAM in a lin-
ear antagonistic joint. Krichle designed an observer for
unmodeled force, and also a controller for position con-
trol with 2mm accuracy. Furthermore, a sliding mode
control was presented by Shen for controlling the posi-
tion of the PAM through experimental evaluation with
tracking accuracy of 1 mm for sinusoidal reference.

The artificial neural network (ANN) has been con-
sidered and applied as a strengthening strategy for model-
ing and control of the nonlinear and complex systems.
When the number of variables in a problem are relat-
ively high, using artificial intelligence methods can be be-
neficial for design optimization, parameter identification,
and sensitivity analysisl®l. Due to its vigorous perform-
ance, a wide variety of ANN applications in modeling and
control of the nonlinear systems have been reported. In
order to enrich the performance of the neural networks,
dynamic neural networks (DNN) are suggested in model-
ing of the nonlinear systems(l%. To dominate the disad-
vantages of the PAM, intelligent methods such as the
neural network based model and controller are applied(11-13],
New hybrid adaptive feed-forward neural network and
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PID controllers have been proposed to adjust the select-
ive compliance assembly robot arm (SCARA) parallel ro-
bot position actuated by the PAMI4. A hybrid PID and
neural network controller!!s: 16, hybrid neural-fuzzy con-
troller(!7 18], self-organizing fuzzy controller!9) and nonlin-
ear predictive control based on the echo state Gaussian
processl20l have been applied to achieve a precise control
of the PAM. Also, a neural network fuzzy sliding mode
control is suggested in [21] to accurately control a 1-DOF
manipulator with PAM actuator. In recent years, diverse
stochastic based optimization techniques such as har-
mony search algorithm, genetic algorithm, ant colony,
and particle swarm optimization (PSO) have been used
to solve the miscellaneous optimizations. Moreover, PSO
algorithms have given accurate solutions considering low
time-consuming duration?2. PSO has naturally followed
the behavior of fish and bird schooling and is considered
as a stochastic global optimization technique. Mazare et
al.[23] proposed a hybrid DNN and PID controller for posi-
tion control of a pulse width modulation (PWM)-driven
pneumatic actuator in which controller parameters are
optimized using a metaheuristic algorithm.

Hence, among the above research, the entire course
which is a key challenge of the PAM has not been
covered. It should be noted that in all of the above men-
tioned references except [8, 17], the pressure control valve
is applied that not only creates a tremendous cost but
also simplifies the governing equations. In addition, com-
pared to previous works, longer course length has been
covered in [24, 25] using the pressure control valve. The
most important outcome of this research is to consider
the whole displacement of the pneumatic muscle’s mo-
tion while under control, which is equivalent to 25% of
the muscle's initial length. The second one is the dimen-
sions of the muscle and consequently the overall size of
the robot which will be decreased if the length of con-
trolled motion maximizes. Also in this research a propor-
tional valve was used which has a lower price and makes
the model complicated.

In this paper, a hybrid structure using DNN and PID
controllers is proposed for position control of the PAM
and then, in order to obtain controller parameters, integ-
ral time absolute error is selected as a cost function which
is optimized via PSO algorithm. Compared to conven-
tional methods, it can be expressed that ANN presents
the better performance. It should be noted that the DNN
has been trained by experimental data, which is gathered
from an experimental setup to provide a realistic condi-
tion. In other words, to enhance training performance and
minimize the tracking error, the factor of learning neur-
ons has been optimized. Proposing a new hybrid control-
ler, combining specific types of dynamic neural networks
and PID which is optimized by PSO is the main contri-
bution of the manuscript. Moreover, applying the control-
ler for PAM systems with specific applications is another
one. It is worth mentioning that the dynamic neural net-

work is a most prominent choice compared to the static
network. Well-suited input is provided regarding the
PAM setup and considered as the experimental model in-
put while the required data is attained for training the
neural network. The number of neurons and layers are
obtained according to the considered data set and by ex-
ploring the various structures of the networks in terms of
appropriate delay of inputs and outputs. To eliminate
available objectionable performance of the system, the ex-
tracted data has been filtered properly, which is practic-
ally adequate to be applied to the PAM setup. The effect-
iveness of the proposed controller is verified through sim-
ulating on the verified model in presence of disturbances
and uncertainties and then, implementing on a real system.

