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Abstract: A brain-computer interface (BCI) system is one of the most effective ways that translates brain signals into output com-
mands. Different imagery activities can be classified based on the changes in ¢ and 8 rhythms and their spatial distributions. Multi-layer
perceptron neural networks (MLP-NNs) are commonly used for classification. Training such MLP-NNs has great importance in a way
that has attracted many researchers to this field recently. Conventional methods for training NNs, such as gradient descent and recurs-
ive methods, have some disadvantages including low accuracy, slow convergence speed and trapping in local minimums. In this paper, in
order to overcome these issues, the MLP-NN trained by a hybrid population-physics-based algorithm, the combination of particle swarm
optimization and gravitational search algorithm (PSOGSA), is proposed for our classification problem. To show the advantages of using
PSOGSA that trains NNs, this algorithm is compared with other meta-heuristic algorithms such as particle swarm optimization (PSO),
gravitational search algorithm (GSA) and new versions of PSO. The metrics that are discussed in this paper are the speed of conver-
gence and classification accuracy metrics. The results show that the proposed algorithm in most subjects of encephalography (EEG)
dataset has very better or acceptable performance compared to others.
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1 Introduction

The main goal of a brain computer interface (BCI)
system is providing a channel for controlling an external
device using the electrical activity of the brainlll. These
BCIs can be operated in various applications, such as
controlling a wheelchair or neuroprosthesis for disabled
individuals, navigation in a virtual environment, and as-
sisting healthy individuals in performing highly demand-
ing tasks or controlling devices such as quadcopters/23.
People suffering from amyotrophic lateral sclerosis (ALS)
lose their muscle movement degeneratively and at a later
stage may become totally paralyzed. Nevertheless, for
most ALS patients, their minds are unaffected. BCI ad-
dresses this concern by making it possible to translate hu-
man thoughts directly to the outside world4. Electroen-
cephalography (EEG) has been chosen to capture brain-
waves for BCI applications because of its simplicity,
cheapness and high temporal resolutionl’l. Motor imagery
is a mental process of a motor action. It includes prepara-
tion for movement, passive observation of action and
mental operation of motor representation implicitly or ex-
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plicitlylfl. The EEG data that is used in this paper is BCI
competition IV[7, that is available on its website!.

Feature extraction is very important to EEG pro-
cessing in BCI system. In the feature extraction phase, by
focusing on dimension reduction in traditional BCI mo-
tor imagery, some works such as principle component
analysis (PCA) and independent component analysis
(ICA) have been done.

The assumption of PCA is that the samples are inde-
pendent and its main idea is to compute a group of new
features arranged in descending order according to their
importance from the original ones that are linear combin-
ations8l. The ICA is similar to the PCA method, except
that all components are designed independently(®. All of
these methods have been widely used in visualization and
feature extraction, for they are well understood and easy
to implement. In 2000, two nonlinear dimensionality re-
duction methods, isomap and locally linear embedding
(LLE) algorithms, were proposed by Tenenbaum et al.ll0]
Wu et al.'ll proposed EEG feature extraction based on
wavelet packet decomposition (WPD). The mean of the
coefficients of WPD and wavelet packet energy of special
sub-bands were used as the original features. Ramoser et
al.[12l proposed common spatial pattern (CSP) filtering for
feature extraction that has been proven to be an effect-

thttp://www.bbci.de/competition/iv/desc_1.html.
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ive feature extraction algorithm for the binary motor im-
agery task classification.

The classification phase in BCI system is very import-
ant in that its rate indicates one of the metrics for BCI
performance. In this literature, we review some of the
studies that researchers have performed. Pfurtscheller et
al.[3 proposed adaptive auto-regressive (AAR) algorithm
for classification of EEG signals. Lemm et al.!4 proposed
the probabilistic modeling of sensorimotor # rhythms for
hand movement imaginary classification. Zhou et al.[!5]
classified the mental task features using linear discrimin-
ant analysis (LDA) and support vector machine (SVM).
Ma et al.l'fl used particle swarm optimization (PSO) al-
gorithms for optimizing the performance of the SVM clas-
sifier. Subasi and Ergelebil!” used conventional neural
networks (NNs) for EEG signal classification. This meth-
od has some drawbacks such as slow convergence and
trapping in local minima.

