International Journal of Automation and Computing 17(1), February 2020, 17-29

DOI: 10.1007/s11633-019-1194-7

Deep Learning Based Hand Gesture Recognition

and UAYV Flight Controls

Bin Hu

Monmouth University, West Long Branch, NJ 07764, USA

Jiacun Wang

Abstract: Dynamic hand gesture recognition is a desired alternative means for human-computer interactions. This paper presents a
hand gesture recognition system that is designed for the control of flights of unmanned aerial vehicles (UAV). A data representation
model that represents a dynamic gesture sequence by converting the 4-D spatiotemporal data to 2-D matrix and a 1-D array is intro-
duced. To train the system to recognize designed gestures, skeleton data collected from a Leap Motion Controller are converted to two
different data models. As many as 9124 samples of the training dataset, 1938 samples of the testing dataset are created to train and test
the proposed three deep learning neural networks, which are a 2-layer fully connected neural network, a 5-layer fully connected neural
network and an 8-layer convolutional neural network. The static testing results show that the 2-layer fully connected neural network
achieves an average accuracy of 96.7% on scaled datasets and 12.3% on non-scaled datasets. The 5-layer fully connected neural network
achieves an average accuracy of 98.0% on scaled datasets and 89.1% on non-scaled datasets. The 8-layer convolutional neural network
achieves an average accuracy of 89.6% on scaled datasets and 96.9% on non-scaled datasets. Testing on a drone-kit simulator and a real

drone shows that this system is feasible for drone flight controls.
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1 Introduction

Hand gesture recognition research has been gaining
more and more attention from researchers worldwide. In
addition to ordinary application in daily life, gesture re-
cognition starts entering into virtual reality, medical sys-
tems, education, communication systems, games, mobile
devices, automotive, etc.

There are basically three kinds of hand gesture recog-
nition technologies: data glove based![!l, vision based? and
radar basedl3l. A data glove is an interactive device, re-
sembling a glove worn on the hand, which facilitates tact-
ile sensing and fine-motion control in robotics and virtu-
al realityl4. The output of the sensors can be used to con-
trol video games, presentations, music and visual enter-
tainment. The glove based approach is inconvenient be-
cause gloves are bulky to carry. One advantage of using
data gloves is that it does not need to extract the human
gestures from backgroundl’l. However, due to their high
cost and calibration requirements, data gloves don't have
the same wide range of applications as vision-based ges-
ture recognition systems[©l.

The radar based approach is a technology which
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transmits a radio wave towards a target, and then the re-
ceiver of the radar intercepts the reflected energy from
that target. The radar waves bounce off your hand and
back to the receiver, allowing it to interpret changes in
the shape or movement of your handl” 8. This techno-
logy is still under research. The most promising one is
Google Soli, which was approved by the U.S. govern-
ment in January 2019. On the other hand, the vision
based approach is gaining momentum because the user
does not need to carry devices but can perform a gesture
in a much more natural way. The early studies widely
used color cameras for the development of gesture recog-
nition systemsl®), while today’s recognition systems such
as Microsoft Kinect, Leap Motion Controller[!0: 11 and In-
tel RealSense usually use depth images as a modality.
The Leap Motion Controller is a small USB powered
device that uses two monochromatic infrared cameras and
three infrared LEDs to track movements and motion
made by hands and fingers in a roughly 1m hemispheric-
al 3D space. The Leap Motion Controller has always been
one of the most widely used cameras for gesture recogni-
tion, because it allows users to act as freely as they do in
real life. Its low-cost and depth sensors can capture video
in real-time under any ambient lighting and outputs the
skeletal data. Furthermore, hand gestures can be any
simple hand movement or complex shape for Leap Motion
Controller, making it an obvious choice for this study.

Hand gestures can be defined as either the static pos-
tures(!2 or dynamic gestures(!3l. In this paper, we con-
sider dynamic gestures only.
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Most of the research of static gesture recognition fo-
cuses on neural-network-centered approachesl4-16l. For re-
cognition of dynamic gestures, one of the most common
methodologies is to represent gestures with spatiotempor-
al sequences/!? 18], Since Starner and Pentlandl® started
to use hidden Markov models (HMM) to recognize ges-
tures, HMM had become a common method for gesture
recognitionl!% 201, Other approaches, such as hidden condi-
tional random fields?l], autoregressive models??], fuzzy-lo-
gic, Kalman-filtering23-2%], support vector machines(2¢ and
recurrent neural networks[2”. 28] are used in some studies.