The remainder of this paper is organized as follows. In
Section 2, the mathematical model of the PAM is extrac-
ted and tested by experimental data. The architecture of
a DNN is illustrated in Section 3. Section 4 is concerned
with designing a hybrid DNN and PID controller. Simula-
tion and experimental results are presented in Sections 5
and 6, respectively. This paper ends with some conclud-
ing remarks in Section 7.

2 Dynamic modeling

This section aims to extract the mathematical model
of a vertically suited PAM that holds a mass. The most
appropriate modeling method associated with this PAM
was proposed by Chou and Hannaford26l. They derived a
mathematical relation between the force and displace-
ment of the load based on the static equation of pneu-
matic muscle force.

_ mdgoP

3cos’0 — 1) (1)

where F, P and 6 are pneumatic muscle force, pressure,
the angle of muscle threads, respectively, and also dyo is
the minimum muscle diameter. Considering the effect of
muscle membrane thickness, Chou and Hannaford have
proposed an enhanced version of (1) as follows:
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However, this function is highly nonlinear and its ap-
plication for a model-based method results in a highly
complicated control. Therefore, a tradeoff between con-
trol difficulty and tracking precision is required.

Based on the Chou and Hannaford method, Shenl®
proposed a single input single output (SISO) model for
pneumatic muscle in a linear antagonistic joint. The con-
trol signal of the valve and third derivative of the posi-
tion are considered as input and output of the model, re-
spectively. Incorporating the pressure dynamic and ori-
fice equations into the proposed model make it more suit-
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able for experimental tests. As can be seen in (1), the
force is a function of the muscle thread's angle. However,
he modifies this equation so as to govern a function of the
force versus the position of the muscle end as follows:

F—{W}X(P&m) (3)

47tn?

where x, Lo, b, n and Py, are the position, muscle
length, thread length, number of threads and
environmental air pressure, respectively.

Fig.1 shows the schematic of the system under study.
The system model has been extended based on Chou-
Hannaford’s equation and Shen’s method. For this sys-
tem, the dynamic equation of the mass can be written as
follows.

Mi=F — Mg (4)

where g is gravitational term. Substituting (1) into (4)
gives

. { [3(Lo — 2)* — ]

YT } X (P = Patm) —g.  (5)

QANNNY

<]

b

(a) Initial length muscle (b) Pressurized muscle

Fig. 1 Schematic structure of the experimental setup

If the pressure control valve is applied, the model will
be simple and does not require further action and the
model is complete. However, to enhance the precision of
the model, a proportional valve has been used in this pa-
per. Thus, taking a time-derivative of (5), the pressure

dynamic is obtained as

- { [3(Lo — )* — b?] } e

4Mmn?

31(Lo — ) (P~ Pam)],
2MTn2

(6)
It can be seen that g disappears after derivation. Note
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that for calculating the mass motion by integrating from
', the gravity acceleration must be added as an integra-
tion constant in simulation. Assuming the air as ideal
gas, P is given by

. yRTV AP
p=1—"_91T
v vV (7

where V, T, P and 7 are the muscle volume, air
temperature, universal constant of the gas and specific
heat coefficient, respectively. Equations (8) and (9) have
been proposed for muscle volume and its derivative in
terms of time dependencies on the motion by Shenl8.

(Lo — ) [b*> — (Lo — 2)?]

V= 47n?

(8)

L =b*+3(Lo— )%

Substituting (7)—(9) into (6) results in
T=-—m—-—= (10)
where C' and K are determined to be

YRT [3(Lo — x)* — b?

C=
(Lo — ) [b2 — (Lo — 1:)2}

3 [(LO — JZ) (pb — patm)]
2mn?

v[3(Lo — 2)? = b*]*P
4mn? (Lo — ) [b> — (Lo — x)2] .

