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Abstract: The multi-robot systems (MRS) exploration and fire searching problem is an important application of mobile robots which
require massive computation capability that exceeds the ability of traditional MRS's. This paper propose a cloud-based hybrid decent-
ralized partially observable semi-Markov decision process (HDec-POSMDPs) model. The proposed model is implemented for MRS ex-
ploration and fire searching application based on the Internet of things (IoT) cloud robotics framework. In this implementation the
heavy and expensive computational tasks are offloaded to the cloud servers. The proposed model achieves a significant improvement in
the computation burden of the whole task relative to a traditional MRS. The proposed model is applied to explore and search for fire ob-
jects in an unknown environment; using different sets of robots sizes. The preliminary evaluation of this implementation demonstrates
that as the parallelism of computational instances increase the delay of new actuation commands which will be decreased, the mean time
of task completion is decreased, the number of turns in the path from the start pose cells to the target cells is minimized and the energy

consumption for each robot is reduced.
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1 Introduction

Robots are autonomous agents that interact with the
surrounding environments directly to perform tedious
tasks precisely and correctly using onboard software mod-
ules to facilitate the achievement of several tasksll 2. A
robot task can be classified into simple tasks (all reactive
and real-time control operations such as an obstacle
avoidance, guidance, etc.), complex tasks (such as path
planning, localization, etc.), and intelligent tasks that as-
sist humans (such as cleaners, delivery, etc.)36l.

The great importance of robots comes from the tre-
mendous development that allow them to be adaptive,
cooperative, and learn from their experience in perform-
ing future actions[” 8. This development is accommod-
ated by a parallel improvement in the basic resources of
robots, methods, and servicesl® 1. Robot services may be
a simple service (robotic cleaners, delivery), or complex
service (painting, object recognition and detection,
searching and rescuing, etc.)9 10, 12-17],

Searching for fire in complex environments is some-
times extremely dangerous mission, and subjects human
life to risk if they try to perform these tasks due to vari-
ous environmental problems such as high temperatures
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and limited communication. Therefore, these dangerous
missions can be assigned to a single robot or multi-robot
systems (MRS) that operates in hazardous situations to
search for fire sources in unknown environments/!8: 19],
The control architecture of fire searching robot is de-
signed for gathering information about fires in the indoor
environment/2)l, Each robot participating in this task is
equipped with temperature, flame and smoke sensors for
fire detection. It is also has the capability to follow virtu-
al path lines, avoid obstacles and detect fire source re-
gions with a specific distance and accuracyf2!> 22].

For MRS to perform run-time applications in an ac-
curate manner and appropriate time, there must be an
urgent need for modern algorithms that requires vast
computing resources for environmental perception, de-
cision-making, and navigation management23l. MRS are
bounded by the following limitations: 1) hardware/soft-
ware limitations such as limited communication capacit-
ies, 2) limited storage resources used to store huge
amount of data collected by robots and 3) limited compu-
tation capability used to complete heavy tasks. Therefore,
it is difficult for MRS to perform tedious tasks, at the
same time it is not possible to add further developments
to MRS under these limitations, which poses serious chal-
lenges to the continuation of MRS[24.

To overcome such challenges, some researchers have
been thinking about using powerful parallel computers
that process and control data using a range of remote
servers and provide complex services[® 15 23], As a result,
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many benefits have been added to MRS: 1) the limita-
tion problems of the onboard computing and storage were
solved; 2) additional capabilities that are impossible for
MRS to perform was provided; 3) new skills to generate,
access and process huge amount of data were added; 4)
trends such as a remote brain, big data were enhanced (25 26],

Cloud computing is an internet-based computing mod-
el that enables magnification of ubiquitous, convenient,
on-demand network access to a shared pool of configur-
able servers, memory storage, networks, and applications
by interconnecting physical and virtual devices based on
existing information and communication technologies. It
can provide services rapidly with minimal management
effort or service provider interaction. This means that not
all measuring devices, computation, and memory storage
are integrated into a standalone devicel8; 25, 27-30],

Cloud computing provides three types of basic ser-
vices: 1) Software as a service (SaaS): allows users to ac-
cess applications across different devices ranging from
simple devices like thermostats to a highly complex smart
devices like robots1-33]. 2) Platform as a service (PaaS):
allows users to implement their applications without look-
ing at the cloud infrastructure. 3) Infrastructure as a ser-
vice (IaaS): is controlled by the user to make the hard-
ware infrastructure available as a service such as
Amazon's EC3/S3 and Microsoft Azurel34-36],

An integration can be made between MRS and cloud
computing to exploit its resources, acquire intelligence
from the hosted software programs remote servers[37-40],
perform complicated computations, share knowledge with
other robots and store large-scale knowledge in an effi-
cient manner. This integration is considered a new trend
in a robotics field that is commonly referred to as cloud
robotics(!: 3 41, 42, The main concern of cloud robotics is to
off-load heavy and expensive computational tasks to the
cloud servers in secure and customizable environments for
robots and other smart devices.

The use of cloud computing in robotic has solved
many of problems faced by MRS: 1) The lack of local
computing is amended and the task completion time is re-
duced( 3%; 2) The physical world is explored and faulty
robots are replaced immediately with other robots of sim-
ilar capabilities® 43l; 3) Robots are able to optimally co-
operate with each other to execute complex tasks effi-
cientlyl?; 4) Robots are provided with massive resources
of information such as environmental maps® 44; 5) Com-
putational bandwidth was allocated efficiently and the
energy consumption was reduced effectivelyl2].

In recent years, many researchers have presented a lot
of studies related to the field of cloud robotics. First, at
the PaaS layer, a set of frameworks was presented such
as 1) RoboEarth: A framework that encodes the task
structure, environment information and object descrip-
tions as a formal knowledge base formed based on the ro-
bots observationll: 4%, 2) Rapyuta: A framework that ex-
ploits the RoboEarth database for running applications

within it[6-48. 3) Cloudroid: A framework that out-
sources robot computation without any modification in
the software package of the traditional robot[? 491 4) In-
ternet of things (IoT) cloud: a generic real-time frame-
work that exceeds other frameworks in performance and
encapsulates data from devices and processes it. It
provides a simultaneous localization and mapping
(SLAM) algorithm and improves the system
performancel’l. In [51], the authors have implemented a
collision avoidance algorithm for swarm robotics based on
IoT cloud, it focuses on agent level parallelization.

Second, at the SaaS layer, Rahman et al.®2 de-
veloped a framework for smart factory maintenance and
formulate it as a joint optimization problem. They have
used a modified Ggenetic algorithm (GA) based decision-
making scheme to find the near-optimal solutions. Chen
et al.B7. 53] propose a framework to offload collected data
from individual robots and robot clusters to a remote
server. The problem is formulated as a joint quality of
service (QoS) optimization of robotics stream workflow
(RSW) in networked cloud robotics (NCR) and RSW is
transferred into a mixed integer linear programming
(MILP) problem and solved using a heuristic algorithm to
manage the heterogeneity of NCR and the strict latency
requirements of RSW. Miratabzadeh et al.’4 implement a
reliable, scalable, and powerful software platform using
OpenStack to add scalability to serve large independent
and heterogeneous robots.

Third, at the IaaS layer, Chen et al.l26] presents a hy-
brid CloudStack platform to deploy and manage large
networks of virtual machines, to provide safety and
scalability to traditional approaches. Tian et al.b% de-
veloped a software framework called Berkeley Robotics
and Automation as a service that performs a robust
grasp-planning system to increase the grasp reliability.
Manzi et al.l’l increase the ability of robots skills and
provide text-to-speech and speech recognition abilities for
human interactions using a KuBo cloud robotics. Koubaa
and Qureshil¢l propose a cloud-based object tracking
real-time application called DroneTrack using unmanned
aerial vehicles, it uses GPS to exchange its locations with
the cloud.

Cloud robotics has presented a lot of benefits to MRS
such as minimizing computation cost, scaling computa-
tion resources, providing support for large-scale systems
and controlling robots in real-timel5]. The process of off-
loading robot applications to cloud servers is still diffi-
cult in practice due to the following reasons: 1) Robot ap-
plications software must be modified to be compatible
with cloud environments; 2) There is no mature cloud
system designed for robotics tasks; 3) Most robot applica-
tions interact with the environment, and there was a need
to guarantee QoS when the robot is connected to servers/23].

Therefore, there is an urgent need for more work to
enhance the existing cloud robotics frameworks and off-
load other complex robot applications such as an explora-
tion of unknown environments, navigation, map building,
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co-ordinating MRS tasks, searching and rescuing, plan-
ning a collision-free 3D path and other space-oriented ap-
plications for unmanned aerial vehicles (UAV). The in-
tended target is to enhance MRS performance according
to some criteria such as energy, safety and timel57.