As a branch of the study of machine learning, deep
learning models have drawn interests from both research
society and industry rapidly because it is so powerful in
learning and classification. Many research fields such as
speech recognition, computer vision and natural language
processing, etc. applied this technology2?. In recent
years, one of the most important neural networks, convo-
lutional neural network (CNN) has achieved the best per-
formance in gesture recognition fields[30-33,

This paper is an extension of the conference paper4l.
It attempts to apply the deep learning approach in dy-
namic hand gesture recognition. The engineering target of
the study is the control of unmanned aerial vehicles
(UAV). A data model that represents a dynamic gesture
sequence by converting the 4-D spatiotemporal data to a
2-D matrix and a 1-D array is introduced. We designed
two fully connected neural networks and one convolution-
al neural network in order to find the one with the best
performance. We created two data models for neural net-
work training and testing. We also implemented the soft-
ware system based on deep learning neural networks. It is
our understanding that this is the first work reported
that uses Leap Motion Controllers as input devices in
deep learning network based hand gesture recognition.

The rest of the paper is organized as follows: Section 2
introduces basic concepts of deep learning. Section 3 gives
an overview of the hand gesture recognition system, Leap
Motion Controllers and UAVs. Section 4 introduces hand
gestures and datasets that are used in the system.
Section 5 presents the deep learning networks, the core of
the system. Section 6 discusses neural network training
and testing results. Section 7 concludes the paper with
some future work suggestions.

2 Deep learning fundamentals

Machine learning is a branch of artificial intelligence.
It involves methods that identify algorithms and imple-
ment systems by which a computer can learn based on
examples given as input. Such a system generates a com-
mon model based on the learning data so that it can pre-
dict the results of new data sets. Machine learning al-
gorithms have been successfully applied in many research
fields such as face recognition, hand gesture recognition
and image recognition, etc.

@ Springer

2.1 Artificial neural network (ANN)

The idea of artificial neural networks comes from the
way the human brain works. Researchers performed spe-
cific tasks such as classification, pattern recognition, clus-
tering, etc. on computers to simulate the work process of
the human brain. A neural network is based on connec-
tions of nodes, i.e., artificial neurons, which is illustrated
in Fig.1. Each neuron has one or more incoming connec-
tions whose task is to collect digital signals from other
neurons; each connection has a weight that applies to
each signal "propagating" over the connection. Each neur-
on has one or more output connections that transmit sig-
nals to other neurons. An activation function is used to
compute the output signal value. It receives signal from
input connections with other neurons. The output signal
is calculated by applying the activation function to the
input weighted sum. These functions change dynamically
between —1 and 1 or 0 and 1.

Inputs

Sum  Active function
M | |

@#, z f ———Output

Fig. 1 Artificial neurons

There are three widely used activation functions with
different complexity and output:

1) Step function: For a fixed threshold z, if the math-
ematical input is above or below the threshold, then the
function returns 0 or 1, respectively.

2) Linear combination: The weighted sum of the in-
put values is subtracted from a default value.

3) Sigmoid: It produces a sigmoid curve.

2.2 Deep learning

A traditional neural network consists of up to two lay-
ers and is mnot suitable for large-scale network
computingB%. Therefore, researchers designed a structure
of neural networks with more than 3 layers. The layers
which are between the input layer and output layer are
called "hidden layers". These are deep learning neural
networks. Deep learning is a research field of machine
learning based on specific types of learning mechanisms.
This learning concept is inspired by the way that the
brain processes information, learns and responds to ex-
ternal stimuli. A deep learning neural network algorithm
predicts the output by processing the raw input data
which go through non-linear transformation in hidden
layers.

In a deep learning neural network, the input value of
each neuron in each hidden layer is calculated from the
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previous layer depending upon the weights, bias and ac-
tivation function which performs a non-linear transforma-
tion. As the data go through the input layer and each
hidden layer, the data become more and more complex
and abstract. Thus, the deep learning neural networks
can solve more complex problems than the simple neural
networks because of multiple non-linear transformation
layers.

2.3 Learning process

The transfer of copyright form should be properly
completed and signed after a paper has been accepted.
The learning process of a neural network optimizes the
weights iteratively. The deep learning algorithm modifies
the weights based on a set of labeled examples of the
training set to achieve the optimal network performance.