K = +

(12)

Also, m is the flow rate which can be obtained from
the following orifice equations of the valve.

w(Pu’Pd):

(13)

In (13), for calculating ¢ when the air is flowing into
the muscle, we have P, = P; and P; = P. Besides, when
the air is flowing out, it holds P, = P and Pj = Patm.
Thus, it results in

[ (P, P), if A,>0
w B {¢ (P7 Pat'm), lf AU < O (14)
m = Ayt (15)
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where A, is equal to the open area of valve port. The
model parameters for pneumatic muscle produced by
FESTO Company with 400mm length and other parts
are presented in Table 1.

Table 1 Actual system parameters

Parameters Value
M 5 kg
Py 6 bar
n 1.06
Y 1.4

0.287 kJ /kgK

T 295K
Patm 1.01 bar
Cy 0.294
C, 0.528
Lo 0.4m
b 0.483m
n 1.25

For evaluating this model, the mathematical based
open loop test system and the experimental model (Fig.2)
have been provided where the understudy mathematical
model has been adapted based on the system physical
model. The flow control valve, Festo MPYE-1/8 type is
used to control the inlet flow of the muscle. In order to
measure the changes in muscle length due to the air pres-
sure, Opkon's potentiometer transducer has been applied
with an accuracy of 0.01mm. The sensor data and com-
mand signal are transferred to the PC through a data ac-
quisition card. The wika-eco-1 pressure sensor, its output
is 4-20mA, is employed to measure the inlet air pressure
of the PAM. To convert the output current of this sensor
to voltage, a 250Q resistance should be inserted into the
terminal of the data acquisition card. The PAM manufac-
tured by Festo Company with DMSP40 part number and
400 mm length has been chosen for modeling purposes.

Fig.2 Experimental setup

The most prominent processes in this regard are those
that consider the saturation block to exclude the addi-
tional and irrational inputs to the system. Following that,
the eliminated gravitational acceleration from the rela-
tionship, when obtaining the third derivative of the posi-
tion, must be exerted. Hence, when the integration is
done from the third derivative of the position, the gravit-
ational acceleration should be added as the integral con-
stant. Furthermore, assuming that the muscle-free status
is zero, the reference signal should not exert a negative
value. Comparison of the mathematical model output and
experimental test output are shown in Fig. 3.
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Fig. 3 Comparison of mathematical model and experimental
setup output

3 Dynamic neural network

ANNs are conventionally known as both the static
and dynamic. A static-algebraic relation is set for rela-
tion between the inputs and outputs of the static neural
networks. However, a dynamic relation between ANN in-
puts and outputs appears due to its dynamic naturel26. In
the static neural networks, the network output in a
defined sample encompasses some weight functions, bi-
ases and inputs and is not dependent on the input-out-
put sets of the network in other samples, i.e., the learn-
ing capability of such networks toward the dynamic sys-
tems is merely owing to their learning approaches. Fur-
thermore, an approach is applied for providing a dynam-
ic relation in DNN structurel24].

In this paper, position control of a PAM has been car-
ried out using DNN with delay lines. Delayed values of
the data are employed as inputs of the network. The
schematic structure of the DNN is depicted in Fig. 4.

y=f(w®),ut=1),--,yt—-1),-ylt-n)). (16)

According to the above DNN structure, the reference
value at sample k£ and the position and actuator input at
sample kK —1 and k& — 2 are as the network inputs. The
network output is the actuator input for reference track-
ing at sample k. Choosing former samples for the net-
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y k-1

oy (k—2)

u (k)  Ju(k—1)

u(k-2)

Fig.4 DNN structure which used for position control of the
PAM in this research

work input is based on the efficiency of the training. In
this study, it is considered to be 2 samples. The network
measured output of the introduced DNN can be given as
17 that presents the dynamic nature of the network.

a(t)=f(u(t=1),u(t=2),r ),y (t-1),y(#2)). (17)