Environment exploration is considered as the base of
most MRS and UAV applications[®8l. Performing com-
plex tasks using MRS implicitly includes the environ-
ment exploration and task coordination, then the remain-
ing part of the task is performed. For example, to search
for fire objects in an unknown environment, the robot
must explore the environment using the generated map
and then perform the search process. Also, task coordina-
tion and task decomposition join the execution of these
applications(39,

In [60], a hierarchical architecture for task coordina-~
tion and decomposition for MRS exploration and fire
searching based on the hybrid decentralized partially ob-
servable semi-Markov decision process (HDec-POSMDPs)
algorithm was used to decompose the global task into
sub-tasks that can be executed by one or more individual
robots in sequence or in parallel, and the coordination
between robots was handled. The MRS is allowed to nav-
igate, plan paths, avoid collisions between obstacles and
robots, and finally build a grid map using the informa-
tion collected by the individual robots. Performing this
complex task by traditional MRS requires a lot of compu-
tational resources and takes a long time.

In this paper, the complex HDec-POSMDPs al-
gorithm in [60] is reconfigured into a cloud-based HDec-
POSMDPs algorithm. Its main tasks are split up into
parallel computing blocks (get robot state, get a local
map, avoid obstacles, assign goals and construct global
map) to be run on different machines in a parallel form.
The cloud-based HDec-POSMDPs is implemented on the
top of the IoT cloud robotics framework to offload the
massive computation from the robot onboard computing
resources to the cloud framework and to achieve high
computation efficiency. The input to the IoT cloud (laser
scans, pose share, thermopile temperature, etc.) from ro-
bots is processed and the results are returned back dir-
ectly as commands to robots through an interfacing device.

As a summary, the main contribution of this paper is:

1) The HDec-POSMDPs algorithm is reconfigured to
a cloud-based HDec-POSMDPs.

2) The cloud-based HDec-POSMDPs is implemented
on the IoT cloud robotic framework to explore a set of
different environments using different sets of robot sizes.

3) Some preliminary results have been presented to
evaluate the performance of the proposed cloud-based
HDec-POSMDPs using different metrics such as task exe-
cution meantime, average energy consumption.

The rest of the paper is organized as follows: in
Section 2, the architecture of the IoT cloud robotics
framework is discussed. Section 3 addresses the imple-
mentation of the cloud-based HDec-POSMDPs MRS ex-
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ploration and fire searching algorithm. In Section 4, the
experimental results are discussed and we conclude and

summarize this paper in Section 5.

2 Architecture of IoT cloud robotics

framework

As shown in Fig.1, the IoT cloud framework consists
of three layers coordinated by Zookeeper and connected
together by exchanging formally-defined messages using

message broker®]. The three layers are:

Batch processing, database storage, -
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Fig.1  Architecture of the cloud robotics framework

Front-end gateway layer: Maps between message
brokers and smart devices. It connects all devices with
message broker services using the cloud drivers and the
gate master. Cloud drivers are used to convert the smart
device information into messages which are processed via
a remote server on the cloud.

Stream processing middle layer: This is used to
process a huge amount of data gathered by numerous
smart devices with highest-capacity rates using batch
processing engines and an apache storm computation en-
gine. A number of spouts are used to read the informa-
tion from smart devices and bolts to process the data for
this information respectively. This layer can be represen-
ted by a graph topology in which spouts and bolts repres-
ent the nodes and streams representing the connected
edges of this topology.

Batch/Storage back-end layer: Stores data from
the middle layer and provides batch processing and data
mining services from different distributed databases.
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3 Implementation of the cloud-based
HDec-POSMDPs MRS exploration
and fire searching

3.1 System overview

The overall design of the cloud based HDec-POSM-
DPs MRS exploration and fire searching algorithm is
based on the IoT cloud robotics framework which is
shown in Fig.2. The system design consists of three main
layers as follows:

Future grid system

Apache storm distributed stream processing
frameworks (DSPF)

%
ot
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Exploration and fire
searching
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Gateway

Gateway application for cloud
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wireless connection
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Fig. 2 Overall design of exploration and fire searching

In the first layer, a set of homogenous Turtlebot ro-
bots form the MRS to perform the task of exploration
and fire searching in an unknown environment. The
second layer represents the front-end gateway. In this
layer, robot operating system (ROS) based Turtlebot ap-
plication programming interface (API) robots are run on
a desktop machine as the device driver. The device driver
generates a unique identifier (ID) for each robot to distin-
guish between different robots and define the cloud chan-
nels to establish a connection with those ROS. Robots are
connected directly to the device driver without any inter-
face to send the measured data (such as laser range, ther-
mopile temperature, and odometer reading, etc.) to be
processed and get control commands (such as moving, ro-
tate and stop) after processing the measured data(5: 51,

In the third layer, the cloud computation engine and

the message broker servers are deployed in virtual ma-
chines called Future Grid System of the Cloud frame-
workPl, This layer consists of a fixed number of input
spouts and output bolts that are connected to a pre-
defined cloud channel as shown in Fig.3.
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Fig. 3 IoT cloud driver with connected channel

The message broker receives a ROS message from the
device drivers, converts it to a custom defined data type
using a Rabbitmq cloud driver and sends it to the cloud
computation engine through input spouts to be processed.
Then, the cloud computation engine sends the control
commands through output bolts to the message broker[5% 51,
The message broker sends these messages again to the
device driver, and the device driver sends them to the ro-
bots to make their decision for moving, rotating, stop-
ping, etc.

3.2 HDec-POSMDPs
and fire searching

MRS exploration

In this section, the HDec-POSMDPs MRS explora-
tion and fire searching algorithm is summarized, the al-
gorithm is implemented in the cloud computation engine
layer of the IoT cloud framework.

As shown in the flowchart in Fig.4, the HDec-POSM-
DPs MRS exploration and fire searching algorithm is di-
vided into five primary stages as follows[60]:

Initialization: In this phase: 1) The startup location
of each robot is initialized randomly with restrictions that
the distance between them is less than the scope of the
communication range; 2) The navigation of a robot in-
cludes building a map using a set of information acquired
by a robot, determining the exact position and orienta-
tion of a robot in the environment at all times, and gen-
erating a collision-free trajectory from its current pose to
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Collision avoidance
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Fig. 4 Flowchart of the HDec-POSMDPs MRS exploration
and fire searching approach

the desired target pose using enhanced A* (EA”) al-
gorithm[59; 60],

Collision avoidance: During the navigation process,
robots must avoid collisions with obstacles, other robots
and fire sources by implementing some rules between the
robot team. The robot tries to detect a frontier or a fire
source cell during the navigation process. If the robot de-
tects a frontier or a fire source cell, it will go to the next

step, if not it will end the exploration process.
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Goal assignment: In this phase, the robot determ-
ines its next location based on the discovered new and
unexplored areas. Some factors are taken into considera-
tion such as energy consumption, network connectivity
and the overlaps between the robot’s sensor ranges(® 62,
The candidate frontier cell is determined and assigned
based on (Dec-POSMDPs). The best frontier cells for ro-
bots are determined. Each robot takes a decision about
the nearest cell, if it is inside its region or not; based on a
specific utility function. The process of fire searching is
done in parallel with the frontier detection based on sens-
ing the heat levels of objects allocated in the environ-
ment using the temperature sensorsl®l. Once the fire
source is detected, the map is updated and the robot
moves to its goal.

Navigation and planning: In this phase, a path
with minimum cost is determined by solving the multiple
travelling salesman problem (MTSP)b9 64 based on a
cluster-first, route-second heuristic approach.

Map construction: As robots explore new areas, a
new information is gathered, added to the current inform-
ation, and a global map is created and broadcasted to
other robots. The entire exploration process is repeated.
Full details about the HDec-POSMDPs can be found in
[59, 60].

3.3 Architecture design of cloud-based
HDec-POSMDPs MRS exploration
and fire searching

In order to implement the cloud based HDec-POSM-
DPs MRS exploration and fire searching algorithm, the
spouts and bolts that connect the cloud computation en-
gine and the message broker should be designed first.

As shown in Fig. 5, six spouts are defined to represent
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all the required information to be entered to the compu-
tation module. The first four spouts represent the robot
state (laser range finder, pose share, odometry and ther-
mopile temperature spout). The fifth spout receives the
robot configuration parameters (such as control fre-
quency, min/max velocity, start and goal pose, etc.). The
sixth spout is the timer spout which asks the dispatcher if
it needs a new tuple or not.

The distribution of all computation tasks required for
the cloud based HDec-POSMDPs MRS exploration and
fire searching algorithm is divided into a number of bolts
as shown in Fig.5. During the task execution all robots
must share their states periodically to a predefined cloud
channel; therefore, they can share their newest state with
each other. The cloud-based HDec-POSMDPs MRS ex-
ploration and fire searching computation module receive
all the input data through the specified spouts, process it
in specific bolts and publish the computed commands to
the message broker respectively.

The proposed cloud-based HDec-POSMDPs is imple-
mented using eight bolts as shown in Fig.5 and the func-
tion of each bolt is discussed as following;:

Motion planner bolt: The input for these bolts is
sent through the configuration spout, to do the following:

1) Generate a set of global paths based on the start
and goal poses of each robot.