The objective is to minimize the loss function, which
indicates the degree to which network behavior deviates
from expectations. Then, the performance of the network
is validated on a test set consisting of objects other than
the training set.

The backpropagation algorithm

The following shows the basic steps of the back-
propagation algorithm training procedurel33:

1) Initialize the network with random weights.

2) Forward pass: Calculates the difference between the
desired output and the actual output of the network.

3) Backward pass: Adapt weights in the current layer
to minimize the error function, starting from the output
layer to the input layer.

Weight optimization

The process of weights optimization uses the gradient
descent (GD) algorithm to optimize the weights. GD pro-
ceeds in the following steps:

1) Initialize values of model parameters randomly.

2) Calculate the gradient G of the error function ac-
cording to each parameter of the model.

3) Change the parameters of the model to make them
move in the direction of reducing the error.

4) Repeat Steps 2) and 3) until the value of G is close
to zero.

2.4 Neural network architectures

There are various types of architecture in neural net-
works. The difference among them are the number of lay-
ers, the number of neurons in each layer and the way
nodes are connected in each layer. This section only
shows the two architectures used in this paper.

Multilayer network

In multi-layer networks, input and output layers
define input and output, and there are hidden layers
whose complexity implements different behaviors of the
network. Fig.2 shows the multi-layer network architec-
ture:

Input Hidden Output Input Hidden Output
layer layer layer layer 'layel;x layer
] ] ] 1

-

Simple neural network Deep learning neural network

Fig. 2 Multilayer network architecture

Convolutional neural networks

Convolutional neural networks (CNNs) are specially
designed for image recognition. A convolutional neural
network consists of an input layer, multiple hidden lay-
ers and an output layer. Typically, the hidden layers of a
CNN consist of convolutional layers, pooling layers, and
fully connected layers.

In CNN models, each input image is processed by a
series of convolutional layers with filters and pooling hap-
pening first. Then the processed image passes through the
fully connected layers. At last, the output layer classifies
an object with probabilistic values between 0 and 1 by
using the Softmax functionB6: 371, Fig.3 shows an example
of CNN architecture.

-7

A rLL SRS

Input image Conv Pool Conv Pool FC Output

Fig.3 CNN network architecture

3 System overview

There are three subsystems in our system: the gesture
input component, the deep learning neural network com-
ponent, and the UAV control component, as illustrated in
Fig.4.

Int
Hand nter aero
drone
gestures -

Gesture input

Hand gesture recgnition system

& *
Eamnk

Feature Deep learnin,
Gesture input ~ vector P € Prediction UAV control

neural network
component component
component

Fig.4 System architecture

A dynamic gesture that is generated by the user is

processed and used as a command to control the drone
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movement. The Leap Motion Controller tracks and recog-
nizes hand gesture information and then delivers the skel-
eton data to the data preprocessing module, which does
the feature selection and feature scaling work on the Leap
Motion skeleton data and then composes the feature vec-
tors. The feature vectors are sent to the deep learning
neural network module. The gesture is recognized and the
prediction is delivered to the UAV control module. Fi-
nally, the UAV control module extracts the prediction of
the movement command and controls the behavior of the
Inter Aero drone through WiFi in the MavLink protocol.

3.1 Gesture input

As is seen from Fig.5, this component is made up of
two modules: The Leap Motion Controller and data pre-
processing module.

Gesture input component

Data pre-processing

Gesture | — Skeleton Feature
input _|Leap Motion  data Feature selection vector

Controller

¥

Feature scaling

Fig. 5 Gesture input

The gesture input component is responsible for receiv-
ing hand gestures with the transducers function provided
by the Leap Motion Controller. It turns skeleton data
which is obtained in the form of frames into a 2-D fea-
ture vector and then delivers it to the deep learning neur-
al network subsystem.

The Leap Motion Controller delivers the discrete posi-
tion and motion. It uses 2 optical sensors and 3 infrared
lights. The information that Leap Motion Controller de-
livers is the hand skeleton model it sees in form of frames.
The skeleton model consists of objects (like fingers or
tools) positions relative to the Leap Motion Controller’s
origin point.