As the rule for the weights of the DNN to be updated,

wJLZ can be applied for the weights of j-th neuron in L-th
layer and i-th neuron in the (L-1)-th layer. The updat-
ing equations for the w}; and w}; are given as follows(20l:
wyi (n+1) = wj; (n) + Awj, (n)

Awj; (n) = nd; (n) OF (n) (18)

5] (n) = 0 (n) (1 = OF (n)) (T; (n) — OF (n))

(19)

In the first layer, the output of the p-th neuron is at-
tained as

2

Op(n) = wy (n)u(t—1)+ Y wp (n)y(t—h)+

h=1

wp (n) 7 (t)
(20)

where u, r and y indicate the chosen valve voltage, the
reference signal and the PAM position, respectively[23. It
should be noted that the stability of the DNN is proved
by Narendra and Parthasarathy(27.

4 Hybrid dynamic neural network

In this section, a PID controller is combined with the
DNN controller to improve its performance in the pres-
ence of unexpected conditions and in lack of appropriate
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and rich data. The proposed hybrid PID-DNN not only
overcomes the drawbacks of the DNN controller such as
inadequate performance and feeble tracking, but also dis-
closes the substantial precise results. The control com-
mand has been provided for the actuator in accordance to
the process knowledge, which is learned via the network
in the training process. Hence, the PID-DNN has tracked
the reference signal well, unlike the debilitated perform-
ance of the PID in the initial operation. Consequently,
PID-DNN has enormous advantages such as small value
of error criteria, robustness in the presence of noise, ex-
ternal disturbances and parametric uncertainty, a small
gain of the PID controller for implementation purposes,
and the most outstanding, proper performance of the con-
troller in the temporary procedure. Fig.5 shows the struc-
ture of the suggested hybrid controller. It should be noted
that for obtaining the optimal parameters of the control-
ler, integral time absolute error is chosen as a cost func-
tion and then, is minimized using the PSO algorithm.
The integral time absolute error (ITAE) performance in-
dex has the advantages of producing smaller overshoots
and oscillations than the integral of the absolute error
(IAE) or the integral square error (ISE) performance in-
dices. In addition, it is the most sensitive of the three,
i.e., it has the best selectivity. The integral time-square
error (ITSE) index is somewhat less sensitive and is not
comfortable computationally?8]. The PSO algorithm and
its procedure have been described by Falehi?dland Lin et.
allY, PSO as an exceptional optimization, has been de-
veloped by Kennedy and EberhartB3!: 32, The optimal PID
parameters obtained by the algorithm are reported in Ta-
ble 2. The PSO convergence trend is depicted in Fig. 6.

e PID

Set | (9
point

y(@®

YA T
DNN > | | 1
|_>A(TDelay i =

Delay
A,(t-2)

Delay
y@=1

Delay
y(=2)

Fig. 5 Structure of the suggested hybrid controller

Table 2 Optimal PID parameters for hybrid PID-DNN

controller
Parameter Value
P 6.490
I 5.653
D 0.2146
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Fig. 6 PSO convergence trend

5 Simulation results

5.1 DNN training

To aggregate sufficient output data for training the
neural network, some sinusoidal and step inputs with dif-
ferent frequencies are applied. In the experimental setup
based model used for this study, all system constraints
have been considered in data generation and training pro-
cess. It is presumed that the input signal value is around
0.5V for exciting the system. The input signal of data
generation is represented by (21) in which a;, b; and f;,
i=1,---,4 stand for magnitude, biases and frequencies
of sinusoidal waves, respectively. Table 3 gives values of
the mentioned parameters.

u (t) = as ((a1sin (27 f1t) + b1) + (azsin (27 fat) 4 b2) +

(agsin (27rf3t) + bg)) + by.
(21)

Table 3 Considered parameters for the input signal

Parameter Value Parameter Value Parameter Value
ay 10.5 fi 2 by 9
as 9.1 fa 5 b2 9
as 9.5 fs 20 b3 9
ay 3.33X10°8 - - by 0.5

The input/output signal is shown in Fig. 7.