2) Calculate the cost of all paths, and allow each ro-
bot to move through the shortest path using MTSP.

3) Generate a time state record, and feed it to dis-
patcher bolt that triggers control commands to the given
period.

Task planner bolt: These bolts receive a tuple of
data from the configuration spout, and do the following
steps:

1) Determine the suitable cell location and assign it to
the winning robot according to the minimum distance
between the cell location and all the robot team.

2) Construct the global map by collecting the local
maps generated by each robot.

3) Generate a custom-record including some informa-
tion about robot locations, neighbors, connection, states,
control frequency, min/max velocity, and local map. This
information is sent to other bolts to assign a robot to best
cell bolt or to avoid obstacles bolt, etc.

4) Generate a time state object to record the last time
of controlling the robot or publishing the data of other
teammates, and feed it to dispatcher bolt that triggers
control commands to the given period.

5) Generate a local map object that contains informa-
tion about robots’ local map.

6) Generate a pose share message which contains the
basic shared knowledge between a robot team.

The dispatcher bolt: It receives a tuple of data
from the timer spout every step to get the local map and
publish the control commands.

Each of the following bolts is used to perform a specif-

ic task when receiving a tuple of data from motion and
task planner bolts. After finalizing this task, a set of con-
trol commands is sent to the robot to take action, and
another tuple of information is sent back to the dispatch-
er to report the termination of the task. The sent inform-
ation includes the robot ID to ensure that the command
control will be sent to the correct robot in MRS.

Get robot state bolt: Compute robot velocities,
move it to unassigned frontier, count number of turns,
and create a new robot state. The final state of the robot
is published using a pose share messages and the related
commands will be sent to message broker.

Get local map bolt: Uses the shared robot states
between robots, sets the initial plans generated from start
to goal cell, gets the frontier cell between explored and
unexplored cell and detects the fire region in the map.

Avoid obstacles bolt: It contains three modules to
observe the map and other teammate status, send the ro-
bot to unassigned or unexplored cells and computes the
robot velocity to ensure the collision avoidance.

Assign a robot to best cell bolt: It contains three
modules, the first one to determine the location of the
target cell, the second one to assign robots to the best
target, and the third one to compute the cost of the path.

Construct global map bolt: It contains four mod-
ules to count the number of steps to the goal, number of
turns, and number of hops and compute the energy con-
sumption during the task.

4 Experiments and results

In this paper, some experiments have been performed
to check and verify the implementation of the proposed
cloud-based HDec-POSMDPs MRS exploration and fire
searching algorithm. The Simbad simulator is used to
evaluate the performance of the applied algorithm by
simulating a number of differential robots with many
types of measuring devices like pose share, range finder
sensor, thermopile temperature, odometry, etc.[50; 53],

The Gateway cloud driver and ROS are deployed to-
gether with the Simbad simulator on a local desktop com-
puter while the computation engine and Rabbitmq
message broker are deployed in IoT cloud robotics plat-
form on a virtual machine with 4 GB memory storage and
2 CPU cores at 1.89 GHz. The hardware specification and
configurations of 12 cores with six computation nodes are
presented in Table 1. In our experiments, the maximum
number of parallel instances for each computed bolt is
limited to six instances to ensure the process parallelism,
and for robot state bolt, it is limited to three instances in
order to observe their effect on the performance of the
task. The remaining components in the Apache Storm ap-
plication Topology such as (Rabbitmgq, ZooKeeper and
Storm master node) have only one instance for each.

The information collected by each robot is published
to ROS via Simbad simulator, and the cloud driver will
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Table 1 System hardware specification

Specifications VMs in cloud Local host

Intel(R) Core(TM)

CPU model Intel Core i5 3437U

i7-3632QM
CPU
Frequency/MHz 1895.5 MHz 2893 MHz
Cores 2 4
Thread per core 2 2
Memory/MB 4GB 16384
oS Windows 10 Pro- i1 4ws 10 Pro 64-bit
64-bit
Hypervisor KVM None

convert it into custom-records to be processed by the
HDec-POSMDPs MRS exploration and fire searching al-
gorithm.

The following metrics are used in the performance
evaluation of our algorithm:

1) Delays coming from the computation-nodes (Mean-
time) to complete the task for a different number of ro-
bots with a different parallelism.

2) Number of steps taken by each robot to accom-
plish the task.

3) Number of turns taken by a robot team when it
faces an obstacle or other robot.

4) Average energy consumption by a robot.

5) Number of hops taken to accomplish the task.

The number of parallelism for the four aforemen-
tioned bolts is set to six and the number of parallelism
for getting the robot state bolt is set to three.

First, the proposed implementation is used to per-
form the environment exploration and fire searching for a
selected environment which consists of 800 x 600 cells us-
ing four robots initialized on a single line of different loca-
tions within the environment, and with three fire sources
(represents as cubes in Fig.6(a) and as a squares in
Fig.6(b) distributed as shown in Figs.6(a) and 6(b)).
Simbad simulator does not have the capability of draw-
ing the explored area and robot paths graphically. So all
of these parameters are recorded during the exploration
process into log files. And the recorded data is plotted
and analyzed wusing another third party software
(Matlab).

Fig.6 (a) describe a moderate environment used for
testing the cloud-based implementation of HDec-POSM-
DPs MRS exploration and fire searching algorithm, and
its equivalent plot in Matlab is plotted in Fig.6(b)
(Robots 1-4 are represented as a circle, pentagon,
hexagon and diamond respectively, and fire sources are
represented as squares, obstacles are represented as tri-
angles of different lengths and widths). All the robots are
starting to explore the environment and search for the
fire sources distributed through the environment in a co-
ordinated manner based on the implementation of the
cloud-based HDec-POSMDPs.
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Fig. 6 Test environment

Figs.7(a) and 7 (b) shows the progress of the explora~
tion process by all the participating robots after 300 time
steps and 1000 time steps, respectively.

The plotted data in Fig.7 indicates that the burden of
the exploration process is divided between all the robots,
not all the robots explore the same area. Also, there was
a common area between all robots in which the robots
need to communicate and publish the measured informa-
tion.

The MRS exploration and fire searching process is
considered as a cooperative process, in which each robot
participates in the process by navigating through the en-
vironment and performing all the tasks explored in
Section 3.2. Because each robot is behaving differently
than the other robots based on its sensors reading and its
decision. Figs.8 and 9 shows the path generated by ro-
bots 2 after 300 time steps and 1000 time steps, respect-
ively.

We have tried to perform the same task using a differ-
ent number of robots range from 2 to 10 robots. The
command latency is around 50ms for robots to finish
commands effectively and frequencies are set to 20Hz.
Robots are deployed in a complex environment gener-
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Fig. 8 Generated paths by Robot 2 after 300 time steps

ated by the Simbad robot simulator and modelled as an
occupancy grid of a size 800m x 600m with 0.05 resolu-
tion and occupied by a set of randomly distributed
obstacles. And the experimental runs are done for every
500s as shown in Figs.10(a) and 10 (b) when the number
of parallelism for each computation bolts is set to six and
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Fig. 9 Path followed by Robot 2 after 1000 time steps
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Fig. 10 Average commands delay and task completion
meantime (NPC=6)

the number of parallelism for robot state bolt is set to
three.
The plotted data in Figs.10(a) and 10(b) indicates
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that as the number of robots starts to increase, the delay
of other bolts is decreased, and finally causes the average
completion time to decrease task time. Roughly speaking,
when the number of robots increases, the collisions
between the robots team will happen which in turn leads
to increasing the delay of other bolts, but in our case
there is a coordination and cooperation between the ro-
bot team which prevents the collision with robots them-
selves or with obstacles which leads to decreasing the av-
erage completion of task time.

Figs.11(a) and 11 (b) shows the number of steps that
are required to complete the task when using different
sizes of robot teams and the number of parallelism for
each computation bolt varies from two to six and the
number of parallelism for robot state bolt is changed one
time to one and another to three to observe its effect on
the system performance.

The results shown in Figs.11(a) and 11 (b) indicate
that as the number of robots starts to increase from two
to ten robots, the number of steps required is decreased

1 600
N H Number of parallelism for
8 1400 F computational com@andSZZ
% I Number of parallelism for
S 1200 | computational commands=4
= B Number of parallelism for
g 1 000 computational commands=6
<
& 800
5
% 600
a
8
< 400
5]
2
= 200
z

0
2 4 6 8 10
Number of robots
(a)NPC=1

1 600
i E Number of parallelism for
E 1400 + computational commands=2
Z B Number of parallelism for
,§ 1200 + computational commands=4
% E Number of parallelism for
g 1000 } computational commands=6
<
& 800
5
2 600 f
g
< 400
S
2
£ 200 +
Z:

0
2 4 6 8 10
Number of robots
(b) NPC =3
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even when the robot state bolt parallelism increases from
one to three. Therefore, the obtained results show that as
robot team size increases, the required steps to accom-
plish the task will be decreased.