The Leap Motion Controller provides a set of frames
of data when it tracks hands and fingers. In object ori-
ented programming terminology, the frames are objects
containing all the tracked information regarding hands,
fingers and tools within the leap motion field of view,
therefore posterior data processing is required to provide
the algorithms with a suitable feature vector.

3.2 The UAV

This UAV control component is responsible for trans-
ferring the classes that are recognized from the deep
learning network into commands that modify the drone's
behavior. Fig.6 provides an overall scheme of the ele-
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ments that play a role. There are two modules in this
component: the UAV management module and the com-
mand conversion module.

UAV control component
Movement Inter aero

: command
. Command conversion |-------- " drone
L J

C, E :
e '3
| 'MavLink

UAV management -Kéy_b_cga_ra

command

Prediction

Fig.6 UAYV controlling

The UAV management module is to manage the UAV
status. It is responsible for establishing communication
with the Mavros node checking the UAV status, request-
ing services to Mavros and translating the recognized
commands into understandable orders for the UAV move-
ment.

4 Gestures and datasets

4.1 Gestures

In this study, we defined 10 dynamic gestures for
drone motion controls, which are listed in Table 1. The
name of each gesture suggests the motion pattern of the
controlled target.

Table 1 List of hand gestures

Target class C; Gesture description Illustration

0 Move forward LS

1 Move backward

2 Turn left [~

3 Turn right o
4 Move up jj

5 Move down

6 Turn clockwise 2

7 Turn anticlockwise c

8 Special movement 1

9 Special movement 2 ¥R
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4.2 Raw data

Each frame of raw data we extract from the Leap Mo-
tion Controller include:

x1: pitch angle of hand

xo: yaw angle of hand

x3: roll angle of hand

x4: X-coordinate of palm center

x5 Y-coordinate of palm center

x¢: Z-coordinate of palm center

x7: hand grab strength

xg: yaw angle of thumb tip

xg: yaw angle of middle finger tip

x10: X-coordinate of thumb tip

x11: Y-coordinate of thumb tip

x12: Z-coordinate of thumb tip

x13: X-coordinate of middle finger tip

x14: Y-coordinate of middle finger tip

x15: Z-coordinate of middle finger tip

In this study, one dynamic gesture is composed of 45
frames tracking gesture information. Therefore, for each
gesture, the input data to our system is a 45x15 matrix.

4.3 Feature scaling

Feature scaling is a widely used approach to improve
learning and recognition accuracy when the range of inde-
pendent features of data are far apart. It can be done
with the following simple normalization:

value — min__value

scaled_value = - . (1)
max_value — min _value

So now we have two data models: original data and
scaled data. Datasets of these two models will be fed into
the deep learning network separately to verify its per-

formance.

5 Deep learning model

In this study we designed, trained and tested three
different neural networks so as to find the one with the
best performance, as shown in Fig.7. They are a 2-layer
fully connected network, a 5-layer fully connected net-
work, and an 8-layer convolutional network. Figs.8-10 il-
lustrate the architectures of the three types of networks.

__________________________________________

Deep learning neural network component

E 77| 2-layer fully connected neural network }‘. E
Feature ! | E E
[ 1 )
Yector,, :1'>| S-layer fully connected neural network }_E_A_>Predlctlon
Xpor 1! ! G
P ' E H E
i ~--| 8-layer convolutional neural network l,' H

Fig. 7 The deep learning model
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Fig. 8 Architecture of 2-layer fully connected neural network
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Fig.9 Architecture of 5-layer fully connected neural network

The high-level designs of these three networks are de-
scribed in Tables 2—4.

As shown in Table 4, there are three convolutional
layers in the 8-layer CNN model. The first convolutional
layer has a size of 6 x 6 and a depth of 6 filters. It uses a
stride of 1. With an input of 45 x 15 elements, the out-
put of the first convolutional layer would have a size of
45 x 15 x 6 elements. The first pooling layer have a
stride value of 2, the resulting output of the first pooling
layer would have a size of 23 x 8 X 6 elements.

After the three convolutional layers is a first fully con-
nected layer that contains 200 neurons and receives 2 x
1 X 24 elements from the previous layer. This is followed
by a ReLLU and a dropout layer.

Finally, the output of the first fully connected layer is
fed to the output layer that assigns a probability for each
class. The output layer receives an output of 200 ele-
ments from first fully connected layer and contains 10
neurons. This layer is to assign a probability for each ges-
ture class.