The DNN is trained using the training data and a su-
pervised learning method. The structure of the DNN can
be stated as 5-7-1, which means that the network has five
input signals, seven neurons in the hidden layer and one
neuron in the output layer. In order to increase the real-
time implementation capability of the neural network, a
two-layer neural network is used as the controller. It
should be noted that a complex structure of a neural net-
work with more layers may lead to greater performancel23].
After 10000 epochs, the maximal error is obtained as
5.4788x10°° and also, error variance is equaled to

Plant input signal
6.0 put sig
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50 f

Voltage

45 ¢

4.0 ¢

3.5 . .
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0 L L L
0 4000 8000 12 000 16 000
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(b) Output

Position

Fig. 7 Input/output signals extracted through the experi-
mental setup to train the DNN

1.9998x10°6. The convergence of weights and biases is
depicted in Fig. 8.

5.2 Controller simulation results

In the following, the result of the hybrid PID-DNNs is
presented and compared by applying the sinusoidal and
trapezoidal inputs. Reference signals are determined with
the viewpoint of the future aim of this study, which in-
volves the control of pneumatic artificial muscle for using
in isokinetic rehabilitation movements.

In the previous studies, however, a percentage of the
muscle displacement range has been merely controlled.
This problem stems from the fact that all the proposed
models have substantial simplifications, e.g., eliminating
the effect of the thickness of the membrane or discarding
the friction between the membrane and its metal mesh.
This simplification certainly reduces the accuracy of the
model and then decreases the tracking performance of the
model-based controller. On the other hand, utilization of
advanced system identification approaches such as the
neural network have the ability to identify the system be-
havior, regardless of the model simplifications, uncertain-
ties, time-varying, and unmodified dynamics. Thus, the
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Fig. 8 Convergence of weights and biases (Color versions of the figures in this paper are available online)

trained neural network by using an input-output data,
which include the entire course, can act in the same way
as it controls and delivers the desired results. Despite the
previous studies, inputs are somehow selected to assert
the ability of controller throughout the entire course of
the muscle. It is worth mentioning that the simulations
have been performed by inserting a parametric uncer-
tainty in the mass of the attached muscle.

To study the control signal, the opening of the valve
spool is considered as the controller output. The maxim-
um value for this variable can be 6.28 mm2. Therefore, a
saturated block with the maximum value for the valve
command is considered to complete accordance of simula-
tion with the actual system.

Figs.9-10 shows the result of the position tracking of
the trapezoidal and sinusoidal signals in simulation re-
spectively. Fig. 11 represents the tracking error of the ref-
erence signals.

As can be seen from Figs.9-11, the suggested control-
ler has presented an effective performance in tracking the
reference signals throughout the displacement range of
the muscle. The tracking errors in the entire course of the
PAM for sinusoidal and trapezoidal reference signals were
about 2.3% and 5.1%, respectively.

Fig.12 represents the controller output for the both
reference signals.
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According to Fig.12, the controller output fluctuated
only in small intervals and at a fast switching of the de-
rivative of the reference signal. Another point in explor-
ing the control signal is its sign. In the valve model, the
positive value is defined for one port and the negative
value is defined for another port. The zero value will res-
ult in two port closure.

To indicate the priority of the proposed PID-DNN
controller, integral error criteria are considered for com-
paring the result of the proposed controller with conven-
tional sliding mode control (SMC) and optimal PID. The
obtained error criteria are shown in Table 4. According to
Table 4, the values of these criteria for the controller in-
dicates the accuracy of the proposed controller.