The number of the parallelism commands is changed
from 2 to 4 as shown in Figs.12 and 13 to observe its ef-
fect on the task performance. As shown from Figs.12 and
13, robots do not collide with each other during the co-
ordination. This means that the delay decreases even
when the robot state bolt parallelism increases from one
to three. So that, an increase of robot states instances
does not improve the task performance in this experi-
mental test; because its computational load is very small
if it is compared to the bolts computational load. Finally,
we can say that increasing the parallelism of computa-
tional bolts decreases the delay for new commands and
maintains good performance when the number of robots
increases.

Figs.14(a) and 14(b) plots a relation between the
numbers of turns taken by each robot in the team to ac-
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Fig. 12 Meantime task completion time and average
commands delay when NPC =1
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complish the task versus the number of robots when us-
ing different sizes of robot teams and the number of par-
allelism for each computation bolt varies from two to six
and the number of parallelism for robot state bolt is
changed one time to one and another to three. The ob-
tained results show that the number of turns needed to
accomplish the task decreases when the size of the robot
team increases even when the robot state bolt parallel-
ism increases from one to three.

The average energy consumption is studied for differ-
ent numbers of mobile robots; because of the acceleration
and deceleration caused by stopping and turning the ro-
bot, the robot may consume a large amount of energy be-
cause the path may have short distance but consumes
more energy since the robot states have different direc-
tions. Therefore, it is always preferable to have an effi-
cient energy path with a moderate loss of distance.

Figs.15(a) and 15(b) shows the energy consumed by
different team sizes of robots where the number of paral-
lelism for each computation bolts varies from two to six
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Fig. 14 Number of turns for different number of parallelism
commands (NPC)

and the number of parallelism for robot state bolt is
changed from one to three. It shows that the energy con-
sumed decreases when the size of the robot team in-
creases even when the robot state bolt parallelism in-
creases from one to three.

The communication overlapping between robots in an
MRS can be minimized by establishing a communication
mechanism to coordinate between robots in an MRS. Ro-
bots can share their local information to each other at
every step of the movement in order to collect their local
maps. The link bridges that are established to connect a
pair of robots may have multiple jumps or hops, each of
them may raise some delay in the communication net-
work between the robot team.

The integration of local maps is done in the cloud
framework to build the global map. Therefore, as a small
number of communication paths is constructed, which de-
creases the total number of hop countsl’l. Fig.16 shows
the total number of hops needed when using a team of
2 robots; it remains within a range of (19 to 36), for 4 ro-
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bots it remains within a range of (27 to 58), for a six ro-
bot team it remains within a range of (27 to 69), for an
eight robot team it remains within a range of (42 to 82),
and for a ten robot team it remains within a range of (50
to 89) which means that a small number of hops to com-
plete the task is required when using IoT cloud robotics
framework; so, it improves the performance of the task.

5 Conclusions and future works

The HDec-POSMDPs MRS exploration and fire
searching algorithm is implemented based on the IoT
cloud frame work. The result of the implementation indic-
ates that expensive and tedious computation can be off-
loaded to the cloud robotics servers. The proposed al-
gorithm achieves significant improvements in the compu-
tation burden of the whole task relative to a traditional
MRS performing the same task. The preliminary evalu-
ation of this implementation demonstrates that increas-
ing the parallelism of computational instances decreases
the delay for new actuation commands which leads to de-
creasing the mean-time of task completion, minimizing
the number of turns in the path from the start pose cells
to the target cells, and reducing the energy consumed by
each robot.

In the future, this approach must be studied for real-
time robots and the QoS must be considered. Another ro-
bot application need to be implemented and its perform-
ance must be studied to increase the MRS capabilities.

References

(1] S. M. Wen, B. Ding, H. M. Wang, B. Hu, H. Liu, P. C. Shi.
Towards migrating resource-consuming robotic software
packages to cloud. In Proceedings of IEEE International
Conference on Real-time Computing and Robotics, IEEE,
Angkor Wat, Cambodia, pp.283-288, 2016. DOI: 10.
1109/RCAR.2016.7784040.

[2] R. Janssen, R. Van De Molengraft, H. Bruyninckx, M.
Steinbuch. Cloud based centralized task control for hu-
man domain multi-robot operations. Intelligent Service
Robotics, vol.9, no.1, pp.63-77, 2016. DOI: 10.1007/
s11370-015-0185-y.

[3] J. Salmerén-Garcia, P. fiigo-Blasco, F. Diaz-del-Rio, D.
Cagigas-Muiiiz. A tradeoff analysis of a cloud-based robot
navigation assistant using stereo image processing. IEEE
Transactions on Automation Science and Engineering,
vol. 12, no. 2, pp.444-454, 2015. DOI: 10.1109/TASE.2015.
2403593.

[4] H.J.Li, A. G. Song. Architectural design of a cloud robot-
ic system for upper-limb rehabilitation with multimodal
interaction. Journal of Computer Science and Technology,
vol. 32, no.2, pp.258-268, 2017. DOI: 10.1007/s11390-017-
1720-4.

(5] A. Manzi, L. Fiorini, R. Esposito, M. Bonaccorsi, I. Man-
nari, P. Dario, F. Cavallo. Design of a cloud robotic sys-
tem to support senior citizens: The KuBo experience.
Autonomous Robots, vol.41, no.3, pp.699-709, 2017.
DOI: 10.1007/s10514-016-9569-x.

6] C.Y.Li,I. H. Li, Y. H. Chien, W. Y. Wang, C. C. Hsu. Im-


http://dx.doi.org/10.1109/RCAR.2016.7784040
http://dx.doi.org/10.1109/RCAR.2016.7784040
http://dx.doi.org/10.1007/s11370-015-0185-y
http://dx.doi.org/10.1007/s11370-015-0185-y
http://dx.doi.org/10.1109/TASE.2015.2403593
http://dx.doi.org/10.1109/TASE.2015.2403593
http://dx.doi.org/10.1007/s11390-017-1720-4
http://dx.doi.org/10.1007/s11390-017-1720-4
http://dx.doi.org/10.1007/s10514-016-9569-x
http://dx.doi.org/10.1109/RCAR.2016.7784040
http://dx.doi.org/10.1109/RCAR.2016.7784040
http://dx.doi.org/10.1007/s11370-015-0185-y
http://dx.doi.org/10.1007/s11370-015-0185-y
http://dx.doi.org/10.1109/TASE.2015.2403593
http://dx.doi.org/10.1109/TASE.2015.2403593
http://dx.doi.org/10.1007/s11390-017-1720-4
http://dx.doi.org/10.1007/s11390-017-1720-4
http://dx.doi.org/10.1007/s10514-016-9569-x

A. El Shenawy et al. / HDec-POSMDPs MRS Exploration and Fire Searching Based on IoT Cloud Robotics 375

(10]

(1]

(12]

(13]

(14]

(15]

[16]

(17]

18]

proved Monte Carlo localization with robust orientation
estimation based on cloud computing. In Proceedings of
IEEE Congress on Evolutionary Computation, IEEE,
Vancouver, Canada, pp.4522-4527, 2016. DOI: 10.
1109/CEC.2016.7744365.

E. Tosello, Z. J. Fan, A. G. Castro, E. Pagello. Cloud-
based task planning for smart robots. In Proceedings of the
14th International Conference on Intelligent Autonomous
Systems, Springer, Shanghai, China, pp.285-300, 2017.
DOI: 10.1007/978-3-319-48036-7_21.

R. Limosani, A. Manzi, L. Fiorini, F. Cavallo, P. Dario.
Enabling global robot navigation based on a cloud robot-
ics approach. International Journal of Social Robotics,
vol. 8, no.3, pp.371-380, 2016. DOI: 10.1007/s12369-016-
0349-8.

A. Rahman, J. Jin, A. Cricenti, A. Rahman, M. Palan-
iswami, T. Luo. Cloud-enhanced robotic system for smart
city crowd control. Journal of Sensor and Actuator Net-
works, vol. 5, pp.20-36, 2016. DOI: 10.3390/jsan5040020.

L. J. Wang, M. Liu, M. Q. H. Meng. A pricing mechanism
for task oriented resource allocation in cloud robotics. Ro-
bots and Sensor Clouds, Koubaa A., Shakshuki E., Eds.,
Cham, Germany: Springer, vol.36, pp.3-31, 2016. DOI:
10.1007/978-3-319-22168-7 1.

A. Manzi, L. Fiorini, R. Limosani, P. Sin¢ak, P. Dario, F.
Cavallo. Use case evaluation of a cloud robotics teleopera-
tion system. In Proceedings of the 5th IEEFE International
Conference on Cloud Networking, 1IEEE, Pisa, Italy,
pp.208-211, 2016. DOI: 10.1109/CloudNet.2016.49.