6 Training, testing and results

The experiment was conducted in a software environ-

@ Springer



22 International Journal of Automation and Computing 17(1), February 2020

Feature maps

Input Feature maps 24@3x1
42§l11 5 6@45%15 Feature maps Feature maps Feature maps Feature maps Output
| 6@23x8  12@12%4  12@ex2 24@1x1 0
LIRS [—
b I 4 | b "._ e i gr=] il
M= e = —_— e — Fully
o : e Convolutional Max pooling Max pooling connected
Convolutional Max pooling . p g i
layer 1 layer 1 .layer 2 layer2  Convolutional layer 3 4
Filter: 6x6 Stride: 2 Filter: 5x5 Stride: 2 layer 3 Stride: 3
Stride: 1 Stride: 2 Filter: 4x4

Stride: 2
Fig. 10  Architecture of 8-layer convolutional neural network

1 f . Mon-
Table2 A 2layer fully connected network 938 gestures of data. Seven graduate students at Mon

mouth University participated in the recording of these

Layer Number of nodes hand gestures.
Input layer 675
Hidden layer 500 6.1 Training
Output layer 10

During the training process, the neural network per-

formance such as accuracy and cross entropy can be eval-

Table3 A 2-layer fully connected network uated to determine the network parameters at the same
time with the evaluation dataset. In this study, one eval-
Layer Number of nodes uation sample from the evaluation dataset is fed to the
Input layer 675 neural network every ten training steps.
Hidden layer 1 200 In the training process, for each dataset, the network
Hidden layer 2 100 was evaluated at four different training batch sizes: 25,
Hidden layer 3 60 50, 75 and 100. So, a total of 8 neural network models
were trained for each of three types of neural networks,
Hidden layer 4 30 which translates to a total of 8 X 3 = 24 training cycles.
Output layer 10

We followed general rules to select the deep learning

network parameters before we started the training.

Tabled An 8-layer convolutional network Table 5 shows the training parameters of the 2-layer fully

connected neural network.

Layer Number of nodes During the training, the Tensor board collects the
Input layer 45X 15 training accuracy and cross entropy loss and adjusts the
Convolutional layer 1 Filter: 6 X6, Depth: 6, Stride: 1
. . Table 5 Training parameters of the 2-layer fully connected
Max pooling layer 1 Stride: 2
neural network
Convolutional layer 2 Filter: 5X5, Depth: 12, Stride: 2
Parameters name Value
Max pooling layer 2 Stride: 2 . -
Training dataset size 9124
i i :4X : ide:
Convolutional layer 3 Filter: 44, Depth: 24, Stride: 2 Training batch size 25,50,75,100
Max pooling layer 3 Stride: 2 Training learning rate base 0.8
Fully connected layer 200 Training learning rate decay 0.99
Output layer 10 Training regularization rate 0.0001
. . Layer 1 weights mean = 0
ment as follows: macOS High Sierra, Python 2.6, Tensor- v &
flow 1.3.0, Dronekit 3.0, and Leapmotion SDK: 2.6.5. std = 0.01
To examine the raw data model and normalized data Layer 1 bias 0
model separately, two training datasets, two evaluation Layer 2 weights mean = 0
datasets and two testing datasets are created. Each of the std = 0.01
two training datasets contains a total of 9124 gestures of
Layer 2 bias 0

data. Each of the two testing datasets contains a total of
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network parameters accordingly. The target is to elimin-
ate the cross entropy.

Figs.11 and 12 show the change the accuracy and the
cross entropy over training samples applied to the 2-lay-
er network model with raw data input accuracy on batch
sizes of 25, 50, 75 and 100.

Accuracy
0.20 A
0.18 | | 'I.Iul.'
0.16 AT |
0.14 AN [ BS 25
0.12 I REEE | ' |« BS_50
0.10 | s BS_75
0.08 INIENS BS_100
0 50 100 150 200 250 300 350
Fig. 11  Accuracy in training the 2-layer fully connected neural

network on raw data

Cross entropy

L BS_25

1.0x10° | « BS 50
1 f «BS 75
0 100 150 200 250 300 350

Fig. 12 Cross entropy in training the 2-layer fully connected
neural network on raw data

In the accuracy diagram, the x-axis represents the
training steps, and the y-axis represents the percentage of
accuracy. In the cross entropy loss diagram, z-axis repres-
ents the training steps, and the y-axis is the cross en-
tropy loss. Each color in the both diagrams represents a
training batch size. For example, BS 50 is the case that
the red curve's batch size is 50.