Multi-layer perceptron neural networks (MLP-NNs)
are one of the most widely used NNs in the classification
of the BCI mental tasks. The learning process is one of
the most important parts of the development of these
types of networks, which has been widely considered in
recent years. In order to train MLP networks, there are
two types of algorithms: deterministic algorithms and
stochastic algorithms. At first, the use of deterministic al-
gorithms such as gradient descent was common. Inappro-
priate classification accuracy, trapping on local optimum
and low convergence rates are the drawbacks of tradition-
al methods. In order to overcome these disadvantages, in
recent years, the use of heuristic and metaheuristic al-
gorithms has become very common. Compared to full-
scale search techniques, heuristic algorithms have accur-
ate and efficient computations to solve multidimensional
problems.

Various heuristic algorithms including genetic al-
gorithm (GA)I8I. PSONY, ant colony optimization
(ACO)[0] etc. were proposed in many areas. In the con-
text of global optimization, an efficient and effective al-
gorithm must have two important features: exploration
and exploitation. Exploration is the ability of an al-
gorithm to search in all feasible spaces for a problem, and
exploitation is the convergence ability of an algorithm to
the best solution near a good solution. But, there is a
very important point, and it is a weakness of conver-
gence that causes falling into local optimum. So, combin-
ing heuristic algorithms is an efficient way to solve this
problem. The random generation of possible solutions im-
proves dynamically by selecting good solutions based on
the capability of exploration and exploitation operations
of the evolutionary algorithm.

The main idea is to combine the ability of exploita-
tion of the best solutions in PSO with the ability of ex-
ploration of the search space in GSA to enhance the per-
formance of individual optimization algorithms. The im-
plementation of the PSO algorithm is less complicated

because the PSO algorithm has fewer parameters for ad-
justment. So, researchers have paid attention to PSO in
many areas such as pattern detection, artificial intelli-
gence and computer engineering. However, this al-
gorithm has a disadvantage in that it converges to local
optimum and low convergence rates. To solve this prob-
lem, several mechanisms that combined the PSO al-
gorithm with other algorithms were presented, such as ge-
netic algorithm and PSO (GAPSO)2Y, PSO and ant
colony optimization (PSOACO)R22, PSO-Broyden-Fletch-
er-Goldfarb-Shanno  (BFGS)23,  etc. Mirjalili and
Hashim[?4 proposed the combination of PSO and gravita-
tional search algorithm (GSA). The main idea of particle
swarm optimization and gravitational search algorithm
(PSOGSA) is to combine the ability to exploit the best
solutions in PSO with the ability to explore the search
space in GSA to improve performance than individual op-
timization algorithms. Sun and Pengl25] used PSOGSA for
high dimensional optimization and microarray data clus-
tering. Four artificial data sets and three microarray data
sets were tested. The results confirmed that the proposed
algorithm possesses better robustness. Aminzadeh and
Miril26] proposed high-speed hybrid PSOGSA algorithm
for optimal placement of phasor measurement units.

This paper is trying to train an MLP-NN using
PSOGSA algorithm for EEG signal classification. The ac-
curacies and convergence speed of this algorithm is com-
pared to GSA[27 PSOM improved PSO (IPSO)[28], mod-
ified PSO (MPSO)®) and time-varying acceleration coef-
ficients PSO (TACPSO)BY. The results show that the
proposed method is superior to others for training MLP-
NNs to classify EEG signals. Also, the results of this
method are compared to other common machine learning
algorithms such as support vector machine (SVM)B! and
K-nearest neighborhood (K-NN)B2. The results showed
that the proposed method for classification has greater
performance compared to other methods. The paper is or-
ganized as follows: Section 1 is the introduction. Section 2
presents an overview of the BCI system in this problem
and describes the pre-processing step in detail. Section 3
describes the dataset used in this paper. Section 4
presents the common spatial pattern (CSP) scheme for
motor imagery feature extraction. In Section 5, the pro-
posed method is described. The MLP-NN training pro-
cess is presented in Section 6. Finally, discussion and res-
ults can be found in Section 7 and the result analysis and
conclusion are prepared in Sections 8 and 9, respectively.

2 An overview of the BCI system in this
problem

The main framework of the EEG-based BCI system is
shown in Fig.1 and includes four parts as followsB3]: in-
put of the BCI system that includes brain measurements,
pre-processing on the obtained signal in the previous step,
a feature translation process that is decomposed to two
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Fig.1 Framework of BCI system/[33]

parts of feature extraction and classification and output
of the system that is classified signal for controlling the
external device.