A. Rodi¢, M. Jovanovi¢, M. Vujovi¢, D. Urukalo. Applica-
tion-driven cloud-based control of smart multi-robot store
scenario. In Proceedings of the 25th Conference on Robot-
ics in Alpe-Adria-Danube Region, Springer, Belgrade, Ser-
bia, pp.347-357, 2016. DOI: 10.1007/978-3-319-49058-
8 38.

A. G. Thallas, K. Panayiotou, E. Tsardoulias, A. L. Sy-
meonidis, P. A. Mitkas, G. G. Karagiannis. Relieving ro-
bots from their burdens: The cloud agent concept. In Pro-
ceedings of the 5th IEEE International Conference on
Cloud Networking, IEEE, Pisa, Italy, pp.188-191, 2016.
DOI: 10.1109/CloudNet.2016.38.

A. Rahman, J. Jin, Y. W. Wong, K. S. Lam. Development
of a cloud-enhanced investigative mobile robot. In Pro-
ceedings of International Conference on Advanced
Mechatronic Systems, IEEE, Melbourne, Australia,
pp.104-109, 2016. DOIL  10.1109/ICAMechS.2016.
7813429.

L. J. Wang, M. Liu, M. Q. H. Meng. Real-time multis-
ensor data retrieval for cloud robotic systems. IEEE
Transactions on Automation Science and Engineering,
vol. 12, no. 2, pp.507-518, 2015. DOI: 10.1109/TASE.2015.
2408634.

G. Ermacora, A. Toma, R. Antonini, S. Rosa. Leveraging
open data for supporting a cloud robotics service in a
smart city environment. In Proceedings of the 13th Inter-
national Conference IAS-13, Springer, Padua, Italy,
pp.527-538, 2016. DOI: 10.1007/978-3-319-08338-4_39.

D. Lorencik, J. Ondo, P. Sincak, H. Wagatsuma. Cloud-
based image recognition for robots. In Proceedings of the
3rd International Conference on Robot Intelligence Tech-
nology and Applications, Springer, Beijing, China, pp. 785—
796, 2015. DOI: 10.1007/978-3-319-16841-8 71.

T. Nam Khoon, P. Sebastian, A. B. S. Saman. Autonom-
ous fire fighting mobile platform. Procedia Engineering,

[19]

20]

(21]

22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

vol.41, pp.1145-1153, 2012. DOI: 10.1016/].proeng.2012.
07.294.

Y. D. Kim, Y. G. Kim, S. H. Lee, J. H. Kang, J. An. Port-
able fire evacuation guide robot system. In Proceedings of
IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems, IEEE, St. Louis, USA, pp.2789-2794,
2009. DOI: 10.1109/IR0OS.2009.5353970.

P. H. Chang, Y. H. Kang, G. R. Cho, J. H. Kim, M. L. Jin,
J. Lee, J. W. Jeong, D. K. Han, J. H. Jung, W. J. Lee, Y.
B. Kim. Control architecture design for a fire searching ro-
bot using task oriented design methodology. In Proceed-
ings of SICE-ICASE International Joint Conference,
IEEE, Busan, South Korea, pp.3126-3131, 2006. DOI: 10.
1109/SICE.2006.314817.

H. S. Sucuoglu, I. Bogrekci, P. Demircioglu. Development
of mobile robot with sensor fusion fire detection unit.
IFAC-PapersOnLine, vol.51, no.30, pp.430-435, 2018.
DOI: 10.1016/j.ifacol.2018.11.324.

K. L. Su. Automatic fire detection system using adaptive
fusion algorithm for fire fighting robot. In Proceedings of
IEEE International Conference on Systems, Man and Cy-
bernetics, IEEE, Taipei, China, pp.966-971, 2006. DOI:
10.1109/ICSMC.2006.384525.

B. Hu, H. M. Wang, P. F. Zhang, B. Ding, H. M. Che.
Cloudroid: A cloud framework for transparent and QoS-
aware robotic computation outsourcing. In Proceedings of
the 10th IEEE International Conference on Cloud Com-
puting, IEEE, Honolulu, USA, pp.114-121, 2017. DOI: 10.
1109/CLOUD.2017.23.

Y. Y. Li, H. M. Wang, B. Ding, P. C. Shi, X. Liu. Toward
QoS-aware cloud robotic applications: A hybrid architec-
ture and its implementation. In Proceedings of Interna-
tional IEEE Conferences on Ubiquitous Intelligence &
Computing, Advanced and Trusted Computing, Scalable
Computing and Communications, Cloud and Big Data
Computing, Internet of People, and Smart World Con-
gress, IEEE, Toulouse, France, pp.33-40, 2016. DOI:
10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.
2016.0028.

L. Zhang, H. X. Zhang, Z. Fang, X. B. Xiang, M. Huchard,
R. Zapata. Towards an architecture-centric approach to
manage variability of cloud robotics. In Proceedings of
DSLRob: Domain-specific Languages and Models for RO-
Botic Systems, HAL, Hamburg, Germany, 2015.

H. Z. Chen, G. H. Tian, F. Lu, G. L. Liu. A hybrid cloud
robot framework based on intelligent space. In Proceed-
ings of the 12th World Congress on Intelligent Control and
Automation, IEEE, Guilin, China, pp.2996-3001, 2016.
DOI: 10.1109/WCICA.2016.7578487.

C. Razafimandimby, V. Loscri, A. M. Vegni. Towards effi-
cient deployment in internet of robotic things. Integration,
Interconnection, and Interoperability of IoT Systems, R.
Gravina, C. E. Palau, M. Manso, A. Liotta, G. Fortino,
Eds., Cham, Germany: Springer, pp.21-37, 2018. DOI:
10.1007/978-3-319-61300-0_2.

P. P. Ray. Internet of robotic things: Concept, technolo-
gies, and challenges. IEEE Access, vol.4, pp.9489-9500,
2016. DOI: 10.1109/ACCESS.2017.2647747.

H. H. Yan, Q. S. Hua, Y. Y. Wang, W. G. Wei, M. Imran.
Cloud robotics in smart manufacturing environments:
Challenges and countermeasures. Computers & FElectrical
Engineering, vol.63, pp.56-65, 2017. DOIL: 10.1016/j.
compeleceng.2017.05.024.

R. Doriya, P. Sao, V. Payal, V. Anand, P. Chakraborty. A

@ Springer


http://dx.doi.org/10.1109/CEC.2016.7744365
http://dx.doi.org/10.1109/CEC.2016.7744365
http://dx.doi.org/10.1007/978-3-319-48036-7_21.()
http://dx.doi.org/10.1007/978-3-319-48036-7_21.()
http://dx.doi.org/10.1007/s12369-016-0349-8
http://dx.doi.org/10.1007/s12369-016-0349-8
http://dx.doi.org/10.3390/jsan5040020
http://dx.doi.org/10.1007/978-3-319-22168-7_1
http://dx.doi.org/10.1007/978-3-319-22168-7_1
http://dx.doi.org/10.1109/CloudNet.2016.49
http://dx.doi.org/10.1007/978-3-319-49058-8_38
http://dx.doi.org/10.1007/978-3-319-49058-8_38
http://dx.doi.org/10.1007/978-3-319-49058-8_38
http://dx.doi.org/10.1109/CloudNet.2016.38
http://dx.doi.org/10.1109/ICAMechS.2016.7813429
http://dx.doi.org/10.1109/ICAMechS.2016.7813429
http://dx.doi.org/10.1109/TASE.2015.2408634
http://dx.doi.org/10.1109/TASE.2015.2408634
http://dx.doi.org/10.1007/978-3-319-08338-4_39
http://dx.doi.org/10.1007/978-3-319-08338-4_39
http://dx.doi.org/10.1007/978-3-319-16841-8_71
http://dx.doi.org/10.1007/978-3-319-16841-8_71
http://dx.doi.org/10.1016/j.proeng.2012.07.294
http://dx.doi.org/10.1016/j.proeng.2012.07.294
http://dx.doi.org/10.1109/IROS.2009.5353970
http://dx.doi.org/10.1109/SICE.2006.314817
http://dx.doi.org/10.1109/SICE.2006.314817
http://dx.doi.org/10.1016/j.ifacol.2018.11.324
http://dx.doi.org/10.1109/ICSMC.2006.384525
http://dx.doi.org/10.1109/CLOUD.2017.23
http://dx.doi.org/10.1109/CLOUD.2017.23
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0028
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0028
http://dx.doi.org/10.1109/WCICA.2016.7578487
http://dx.doi.org/10.1007/978-3-319-61300-0_2
http://dx.doi.org/10.1007/978-3-319-61300-0_2
http://dx.doi.org/10.1109/ACCESS.2017.2647747
http://dx.doi.org/10.1016/j.compeleceng.2017.05.024
http://dx.doi.org/10.1016/j.compeleceng.2017.05.024
http://dx.doi.org/10.1109/CEC.2016.7744365
http://dx.doi.org/10.1109/CEC.2016.7744365
http://dx.doi.org/10.1007/978-3-319-48036-7_21.()
http://dx.doi.org/10.1007/978-3-319-48036-7_21.()
http://dx.doi.org/10.1007/s12369-016-0349-8
http://dx.doi.org/10.1007/s12369-016-0349-8
http://dx.doi.org/10.3390/jsan5040020
http://dx.doi.org/10.1007/978-3-319-22168-7_1
http://dx.doi.org/10.1007/978-3-319-22168-7_1
http://dx.doi.org/10.1109/CloudNet.2016.49
http://dx.doi.org/10.1007/978-3-319-49058-8_38
http://dx.doi.org/10.1007/978-3-319-49058-8_38
http://dx.doi.org/10.1007/978-3-319-49058-8_38
http://dx.doi.org/10.1109/CloudNet.2016.38
http://dx.doi.org/10.1109/ICAMechS.2016.7813429
http://dx.doi.org/10.1109/ICAMechS.2016.7813429
http://dx.doi.org/10.1109/TASE.2015.2408634
http://dx.doi.org/10.1109/TASE.2015.2408634
http://dx.doi.org/10.1007/978-3-319-08338-4_39
http://dx.doi.org/10.1007/978-3-319-08338-4_39
http://dx.doi.org/10.1007/978-3-319-16841-8_71
http://dx.doi.org/10.1007/978-3-319-16841-8_71
http://dx.doi.org/10.1016/j.proeng.2012.07.294
http://dx.doi.org/10.1016/j.proeng.2012.07.294
http://dx.doi.org/10.1109/IROS.2009.5353970
http://dx.doi.org/10.1109/SICE.2006.314817
http://dx.doi.org/10.1109/SICE.2006.314817
http://dx.doi.org/10.1016/j.ifacol.2018.11.324
http://dx.doi.org/10.1109/ICSMC.2006.384525
http://dx.doi.org/10.1109/CLOUD.2017.23
http://dx.doi.org/10.1109/CLOUD.2017.23
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0028
http://dx.doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0028
http://dx.doi.org/10.1109/WCICA.2016.7578487
http://dx.doi.org/10.1007/978-3-319-61300-0_2
http://dx.doi.org/10.1007/978-3-319-61300-0_2
http://dx.doi.org/10.1109/ACCESS.2017.2647747
http://dx.doi.org/10.1016/j.compeleceng.2017.05.024
http://dx.doi.org/10.1016/j.compeleceng.2017.05.024