Figs. 13 and 14 show the change of accuracy and the
change of cross entropy over training samples applied to
the 2-layer network model with scaled data as input and
batch sizes of 25, 50, 75 and 100.

It can be seen that when the input is raw data, the
accuracy for each training batch size is very low and does
not converge. The loss for each training batch size is big.
This means the neural net learns nothing. The dataset or
neural net model needs to be improved.

Accuracy

BS_25
« BS 50
« BS 75

BS_100

LCOLLoooom
NN xooloo
SHhSOhSUhSHLS

0 50 100 150 200 250 300 350

Fig. 13 Accuracy in training the 2-layer fully connected neural
network on scaled data
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0~(2) — M‘J"’ iy AN BS_100

0 50 100 150 200 250 300 350

Fig. 14 Cross entropy in training the 2-layer fully connected
neural network on scaled data

When the input is scaled data, however, the accuracy
for each training batch size is increased sharply with the
increasing of training steps. At the end of training, the
accuracy is close to 1 when the batch size is 50. The cross
entropy decreases with the increasing of training steps.
At the end, four curves are below 0.10. This shows this
neural network model works well on these training data-
sets in each training batch size.

As we know, the essence of the gradient descent al-
gorithm is to find the most appropriate weight percent-
age between features to adapt to data. Therefore, when
the input of the algorithm is not scaled, large-scale data
has a greater impact on the weight and thus it will be dif-
ficult to move the weight vector to a good solution. In
addition, the feature scaling only attempts to assume that
all features have equal opportunities to influence the
weight, which more truly reflects information about the
input data. Usually it also leads to better accuracy.

In this study, the units and range of the 15 features
are different. This is the reason why the scaled data
achieved higher accuracy then the raw data.

Table 6 shows the training parameters of the 5-layer
fully connected neural network.

Figs. 15 and 16 show the change of the accuracy and
the change of the cross entropy over training samples ap-
plied to the 5-layer network model with raw data input
and batch sizes of 25, 50, 75 and 100. Notice that the en-
tropy value has been multiplied by 100 for ease of data
processing. This is done for other models as well.

Figs. 17 and 18 show the change in the accuracy and
cross entropy over training samples applied to the 5-lay-
er network model with scaled data input accuracy on
batch size 25, 50, 75 and 100.

It can be seen that when the input is raw data, the
accuracy and cross entropy for each training batch size
vary in a widely range. This means the neural network
learns something, but, the dataset or neural network
model still needs to be improved.

When the input is scaled data, the accuracy for each
training batch size increases sharply with the training
steps. At the end of training, it reaches up to 0.96. The
cross entropy decreases with the increase of training
steps. At the end, four curves are below 0.10. This shows
that this neural network model works well on scaled data
on each training batch size.
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Table 6 Training parameters of the 5-layer fully connected

neural network

Accuracy
1.00 + . T e
0.95 .,._;llywmwr_{y«ﬁ?yﬁ{ TNV AV
i RN T T Y ] Ik ]
0.90 i it J 5555
0.85 { _
| « BS 50
0.80 -
0.75 « BS 75
' , , , , , BS_100
0 50 100 150 200 250 300 350

Fig. 17 Accuracy in training the 5-layer fully connected neural

network on scaled data

Cross entropy

‘.I ‘.'IL 1. “\“

i \l"» I
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vrxl'lw Hlplu’ 'I W\,,H Iy J ‘!

BS 25
e BS 50
« BS 75

Parameters name Value
Training dataset size 9124
Training batch size 25,50,75,100
Training learning rate base 0.8
Training learning rate decay 0.99
Training regularization rate 0.0001
Layer 1 weights mean = 0
std = 0.01
Layer 1 bias 1
Layer 2 weights mean = 0
std = 0.01
Layer 2 bias 1
Layer 3 weights mean = 0
std =0.01
Layer 3 bias 1
Layer 4 weights mean = 0
std = 0.01
Layer 4 bias 1
Layer 5 weights mean = 0
std = 0.01
Layer 5 bias 1
Accuracy
i I‘-'u
/ "rﬁj |“
F BS 25
| a BS_50
l it i J * BS 75
1 BS_100
100 150 200 250 300 350

Fig. 15 Accuracy in training the 5-layer fully connected neural

network on raw data

Cross entropy
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Fig. 16 Cross entropy in training the 5-layer fully connected

neural network on raw data

Table 7 shows the training parameters of the 8-layer

convolutional neural network.