In the pre-processing stage, EEG signals of each chan-
nel are sampled at a rate of 100 Hz. Then, these signals
are filtered by a band-pass finite impulse response (FIR)
filter with zero phase and passband range of 8Hz to
30Hz[2. This frequency band has been selected because
firstly, it includes frequency bands of u (8-13Hz) and g
(14-30Hz). Secondly, because the frequency of artifacts
caused by eye movements and muscle movements is out-
side of this range, these artifacts and 50 Hz noise power
will be removed by this filter34. The type of filter that is
used in this paper is a third order Butterworth one. The
reason for using this type of filter is the smoothness of its
response compared to other common filters such as
Chebyshev and Bessel. It has the flattest response and
slope of 20 dB/dec in each pole.

The EEG signal before and after applying the Butter-
worth filter is shown in Fig.2. Other views of the EEG
signal that are used in this paper are shown in Figs.3 and
4 for frequency and time domain that extracted from
Matlab software. Because the signal to noise power ratio
of the EEG data is very low, detecting events in EEG sig-
nals is very difficult. In fact, due to the skull bone tissue,
the spatial resolution obtained from the overhead is low.
The signal obtained from each EEG channel is the sum of
the many signals that originate from under the skull.

International Journal of Automation and Computing 17(1), February 2020

Thus, detection of useful channels and extraction of im-
portant events for separating classes of motor imagery in
these channels is not easy work. One of the most success-
ful and widely used methods for feature reduction and
feature extraction for motor imagery-based BCI applica-
tions is the CSP method. This method was introduced in
1991 by Koles in a two-class problem to diagnose pa-
tients from healthy subjectsi35. In this method, signals
collected from the surface of the skull is decomposed into
two matrices.

One of them indicates the main sources of EEG sig-
nals and the other contains weights that show the im-
pact of each brain source. The columns of the weight
matrix are called spatial filters. Then, the covariance
matrix for each class of motor imagery is obtained using
the resulting spatial filters. In fact, each spatial filter is
associated with an eigenvector of the covariance matrix of
the two-class data. In the CSP method, each temporal
sample of EEG channels is considered as a vector and
mapped to the new space by the spatial filters. Thus, the
useful features are extracted. In the next step, the fea-
tures should apply to a classifier. Our novelty in this pa-
per is in the classification phase. In this stage, the MLP-
NNs trained by meta-heuristic algorithms such as PSO,
GSA, and PSOGSA are used for classification. MLP-NNs
are one of the most powerful tools for soft computing.
With these networks, the non-linear problems can be
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Power of EEG signal versus frequency for channel 31 in the important frequency range (8-30Hz)
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Fig.4 Time-frequency maps of EEG signal of electrode “AF3” extracted with Matlab software

solved. In general, the MLP-NNs could be used for pat-
tern classification, prediction and approximating the func-
tions[36-42],

3 Dataset

In this paper, the dataset 1 and the calibration data
part of BCI competition IV is used. The recording was
made using brain Amp magnetic resonance (MR) plus
amplifiers and an Ag/AgCl electrode cap. The signals
from the 59 EEG positions that were most densely dis-
tributed over sensorimotor areas were measured. This
dataset has been recorded from 7 subjects. The location
of the EEG electrodes is shown in Fig.5 and is plotted in
Matlab software. The dataset belongs to the Berlin BCI
group: Berlin Institute of Technology (Machine Learning
Laboratory) and Fraunhofer FIRST (Intelligent Data
Analysis Group) and Campus Benjamin Franklin of the
Charit University Medicine Berlin, Department of Neuro-
logy, Neuro-Physics Group. The signals measured belong

Channel locations
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Fig. 5 Placement of EEG electrode for recording data that was
extracted with Matlab

to seven healthy subjects named dsla, dslb, dslc, dsld,
dsle, dslf and dslg. The dataset consisted of signals of
200 trials for each subject measured using 59 EEG chan-
nel positions of the extended international 10/20 elec-
trode montage system. The subject was provided with a
visual cue shown for 4s for the duration of each trial.
Two classes of moto imagery were selected from the three
classes “lefthand”, “right hand” and “foot” for each subject!7.