376

(31]

(32]

34]

(35]

(36]

37]

(38]

(39]

(40]

[41]

International Journal of Automation and Computing 17(3), June 2020

review on cloud robotics based frameworks to solve simul-
taneous localization and mapping (SLAM) problem. Inter-
national Journal of Advances in Computer Science and
Cloud Computing, vol.3, no. 1, pp.40-45, 2015.

L. H. Wang, X. V. Wang. Resource efficiency calculation
as a cloud service. Cloud-based Cyber-physical Systems in
Manufacturing, L. H. Wang, X. V. Wang, Eds., Cham,
Germany: Springer, pp.195-209, 2018. DOI: 10.1007/978-
3-319-67693-7_8.

R. Arumugam, V. R. Enti, L. B. B. Liu, X. J. Wu, K. Bas-
karan, F. F. Kong, A. S. Kumar, K. D. Meng, G. W. Kit.
DAvinCi: A cloud computing framework for service ro-
bots. In Proceedings of IEEE International Conference on
Robotics and Automation, IEEE, Anchorage, USA,
pp.-3084-3089, 2010. DOI: 10.1109/ROBOT.2010.
5509469.

M. Garzoén, J. Valente, J. J. Roldan, D. Garzén-Ramos, J.
De Ledn, A. Barrientos, J. Del Cerro. Using ROS in multi-
robot systems: Experiences and lessons learned from real-
world field tests. Robot Operating System (ROS), A.
Koubaa, Ed., Cham, Germany: Springer, pp.449-483,
2017. DOI: 10.1007/978-3-319-54927-9_14.

J. H. Xiao, D. Xiong, W. J. Yao, Q. H. Yu, H. M. Lu, Z. Q.
Zheng. Building software system and simulation environ-
ment for RoboCup MSL soccer robots based on ROS and
gazebo. Robot Operating System (ROS), A. Koubaa, Ed.,
Cham, Germany: Springer, pp.597-631, 2017. DOI:
10.1007/978-3-319-54927-9_18.

P. Yun, J. H. Jiao, M. Liu. Towards a cloud robotics plat-
form for distributed visual SLAM. In Proceedings of the
11th International Conference on Computer Vision Sys-
tems, Springer, Shenzhen, China, pp.3-15, 2017. DOI:
10.1007/978-3-319-68345-4 1.

X. V. Wang, L. H. Wang, A. Mohammed, M. Givehchi.
Ubiquitous manufacturing system based on cloud: A ro-
botics application. Robotics and Computer-Integrated
Manufacturing, vol.45, pp.116-125, 2017. DOI: 10.1016/
j.rcim.2016.01.007.

W. H. Chen, Y. Yaguchi, K. Naruse, Y. Watanobe, K. Na-
kamura. QoS-aware robotic streaming workflow alloca-
tion in cloud robotics systems. IEEE Transactions on Ser-
vices Computing, to be published. DOI: 10.1109/TSC.
2018.2803826.

J.F. Wan, S. L. Tang, H. H. Yan, D. Li, S. Y. Wang, A. V.
Vasilakos. Cloud robotics: Current status and open issues.
IEEE Access, vol.4, pp.2797-2807, 2016. DOI: 10.1109/
ACCESS.2016.2574979.

E. Cardarelli, V. Digani, L. Sabattini, C. Secchi, C. Fan-
tuzzi. Cooperative cloud robotics architecture for the co-
ordination of multi-AGV systems in industrial ware-
houses. Mechatronics, vol.45, pp.1-13, 2017. DOI: 10.
1016/j.mechatronics.2017.04.005.

G. Q. Hu, W. P. Tay, Y. G. Wen. Cloud robotics: Archi-
tecture, challenges and applications. IEEE Network,
vol.26, mno.3, pp.21-28, 2012. DOI: 10.1109/MNET.
2012.6201212.

A. Saxena, A. Jain, O. Sener, A. Jami, D. K. Misra, H. S.
Koppula. RoboBrain: Large-scale knowledge engine for ro-
bots.  [Online],  Available:  https://arxiv.org/abs/
1412.0691.

J. F. Wan, S. L. Tang, Q. S. Hua, D. Li, C. L. Liu, J.
Lloret. Context-aware cloud robotics for material hand-
ling in cognitive industrial internet of things. IEEFE Inter-
net of Things Journal, vol.5, no.4, pp.2272-2281, 2018.

@ Springer

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

52]

(53]

[54]

DOI: 10.1109/JI0T.2017.2728722.

B. W. Liu, Y. Chen, E. Blasch, K. Pham, D. Shen, G. S.
Chen. A holistic cloud-enabled robotics system for real-
time video tracking application. Future Information Tech-
nology, J. J. Park, I. Stojmenovic, M. Choi, F. Xhafa,
Eds., Berlin Heidelberg, Germany: Springer, pp.455-468,
2014. DOI: 10.1007/978-3-642-40861-8 64.

M. Bonaccorsi, L. Fiorini, F. Cavallo, A. Saffiotti, P.
Dario. A cloud robotics solution to improve social assist-
ive robots for active and healthy aging. International
Journal of Social Robotics, vol.8, no.3, pp.393-408, 2016.
DOI: 10.1007/s12369-016-0351-1.

M. Tenorth, K. Kamei, S. Satake, T. Miyashita, N. Hagita.
Building knowledge-enabled cloud robotics applications
using the ubiquitous network robot platform. In Proceed-
ings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, Tokyo, Japan, pp.5716-5721,
2013. DOI: 10.1109/IR0S.2013.6697184.

G. Mohanarajah, D. Hunziker, R. D’Andrea, M. Waibel.
Rapyuta: A cloud robotics platform. IEEE Transactions
on Automation Science and Engineering, vol.12, no.2,
pp-481-493, 2015. DOI: 10.1109/TASE.2014.2329556.

D. Hunziker, M. Gajamohan, M. Waibel, R. D’Andrea.
Rapyuta: The RoboEarth cloud engine. In Proceedings of
IEEFE International Conference on Robotics and Automa-
tion, IEEE, Karlsruhe, Germany, pp.438-444, 2013. DOI:
10.1109/ICRA.2013.6630612.

G. Mohanarajah, V. Usenko, M. Singh, R. D’Andrea, M.
Waibel. Cloud-based collaborative 3D mapping in real-
time with low-cost robots. IEEE Transactions on Automa-
tion Science and Engineering, vol.12, no.2, pp.423-431,
2015. DOI: 10.1109/TASE.2015.2408456.

H. Bao, H. M. Wang, B. Ding, S. N. Shang. Cloud-based
knowledge sharing in cooperative robot tracking of mul-
tiple targets with deep neural network. In Proceedings of
the 24th International Conference on Neural Information
Processing, Springer, Guangzhou, China, pp.71-80, 2017.
DOI: 10.1007/978-3-319-70136-3_8.