Figs.19 and 20 show the change of the accuracy and

@ Springer

BS_100

100 150 200 250 300 350

Fig. 18 Cross entropy in training the 5-layer fully connected
neural network on scaled data

the change of the cross entropy over training samples ap-
plied to the 8-layer convolutional network model with
raw data input on batch sizes of 25, 50, 75 and 100.

Figs.21 and 22 show the change of the accuracy and
the change of the cross entropy over training samples ap-
plied to the 8-layer convolutional model with raw data in-
put and on batch sizes of 25, 50, 75 and 100.

It can be seen that this neural network gets high ac-
curacy and low cross entropy quickly and smoothly on
both the raw dataset and scaled data.

6.2 Testing

After the deep learning network is trained, the static
testing and real-time testing are performed to evaluate
the neural network in this study.

In the static testing stage, the accuracy performance is
measured. As mentioned earlier, the testing dataset has
1938 samples which are separated from training dataset.
This ensures the deep learning network to be evaluated
by sufficient unknown information. Like the training pro-
cess, the four testing datasets are applied to 48 trained
neural network models to evaluate its performance.

In total, there are 8 x 3 = 24 testing cycles in testing
the three different neural networks.

In the real-time testing stage, the data was provided
by the real-time input from Leap Motion Controller, deep
learning network accuracy and system performance are
measured manually.

6.3 Results and analysis

In this study, confusion matrix is used to evaluate the
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Table 7 Training parameters of the 8-layer convolutional
neural network

Parameters name Value
Training dataset size 9124
Training batch size 25,50,75,100
Training learning rate base 0.8
Training learning rate decay 0.99
Training regularization rate 0.0001
Layer 1 weights mean = 0
std =0.1
Layer 1 bias 1
Layer 2 weights mean = 0
std = 0.1
Layer 2 bias 1
Layer 3 weights mean = 0
std =0.1
Layer 3 bias 1
Layer 4 weights mean = 0
std =0.1
Layer 4 bias 1
Layer 5 weights mean = 0
std = 0.1
Layer 5 bias 1
Layer 6 weights mean = 0
std =0.1
Layer 6 bias 1
Layer 7 weights mean = 0
std = 0.1
Layer 7 bias 1
Layer 8 weights mean = 0
std =0.1
Layer 8 bias 1
0.8
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Fig. 19 Accuracy in training the 8-layer convolutional neural
network on raw data

testing results. A confusion matrix is a very common
technique used for the evaluation of errors in predictions.
It consists of a matrix where columns represent the pre-
dicted classes and rows represent the actual classes. From
confusion matrix, we can calculate the recognition accuracy.

Cross entropy

U™ BS 25

128 B « BS 50

FANG i A « BS_75

20 | AR, Sl Aamieal, BST100
-20 =

0 50 100 150 200 250 300 350

Fig. 20 Cross entropy in training the 8-layer convolutional
neural network on raw data
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Fig.21 Accuracy in training the 8-layer convolutional neural
network on scaled data
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Fig. 22 Cross entropy in training the 8-layer convolutional
neural network on scaled data

As an example, Tables 8 and 9 list the confusion
matrices for the 2-layer fully connected neural network
with raw data input and scaled data input, respectively.
The batch size is 25.

Tables 8 and 9 show that the 2-layer fully connected
network only get approximately 12.693% average accur-
acy on the raw data, approximately 97.471% average ac-
curacy on the scaled data.

Tables 10-12 list the testing results of the three net-
works with raw data input and scaled data input separ-
ately, and at all different training chunks.

Table 10 shows that the 2-layer fully connected net-
work only gets approximately 12% average accuracy on
the raw dataset, which is unacceptable, and approxim-
ately 97% average accuracy on scaled (normalized) data-
set. Table 11 shows that the 5-layer fully connected net-
work only gets approximately 90% average accuracy on
the raw dataset, which is not acceptable, and approxim-
ately 98% average accuracy on scaled (normalized) data-
set. Table 12 shows that the 8-layer convolutional net-
work gets approximately 97% average accuracy on the
raw dataset.