4 Common spatial pattern method

Before classification, the data that will be the input of
the classifier is extracted. In this paper, the CSP method
is used for the feature extraction process. So, in this sec-
tion, this method is introduced and described in detail.
The purpose of the CSP method is to obtain filters that
are caused the maximum difference in term of variance
between two classes of this data by applying them to the
EEG signal. The proper spatial filter would provide sig-
nals so that they are easy to classify. This method is
called the CSP algorithm/3l. We denote CSP filter by

S=w"D or s(t)=WwW7'd(t) (1)

where W € R¥*" is the spatial filter matrix, S € R3**me
is the filtered signal matrix. The criterion of CSP is given
by maximizing WIS, W subject to

WE (S 4+ )W =1 (2)
where
D, DF
= e Do DT} D, € {classl} (3)
D, D,
Yo= —————2—— D, lass2}. 4
2= Ga{ D DT}’ € {class2} (4)

This problem can be solved by a generalized eigen-
value problem. However, it can also be obtained by two
times solving the eigenvalue problem. First, we decom-
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pose as
Y1+ 3, =UEU" (5)

where U is a set of eigenvectors, and E is a diagonal
1
matrix of eigenvalues. Next, we compute P =E~2U Tand

¥ =P% P (6)
5y = PY, P, (7

It should be noted that 33y + 3l = I. Thus, any ortho-
gonal matrices V' satisfy VT(f)l + f]g) V = 1. Finally, it
is decomposed as

5 =VAVT (8)

where V is a set of eigenvectors and A is a diagonal
matrix of eigenvalues. A set of CSP filters is obtained as

W =PV 9)
So, we have
A1
WS, W =A= (10)
)\ch
1-—\
WrSeW =1—-A= (11)
1-— )\ch

where A1 > A2 > -+ > Acp. Therefore, the first CSP filter
w1 provides maximum variance of class 1, and the last
CSP filter w.p, provides maximum variance of class 2. We
select first and last m filters to use as

Wesp=(w1 +++ Wm Weh—mu -+ Wen) e R*mx<h, (12)

And the filtered signal matrix is given by

s(t) = Wespd(t) = (s1(t) -+ s2m(t))". (13)

So, the feature vector x = (z1, 22, - ,xgm)T is calcu-
lated by

var(s;(t))

Z var(s;(t))

z; = log

5 Proposed method

The meta-heuristic algorithms for training MLP-NNs
are described as following.

@ Springer

5.1 Particle swarm optimization algorithm

PSO is a population-based stochastic optimization
technique that was developed by Eberhart and Kennedy!!9!
in 1995, inspired by the social behavior of birds. This
method uses the number of particles (candidate solutions)
in the search space to find the best solution. All particles
travel towards the best particles (best solution) that are
on their way. PSO is initialized with a group of random
particles (solutions) and then searches for optima by up-
dating generations. In every iteration, each particle is up-
dated by following two “best” values. The first one is the
best solution (fitness) that has achieved so far (the fit-
ness value is also stored). This value is called “pbest”.
Another “best” wvalue that is tracked by the particle
swarm optimizer is the best value in the population. This
best value is a global best and called “gbest”. After find-
ing the two best values, the particle updates its velocity
and positions with the following (15) and (16):

Uf+1 —wvl + ¢1 x rand() x (pbest; — Xf) +co X
rand() x (gbest — x}) (15)
xitt=xt ot (16)

where v! is the particle velocity, x! is the current position
of particle, pbest and gbest are defined as stated before,
rand() is a random number in (0, 1) and ¢l and ¢2 are
learning factors. In (15), wv! provides the exploration
ability. While the second part of this equation,
c1x rand() x (pbest; —xt)+c2 x rand() x (gbest—x*), repre-
sents private thinking and cooperation between the
particles. The particle’s velocities on each dimension are
clamped to a maximum velocity Viax. If the sum of
accelerations would cause the velocity on that dimension
to exceed Viax, which is a parameter specified by the user,
then the velocity on that dimension is limited to Viax.