S. Kamburugamuve, H. J. He, G. Fox, D. Crandall. Cloud-
based parallel implementation of SLAM for mobile robots.
In Proceedings of the International Conference on Inter-
net of things and Cloud Computing, ACM, Cambridge,
UK, Article number 48, 2016. DOI: 10.1145/2896387.
2896433.

H. J. He, S. Kamburugamuve, G. C. Fox, W. Zhao. Cloud
based real-time multi-robot collision avoidance for swarm
robotics. International Journal of Grid and Distributed
Computing, vol.9, no. 6, pp. 339-358, 2016. DOI: 10.14257/
ijgdc.

A. Rahman, J. Jin, A. L. Cricenti, A. Rahman, A.
Kulkarni. Communication-aware cloud robotic task off-
loading with on-demand mobility for smart factory main-
tenance. IEEE Transactions on Industrial Informatics,
vol. 15, no. 5, pp.2500-2511, 2019. DOI: 10.1109/T1II.2018.
2874693.

W. H. Chen, Y. Yaguchi, K. Naruse, Y. Watanobe, K. Na-
kamura, J. Ogawa. A study of robotic cooperation in cloud
robotics: Architecture and challenges. IEEE Access, vol. 6,
pp.- 36662-36682, 2018. DOI: 10.1109/ACCESS.2018.
2852295.

S. A. Miratabzadeh, N. Gallardo, N. Gamez, K. Haradi, A.
R. Puthussery, P. Rad, M. Jamshidi. Cloud robotics: A
software architecture: For heterogeneous large-scale
autonomous robots. In Proceedings of World Automation


http://dx.doi.org/10.1007/978-3-319-67693-7_8
http://dx.doi.org/10.1007/978-3-319-67693-7_8
http://dx.doi.org/10.1007/978-3-319-67693-7_8
http://dx.doi.org/10.1109/ROBOT.2010.5509469
http://dx.doi.org/10.1109/ROBOT.2010.5509469
http://dx.doi.org/10.1007/978-3-319-54927-9_14
http://dx.doi.org/10.1007/978-3-319-54927-9_14
http://dx.doi.org/10.1007/978-3-319-54927-9_18
http://dx.doi.org/10.1007/978-3-319-54927-9_18
http://dx.doi.org/10.1007/978-3-319-68345-4_1
http://dx.doi.org/10.1007/978-3-319-68345-4_1
http://dx.doi.org/10.1016/j.rcim.2016.01.007
http://dx.doi.org/10.1016/j.rcim.2016.01.007
http://dx.doi.org/10.1109/TSC.2018.2803826
http://dx.doi.org/10.1109/TSC.2018.2803826
http://dx.doi.org/10.1109/ACCESS.2016.2574979
http://dx.doi.org/10.1109/ACCESS.2016.2574979
http://dx.doi.org/10.1016/j.mechatronics.2017.04.005
http://dx.doi.org/10.1016/j.mechatronics.2017.04.005
http://dx.doi.org/10.1109/MNET.2012.6201212
http://dx.doi.org/10.1109/MNET.2012.6201212
http://dx.doi.org/10.1109/JIOT.2017.2728722
http://dx.doi.org/10.1007/978-3-642-40861-8_64
http://dx.doi.org/10.1007/978-3-642-40861-8_64
http://dx.doi.org/10.1007/s12369-016-0351-1
http://dx.doi.org/10.1109/IROS.2013.6697184
http://dx.doi.org/10.1109/TASE.2014.2329556
http://dx.doi.org/10.1109/ICRA.2013.6630612
http://dx.doi.org/10.1109/TASE.2015.2408456
http://dx.doi.org/10.1007/978-3-319-70136-3_8
http://dx.doi.org/10.1007/978-3-319-70136-3_8
http://dx.doi.org/10.1145/2896387.2896433
http://dx.doi.org/10.1145/2896387.2896433
http://dx.doi.org/10.14257/ijgdc
http://dx.doi.org/10.14257/ijgdc
http://dx.doi.org/10.1109/TII.2018.2874693
http://dx.doi.org/10.1109/TII.2018.2874693
http://dx.doi.org/10.1109/ACCESS.2018.2852295
http://dx.doi.org/10.1109/ACCESS.2018.2852295
http://dx.doi.org/10.1007/978-3-319-67693-7_8
http://dx.doi.org/10.1007/978-3-319-67693-7_8
http://dx.doi.org/10.1007/978-3-319-67693-7_8
http://dx.doi.org/10.1109/ROBOT.2010.5509469
http://dx.doi.org/10.1109/ROBOT.2010.5509469
http://dx.doi.org/10.1007/978-3-319-54927-9_14
http://dx.doi.org/10.1007/978-3-319-54927-9_14
http://dx.doi.org/10.1007/978-3-319-54927-9_18
http://dx.doi.org/10.1007/978-3-319-54927-9_18
http://dx.doi.org/10.1007/978-3-319-68345-4_1
http://dx.doi.org/10.1007/978-3-319-68345-4_1
http://dx.doi.org/10.1016/j.rcim.2016.01.007
http://dx.doi.org/10.1016/j.rcim.2016.01.007
http://dx.doi.org/10.1109/TSC.2018.2803826
http://dx.doi.org/10.1109/TSC.2018.2803826
http://dx.doi.org/10.1109/ACCESS.2016.2574979
http://dx.doi.org/10.1109/ACCESS.2016.2574979
http://dx.doi.org/10.1016/j.mechatronics.2017.04.005
http://dx.doi.org/10.1016/j.mechatronics.2017.04.005
http://dx.doi.org/10.1109/MNET.2012.6201212
http://dx.doi.org/10.1109/MNET.2012.6201212
http://dx.doi.org/10.1109/JIOT.2017.2728722
http://dx.doi.org/10.1007/978-3-642-40861-8_64
http://dx.doi.org/10.1007/978-3-642-40861-8_64
http://dx.doi.org/10.1007/s12369-016-0351-1
http://dx.doi.org/10.1109/IROS.2013.6697184
http://dx.doi.org/10.1109/TASE.2014.2329556
http://dx.doi.org/10.1109/ICRA.2013.6630612
http://dx.doi.org/10.1109/TASE.2015.2408456
http://dx.doi.org/10.1007/978-3-319-70136-3_8
http://dx.doi.org/10.1007/978-3-319-70136-3_8
http://dx.doi.org/10.1145/2896387.2896433
http://dx.doi.org/10.1145/2896387.2896433
http://dx.doi.org/10.14257/ijgdc
http://dx.doi.org/10.14257/ijgdc
http://dx.doi.org/10.1109/TII.2018.2874693
http://dx.doi.org/10.1109/TII.2018.2874693
http://dx.doi.org/10.1109/ACCESS.2018.2852295
http://dx.doi.org/10.1109/ACCESS.2018.2852295

A. El Shenawy et al. / HDec-POSMDPs MRS Exploration and Fire Searching Based on IoT Cloud Robotics 377

[55]

[56]

[57]

(58]

[59]

[60]

[62]

(63]

[64]

Congress, IEEE, Rio Grande, Puerto Rico, pp.1-6, 2016.
DOI: 10.1109/WAC.2016.7583017.

N. Tian, M. Matl, J. Mahler, Y. X. Zhou, S. Staszak, C.
Correa, S. Zheng, Q. Li, R. Zhang, K. Goldberg. A cloud
robot system using the dexterity network and Berkeley ro-
botics and automation as a service (Brass). In Proceedings
of IEEE International Conference on Robotics and Auto-
mation, IEEE, Singapore, pp.1615-1622, 2017. DOI:
10.1109/ICRA.2017.7989192.

A. Koubaa, B. Qureshi. DroneTrack: Cloud-based real-
time object tracking using unmanned aerial vehicles. IEEE
Access, vol.6, pp.13810-13824, 2018. DOI: 10.1109/AC-
CESS.2018.2811762.

F. Yan, Y. S. Liu, J. Z. Xiao. Path planning in complex 3D
environments using a probabilistic roadmap method. In-
ternational Journal of Automation and Computing,
vol. 10, no. 6, pp.525-533, 2013. DOI: 10.1007/s11633-013-
0750-9.

K. Mohamed, A. Elshenawy, H. Harb. Exploration
strategies of coordinated multi-robot systems: A compar-
ative study. International Journal of Robotics and Auto-
mation, vol. 7, no. 1, pp.48-58, 2018.

K. Mohamed, A. El Shenawy, H. Harb. A hybrid decent-
ralized coordinated approach for multi-robot exploration
task. The Computer Journal, to be published. DOI:
10.1093/comjnl/bxy107.

A. El Shenawy, K. M. Khalil, H. M. Harb. A task decom-
position using (HDec-POSMDPs) approach for multi-ro-
bot exploration and fire searching. International Journal of
Imaging and Robotics, no. 19, pp.2-2019, 2019.