@ Springer
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Table 8 Confusion matrix of the 2-layer fully connected neural network on raw data

2-layer fully connected neural network

Dataset raw data Training batch size 25  Average accuracy (%) 12.693

Class 0 1 2 3 4 5 6 7 8 9
0 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 98.598 0.000 0.000 1.402 0.000 0.000 0.000 0.000 0.000 0.000
4 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
8 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
9 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Table 9 Confusion matrix of the 2-layer fully connected neural network on scaled data
2-layer fully connected neural network
Dataset scaled data Training batch size 25 Average accuracy (%) 94.845
Class 0 1 2 3 4 5 6 7 8 9
0 98.276 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 100.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 96.154 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 96.667 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 93.182 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 100.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 96.078 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 69.231 0.000 0.000
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000 0.000
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 100.000

Table 10 Recognition rate of the 2-layer fully connected neural

network
Dataset\Batch size 25 50 75 100
Raw data 12.693 11.816  12.538  12.538
Scaled data 97.162  97.471  96.284  96.233

Table 11 Recognition rate of the 5-layer fully connected neural

network
Dataset\Batch size 25 50 75 100
Raw data 82.456 91.279 88.905 93.859
Scaled data 98.555 97.316 98.194 98.090

Table 12 Recognition rate of the 8-layer convolutional neural

network
Dataset\Batch size 25 50 75 100
Raw data 95.356 97.626 97.626 97.265
Scaled data 93.498 93.446 87.926 83.900

@ Springer

Table 12 also shows that with the CNN model, the re-
cognition rate of the model trained by scaled data is
worse than that trained by raw data. This result is kind
of opposite to the first two networks. A CNN is quite dif-
ferent from fully connected neural network. It is designed
for image recognition. After the raw data is scaled, the
CNN can only learn the information from the image of
similar size and scale. Obviously, using the images of dif-
ferent scales and sizes during training can achieve better
performance than just choosing the '"proper" size, be-
cause the CNN can learn from more diverse samples.

From the scaled dataset, when the training batch sizes
are low (25 and 50), the recognition accuracy is about
93% on average. When the batch sizes are bigger (75 and
100), the accuracy goes down to below 90%.

6.4 Testing of flight controls of UAV

The experiment of real-time drone control with our
hand gesture recognition system has been conducted sev-
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eral times in front of the Pozycki Hall, in the Great
Lawn, and near the north end of Edison Building of Mon-
mouth University campus. All designed gestures are
tested. The result indicates the system can control the
flight of the drone as expected. It also shows the testing
environment has a big impact on the testing result. Wind
speed, GPS signal, and even brightness where the Leap
Motion Controller is placed are all critical to the system
performance. Nevertheless, the drone control experiment
proved our assertion that the hand gesture recognition
system can be used to control the real engineering targets.

7 Conclusions

A real time dynamic hand gesture recognition system
was designed for UAV flight controls. The core compon-
ent of the system is a deep learning neural network. For
comparison purpose, three neural networks were de-
signed and trained with large gesture sample datasets
which were created by this research group. The three net-
works are a 2-layer fully connected network, a 5-layer
fully connected network, and an 8-layer convolutional
network. The hand gesture data input device in this
study is Leap Motion Controllers. The lab testing results
show that the 2-layer and 5-layer networks achieved a
97% recognition rate on normalized input data, while the
8-layer network worked better with raw data input, at a
recognition rate of 97%. It is proved by real-time tests
that this system is able to control the flight of UAVs reli-
ably.

It is our understanding that this is the first work re-
ported that uses Leap Motion Controllers as input
devices in deep leaning network based hand gesture re-
cognition.

Future work of this study includes:

1) The current study only used the Leap Motion Con-
troller as input sensors. The skeleton data is generated
from Leap Motion Controller services. The Leap Motion
Controller provides the raw image of gesture of each
frame. We should consider using the raw image as the in-
put as well, and then this system can be applied to more
different devices which provide the raw image.

2) Only 10 simple dynamic gestures are defined in this
study. It would be more powerful and flexible if the sys-
tem can handle more complex static and dynamic ges-
tures.

3) Currently, the training dataset holds about 12000
samples which are recorded inside a room. It could get
more recognition accuracy if more samples from different
background are connected.
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