5.2 Gravitational search algorithm

In 2009, Rashedi et al.27) offered a new heuristic al-
gorithm called GSA. The purpose of this algorithm is
finding the best solution in the search space using the
physics laws. Newton's theory is the physical theory that
the GSA is inspired by which says: “every particle in the
universe absorbs another particle with a force that has a
direct relationship to the product of their masses and in-
versely with the square of the distance between the two
particles”44. GSA algorithm can be considered as a set of
agents (candidate solutions) which have masses propor-
tional to their values in the fitness function. During the
execution of algorithms, all masses attract each other by
the force of attraction between themselves. The higher
the mass, the more gravity it will be. So, heavier masses
that possibly are nearest masses to the global minimum,
absorb other masses proportional to their distance. Ac-
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cording to [45], a system is assumed with N factors. The
position of each element (mass) that is a candidate solu-
tion, is defined as the following equations:

Xi:(X%vX?v"'aX?v"',X?)7 i=1,2,--- N (17)
where N and x? indicate the dimension of the problem
and the position of the i-th factor in the d-th dimension,
respectively. The algorithm starts its work by putting
factors randomly in the search space. During each
iteration, the gravitational force is defined as the
following equation:

Mypi () x Ma;(t)

Fg(t) = G(t) X Rij(t) + e

x (0 (1) = x{ (1) (18)
where M,;(t) indicates the active gravitational mass due
to factor j. Mp;(t) is the passive gravitational mass due
to the i-th factor, R;;(¢) indicates the Euclidean distance
between ¢ and j is an expression of two factors. The
gravitational constant is calculated as

G(t) = Go x exp (—a x iter/ maxiter) (19)

where « is descending coefficient, Go is initial
gravitational constant, iter is current iteration and
maxiter indicates the maximum of iterations. In the d-
dimensional problem, general force is calculated by

N
Fi(t)= > rand; x F(t). (20)
j=L.j#i

In (20), rand; indicates a random number between 0
and 1. According to the laws of motion, acceleration of a
factor is directly related to resultant force and inversely
to its mass. So, the acceleration, velocity, and position of
all factors are calculated by

_ F®
al(t) = M (D) (21)
vt +1) = rand; x vi(t) + al(t) (22)
X (t+1) = X () + v (¢ + 1) (23)

The mass of all the factors will be updated using the
following equation:

_ fiti(t) — worst(t)

i(t) = F¥—F—"-+% 24

mi(t) best(t) — worst(t) (24)
where, in the minimization problem, we have

best(t) = i it (T 25

est(t) = _ min o fit;(t) (25)

t(t) = it (). 26

worst(t) = max - fit;(t) (26)

The normalization of calculated mass in (24) is done by
mi(t)

Z my;(t)

M;(t) (27)

The flowchart of this algorithm is shown in Fig.6. The
mass of factors is defined using the evaluation of the fit-
ness function. This means that the factor with the heav-
iest mass is the most effective factor. From (22) and (23),
it can be deduced that the current velocity is defined as a
fraction of the last velocity that is added to its accelera-
tion. In addition, the current position is the last position
that is added to its current velocity. In all population-
based algorithms with social behavior, such as PSO and
GSA, two intrinsic characteristics must be considered, the
ability of the algorithm to search all parts of the search
space and its ability to exploit the best solution. Search-
ing in the entire problem space is called exploration,
while converging on the best solution that is near to a
good solution, is called exploitation. Population-based al-
gorithms must have these critical features so that they
guarantee to find the best solutions. In PSO, the ability
of exploration and exploitation is performed using pbest
and gbest, respectively. In the GSA algorithm, explora-
tion can be guaranteed by selecting the appropriate value
for random parameters Gy and /46, Rashedi conducted a
study comparing the GSA algorithm with some known
heuristic optimization algorithm such as PSOR7. The
comparison results show that GSA has the ability in op-
timization problems. However, it has a low search speed
in the last iteration”. In this paper, to improve this
weakness, a combination of GSA and PSO algorithms is
suggested, and called PSOGSA.

Updating
Generating the Fitness evaluation worst (f) and
initial population for all agents gbest (1) for
population
No 1 l
Ts stopping Updating the Calculating M
criterion velocity and acceleration
fulfilled? and position for each agent

Best solution
obtained

Fig. 6 Flowchart of GSA algorithm

5.3 Combining particle swarm optimiza-
tion and gravitational search algorithm

The basic idea of PSOGSA is that it combines social
thinking ability in the PSO algorithm with local search

capabilities in GSA. In order to combine these algori-
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thms, the following equation is proposed:

Vi(t+ 1) =w x Vi(t) + ¢; X rand x ac;(t)+
co X rand x (gbset — X;(t)) (28)

where ac;(t) indicates the acceleration and gbset is the
best solution that is found so far. Positions in each
iteration will be updated as follows:

Xi(t+1) = Xi(t) + Vi(t + 1). (29)

In the PSOGSA algorithm, each agent is assumed as a
candidate solution. At first, all agents are initialized ran-
domly. After initializing, the force of gravity, the gravita-
tional constant and the resultant force are calculated us-
ing (18)—(20). Then, the acceleration is calculated by (21).
The best solution that is found in each iteration, must be
updated. After calculating the acceleration and updating
the best solution, the velocity of agents can be found us-
ing (28). To explain the efficiency of PSOGSA, the fol-
lowing points are mentioned:

1) In the PSOGSA algorithm, the solution quality is
considered in the updating method.

2) The agents that are near to a good solution, ab-
sorb other agents exploring different parts of the search
space.

3) When all of the agents are near to a good solution,
they move very slowly. In this case, gbset helps them to
exploit the global best solution.

4) In PSOGSA, each agent can see the best solution
and desire it.

5) By adjusting ¢1 and c2, global search and local
search capabilities can be balanced.

The above-mentioned points make the PSOGSA al-
gorithm powerful for solving a wide range of optimiza-
tion problems. In the next section, the mechanisms of
training MLP-NNs using PSO, GSA and PSOGSA al-
gorithms is described.

6 Training process of multi-layer perce-
ptron neural networks

The ultimate goal of the learning process in NNs is to
find the best combination of weights and biases so that
the learning of the network leads to the lowest error.
Generally, there are three methods for training MLP-NNs
using meta-heuristic algorithms. In the first method, the
heuristic algorithms are used to find the reasonable com-
bination of the weights and biases of the network, so that
this combination provides the minimum error for MLP-
NNs. In the second method, meta-heuristic algorithms are
used as a way to find an appropriate structure for MLP-
NNs in a particular problem. In the last method, evolu-
tionary algorithms (EA) set the parameters of the gradi-
ent-based learning algorithm. These parameters are the
learning rate and momentum. In this paper, in order to
design motor imagery classifiers based on EEG signals,
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the PSO, GSA, improved PSO (IPSO), MPSO, TACPSO
and PSOGSA algorithms are applied to MLP-NNs. The
mentioned classifiers are called feed forward NNs trained
by PSO (FNNPSO), feed forward NNs trained by GSA
(FNNGSA), feed forward NNs trained by IPSO (FN-
NIPSO), feedforward NNs trained by MPSO (FN-
NMPSO), feed forward NNs trained by TACPSO (FN-
NTACPSO) and feed forward NNs trained by PSOGSA
(FNNPSOGSA), respectively. The flow chart of training
MLP-NNs using PSOGSA (proposed algorithm) is shown
in Fig.7. For designing this classifier, the fitness function
of the proposed algorithms is defined in the next sections.

6.1 Fitness function

The three-layer MLP-NN is shown in Fig.8. In this
MLP-NN, we have an input layer, one hidden layer and
an output layer. The number of nodes in the input layer
is n, the number of hidden and output layer neurons are
h and m, respectively. In each course of the training pro-
cess, the output of each neuron in the hidden layer is ob-
tained by

1

S )

7j:1727"'7h‘ (30)
In (30), we have

S5 = Zw” X Xi — 9]' (31)
=1

where w;; indicates connection weight between the i-th
node in the input layer and the j-th neuron in the hidden
layer, 6; is the j-th neuron’s bias in the hidden layer and
Xi is the i-th node’s input in the input layer. After
calculating the neuron’s output in the hidden layer, the
final output is defined as

h
Ok:ZU}ijf(Sj)faj, k:1727"“3m (32)

1=1

where wy; is the connection weight from the j-th neuron
in the in the hidden layer to the k-th neuron in the
output layer and 6; is the j-th neuron’s bias in the hidden
layer.