ITAE = /t|e(t)\dt
(e (t)*dt

TAE = / le (¢)| dt. (22)

6 Experimental results and discussion

In this section, the performance of the proposed con-
troller is evaluated through the experimental test. In this

10°¢
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1 —6
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6 F
T o2t
.20
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]
5]
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Fig. 12 Control signals

Table 4 Error criteria for proposed controller

Criteria PID-DNN SMC Optimal PID
ITAE 0.01158 0.8926 0.9744
ISE 8.1803X 102 0.5619 0.8792
IAE 1.615X1073 0.7108 0.9601

regard, the control command is applied to the pneumatic
valve via a data acquisition card (DAQ). The final posi-
tion of the PAM, which moves a mounted weight, is
measured by a linear potentiometer and its value is re-
turned using a DAQ card. A schematic of the experi-
mental setup is shown in Fig.2. Two signals (sinusoidal
and trapezoidal) are considered as reference trajectories.
Fig. 13 shows the performance of the controller in track-
ing the sinusoidal trajectory.

The experimental test of the controller with a sinus-
oidal trajectory is shown in Fig.13. Deviation from the
reference signal at the bottom and top of the sinusoidal
signal peaks results in the reduction of the controller pre-
cision with respect to the simulation, which may have
many reasons. One reason can be changing the dynamics
and increasing uncertainties in the PAM model at the be-
ginning and end of the range. Indeed, the effect of this
factor has been minimized in the proposed method due to
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Fig. 13 Sinusoidal signal tracking in experimental test

the optimizations and accuracy of the trained NN. In ap-
plying the control signal to the pneumatic valve, the ef-
fect of the dead band has been minimized by applying a
compensator function. Another reason may be hardware
issues and inadequacies of laboratory equipment, such as
the presence of a stiction in the pneumatic valve or a
clearance in the connection between the pneumatic
muscle and linear potentiometer. By examining how the
controller performs in tracking the trapezoidal signal, a
better understanding of the issues can be found. Fig.14
shows the performance of the controller in tracking the
trapezoidal signal.
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Fig. 14 Trapezoidal signal tracking in experimental test

According to Fig.14, tracking performance of the
trapezoidal signal exclusively in up and down of range
has a deviation. Fig.14 also shows that the muscle's set-
tling time is 1.4s. In the areas where the spool of the
valve has to be changed and air pressure is transferred
from one port to another port, the performance of the
valve is favorable indicating the suitable performance of
the dead-band compensation function. On the other hand,
there is no delay in tracking the inclined lines of the ref-
erence signal. Due to the deviation and chattering at the
beginning and end of the course, it can be concluded that
the trained neural network for small displacement of the
PAM is less accurate than the rest of its course. The
model and structure of the muscle cylinder at the end of
its displacement range have been modified from the full
cylinder shape, and beginning and end of its membrane
are inclined leading to a decrease in the accuracy of refer-
ence signal tracking. Nevertheless, due to the intelligence

@ Springer

of the proposed method and the efforts made to cover the
entire course of the PAM, all the inaccuracies are only led
to a reduction in the system settling time. The draw-
backs and hardware issues in addition to creating small
chattering in the middle of the movement range intensify
relative decline in the accuracy of the controller perform-
ance at the beginning and end of the PAM course.

Overall, the performance of the controller was identi-
fied as satisfactory for tracking various reference signals
and the results were within an acceptable range with an
estimated error of less than 5.1%. This means that the
proposed controller can be used for the control system of
an isokinetic rehabilitation robot.

7 Conclusions

In this paper, a hybrid PID-dynamic neural network
(PID-DNN) controller is proposed to accurately control
the pneumatic artificial muscle (PAM) position. Particle
swam optimization is applied to optimally tune the para-
meters of the suggested controller. On the other hand,
the understudy model is an experimental model on which
all the physical elements are considered. Three criteria as
objective functions are used to evaluate the performance
of the proposed controller. Furthermore, to confirm the
tracking performance of the hybrid controller in con-
trolling the PAM, it has been implemented on a test
bench. Experimental tests and simulation results show
the outstanding performance of the PID-DNN controller
in tracking the reference signals in the entire displace-
ment range of the PAM. Also, it can be seen that the
trained neural network for small displacement of the
PAM is less accurate than the rest of its course. However,
the highest achieved accuracy in tracking the reference
signals was calculated as 2.3% of error for the sinusoidal
signal and 5.1% for the trapezoidal signal.
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