J. Faigl, M. Kulich, L. Pfeu¢il. Goal assignment using dis-
tance cost in multi-robot exploration. In Proceedings of
IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems, IEEE, Vilamoura, Portugal,
pp. 3741-3746, 2012. DOIL: 10.1109/IR0S.2012.6385660.

M. Al-khawaldah, T. M. Younes, I. Al-Adwan, M. Nisirat,
M. Alshamasin. Automated multi-robot search for a sta-
tionary target. International Journal of Control Science
and Engineering, vol.4, no.1, pp.9-15, 2014. DOI: 10.
5923/j.control.20140401.02.

S. Omidshafiei, A. A. Agha-Mohammadi, C. Amato, S. Y.
Liu, J. P. How, J. Vian. Decentralized control of multi-ro-
bot partially observable Markov decision processes using
belief space macro-actions. The International Journal of
Robotics Research, vol.36, no.2, pp.231-258, 2017. DOI:
10.1177/0278364917692864.

Y. Kantaros, M. M. Zavlanos. Distributed intermittent
connectivity control of mobile robot networks. IEEE
Transactions on Automatic Control, vol.2, no.7,

pp.3109-3121, 2017. DOI: 10.1109/TAC.2016.2626400.

[65] A. Pal, R. Tiwari, A. Shukla. Coordinated multi-robot ex-
ploration under connectivity constraints. Journal of In-
formation Science and Engineering, vol.29, pp.711-727,
2013.

Ayman El Shenawy received the Ph.D.
degree in systems and computer engineer-
ing from Al-Azhar University, Egypt in
2013. He is currently working as a lecturer
at Systems and Computers Engineering
Department, Faculty of Engineering Al-
Azhar University, Egypt. He already de-
‘ veloped some breakthrough research in the
VN mentioned areas. He made significant con-

tributions to the stated research fields.

His research interests include artificial intelligent methods,
robotics and machine learning.

E-mail: eaymanelshenawy@azhar.edu.eg (Corresponding au-
thor)

ORCID iD: 0000-0002-1309-6449

Khalil Mohamed received the M. Sc. de-
gree in control engineering from Al-Azhar
University, Egypt in 2015. He is currently
a Ph.D. degree candidate in robotic sys-
tems at Systems and Computers Engineer-
ing Department, Al-Azhar University,
Egypt.

His research interests includes task as-
signment in multi-robot systems, task de-
composition, predictive control and optimal control.

E-mail: mel khalil@yahoo.com

Hany Harb received the B.Sc. degree in
computers and control engineering from
Faculty of Engineering, Ain Shams Uni-
versity, Egypt in 1978, the M. Sc. degree in
computers and systems engineering from
Faculty of Engineering, Al-Azhar Uni-
versity, Egypt in 1981. He also received the
Ph.D. degree in computer science and the
M.Sc. degree in operations research
(MSOR) from Institute of Technology (IIT), USA in 1986 and
1987, respectively. He is a professor of software engineering in
System Engineering Department, Faculty of Engineering, Al-
Azhar University, Egypt.

His research interests include artificial intelligence, cloud
computing, and distributed systems.

E-mail: harbhany@yahoo.com

@ Springer


http://dx.doi.org/10.1109/WAC.2016.7583017
http://dx.doi.org/10.1109/ICRA.2017.7989192
http://dx.doi.org/10.1109/ACCESS.2018.2811762
http://dx.doi.org/10.1109/ACCESS.2018.2811762
http://dx.doi.org/10.1109/ACCESS.2018.2811762
http://dx.doi.org/10.1007/s11633-013-0750-9
http://dx.doi.org/10.1007/s11633-013-0750-9
http://dx.doi.org/10.1093/comjnl/bxy107
http://dx.doi.org/10.1109/IROS.2012.6385660
http://dx.doi.org/10.5923/j.control.20140401.02
http://dx.doi.org/10.5923/j.control.20140401.02
http://dx.doi.org/10.1177/0278364917692864
http://dx.doi.org/10.1109/TAC.2016.2626400
http://dx.doi.org/10.1109/WAC.2016.7583017
http://dx.doi.org/10.1109/ICRA.2017.7989192
http://dx.doi.org/10.1109/ACCESS.2018.2811762
http://dx.doi.org/10.1109/ACCESS.2018.2811762
http://dx.doi.org/10.1109/ACCESS.2018.2811762
http://dx.doi.org/10.1007/s11633-013-0750-9
http://dx.doi.org/10.1007/s11633-013-0750-9
http://dx.doi.org/10.1093/comjnl/bxy107
http://dx.doi.org/10.1109/IROS.2012.6385660
http://dx.doi.org/10.5923/j.control.20140401.02
http://dx.doi.org/10.5923/j.control.20140401.02
http://dx.doi.org/10.1177/0278364917692864
http://dx.doi.org/10.1109/TAC.2016.2626400
http://dx.doi.org/10.1109/WAC.2016.7583017
http://dx.doi.org/10.1109/ICRA.2017.7989192
http://dx.doi.org/10.1109/ACCESS.2018.2811762
http://dx.doi.org/10.1109/ACCESS.2018.2811762
http://dx.doi.org/10.1109/ACCESS.2018.2811762
http://dx.doi.org/10.1007/s11633-013-0750-9
http://dx.doi.org/10.1007/s11633-013-0750-9
http://dx.doi.org/10.1093/comjnl/bxy107
http://dx.doi.org/10.1109/IROS.2012.6385660
http://dx.doi.org/10.5923/j.control.20140401.02
http://dx.doi.org/10.5923/j.control.20140401.02
http://dx.doi.org/10.1177/0278364917692864
http://dx.doi.org/10.1109/TAC.2016.2626400
http://dx.doi.org/10.1109/WAC.2016.7583017
http://dx.doi.org/10.1109/ICRA.2017.7989192
http://dx.doi.org/10.1109/ACCESS.2018.2811762
http://dx.doi.org/10.1109/ACCESS.2018.2811762
http://dx.doi.org/10.1109/ACCESS.2018.2811762
http://dx.doi.org/10.1007/s11633-013-0750-9
http://dx.doi.org/10.1007/s11633-013-0750-9
http://dx.doi.org/10.1093/comjnl/bxy107
http://dx.doi.org/10.1109/IROS.2012.6385660
http://dx.doi.org/10.5923/j.control.20140401.02
http://dx.doi.org/10.5923/j.control.20140401.02
http://dx.doi.org/10.1177/0278364917692864
http://dx.doi.org/10.1109/TAC.2016.2626400
http://dx.doi.org/10.1109/TAC.2016.2626400

I International Journal of
1 \\J Automation & Computing

Cite this article as Shenawy Ayman El, Mohamed Khalil, Harb Hany. Hdec—posmdps mrs exploration and fire searching
based on iot cloud robotics. International Journal of Automation and Computing. doi: 10.1007/s11633-019-1187-6

View online: https://doi.org/10.1007/s11633-019-1187-6

Articles may interest you

Software for small-scale robotics: a review. International Journal of Automation and Computing, vol.15, no.5, pp.515, 2018.
DOI: 10.1007/s11633-018-1130-2

Improvement of electronic line-shafting control in multi-axis systems. International Journal of Automation and Computing, vol.15,
no.4, pp.474, 2018.
DOI: 10.1007/s11633-016-1031-1

Output feedback stabilization for mimo semi-linear stochastic systems with transient optimisation. International Journal of
Automation and Computing.

DOI: 10.1007/s11633-019-1193-8

Current researches and future development trend of intelligent robot: a review. International Journal of Automation and Computing,
vol.15, no.5, pp.525, 2018.
DOI: 10.1007/s11633-018-1115-1

A selective attention guided initiative semantic cognition algorithm for service robot. International Journal of Automation and
Computing, vol.15, no.5, pp.559, 2018.

DOI: 10.1007/s11633-018-1139-6

Adaptive fault tolerant control of multi-time-scale singularly perturbed systems. International Journal of Automation and Computing,
vol.15, no.6, pp.736, 2018.

DOI: 10.1007/s11633-016-0971-9

WeChat: [JAC Twitter: [JAC_Journal


http://www.ijac.net
http://www.ijac.net/en/article/doi/10.1007/s11633-019-1187-6
http://www.ijac.net/en/article/doi/10.1007/s11633-018-1130-2
https://doi.org/10.1007/s11633-018-1130-2
http://www.ijac.net/en/article/doi/10.1007/s11633-016-1031-1
https://doi.org/10.1007/s11633-016-1031-1
http://www.ijac.net/en/article/doi/10.1007/s11633-019-1193-8
https://doi.org/10.1007/s11633-019-1193-8
http://www.ijac.net/en/article/doi/10.1007/s11633-018-1115-1
https://doi.org/10.1007/s11633-018-1115-1
http://www.ijac.net/en/article/doi/10.1007/s11633-018-1139-6
https://doi.org/10.1007/s11633-018-1139-6
http://www.ijac.net/en/article/doi/10.1007/s11633-016-0971-9
https://doi.org/10.1007/s11633-016-0971-9