Finally, the training error or fitness value is calcu-
lated by the following equation:

error (k) = Z (0i(k) — di(k))? (33)

L error(k)
error = g — (34)
k=1

where ¢ is the number of training samples, d;(k) indicates
the expected output of the i-th input unit when the k-th
training sample is used and o;(k) is the desired output for
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Fig. 7 Flowchart of MLP-NNs trained by PSOGSA algorithm

Q

X, ———
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the k-th training sample. So, the fitness function is
defined by

FIT(X;) = error(X;). (35)

6.2 Feed-forward neural networks

(FNN's) parameter setting

The input of the FNN is the same as the extracted
properties of the feature extraction stage, where the num-
ber of extracted features after the CSP is 10. Since there
is no established standard for choosing the number of hid-
den nodes for classification purposes and considering the
structure of FNNs, the proposed method in [48] and the
following equation is used:

H=2N+1 (36)

where N and H represent the number of inputs and the
number of hidden nodes, respectively.

Weights and thresholds of the FNN are also updated
using the proposed algorithm.

The number of hidden layer neurons is 15. Also, giv-
en that we have two output classes, the number of neur-
ons in the output layer is considered to be 2. Accordingly,
because the FNN structure is fully connected, each of the
neurons in the hidden layer and the output layer has a
threshold, so the number of weights and thresholds are
calculated as follows:

#of weights=(#of input nodes)x(#of hidden neurons)+
# of hidden neurons)x# of output neurons)
(37)

#of Thresholds = (#of hidden neurons) +
(#of output neurons) . (38)

So, the number of weights and thresholds are (10) x
(2x10+1) + (15) x (2) = 240 from (37) and (21) + (2) =
23 from (38), respectively. A vector of P containing these
weights and thresholds is considered as a particle, which
are actually considered to be optimization variables.

7 Results

In this paper, our main goal is the classification of two
motor imagery (right and foot) based on the EEG signal
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for the aforementioned dataset in Section 3. At first, in
pre-processing, the EEG signal is filtered using a 3rd or-
der band-pass filter. Then, in feature extraction, the CSP
filter (with m=5) is used. According to what was said in
describing the CSP method, the number of features is
equal to 2m (2m=10). From all trials in EEG data, 70
percent of them are considered. In our data, the number
of trials is 200.

So, the output of the feature extraction stage is a
140x10 matrix with 140 labels. Now, this matrix must be
applied to the classifier. Our main idea in this paper was
in the classifier stage. In this step, an artificial MLP-NN
was proposed for classification. In other words, the MLP-
NN was trained with the PSOGSA algorithm. The total
number of particle is 140, the dimension is 30, ¢l and ¢2
are 2.0, max and min inertia weight are 0.9 and 0.5, re-
spectively.

The convergence curves for all classifiers are shown in
Fig.9. The convergence curves show the averages of 20
independent runs over the course of 500 iterations. Fig.9
shows that FNNPSOGSA has the fastest convergence
speed and best classification accuracy on the EEG data-
set. These numerical results are shown in Table 1. These
results show the superiority of the proposed algorithm to

FNNPSOGSA

FNNIPSO
calib-dsla

MSE

100 200 300 400 500
Iteration

calib-dslc

102 [\

10 |

MSE

10 |

10°% |

100 200 300 400 500
Iteration
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other algorithms in term of classification rate and conver-
gence speed. As it can be seen, the average classification
rates using FNNPSOGSA classifier for dsla, dslb, dslc,
dsld, dsle, ds1f and dslg are 93.3929%, 94.357 1%, 100%,
99.5%, 99.8571%, 99.6429% and 98%, respectively which
is very suitable for BCI application. It can be observed
that the FNNGSA classifier, doesn’t have good perform-
ance compared to FNNPSO. However, it is very strong
due to its searching ability compared to other evolution-
ary algorithms. This disadvantage of GSA is due to a
lower speed and lower classification accuracy. The pro-
posed classifier, FNNPSOGSA, is better than others in
term of classification accuracy and speed of convergence.
To compare the performance of all algorithms, the res-
ults are collected over 20 independent runs. In order to
see whether the results of PSOGSA differ from PSO,
GSA, IPSO, MPSO, and TACPSO in a statistically signi-
ficant way, a non-parametric statistical test, Wilcoxon's
rank-sum test is used. The average (AVE), standard devi-
ation (STD) and P-value of all algorithms are reported in
Table 1 for all subjects. As it can be seen for dsla, dslb,
dsld, dsle, dslf and dslg, the FNNPSOGSA is the best
classifier in terms of classification accuracy and conver-
gence speed. In dslc, the classification rate of all classifi-
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Fig. 9 Comparison of MSE for the proposed algorithm to others when applying them on MLP-NN

ers is almost equal. But, the convergence speed of the
FNNPSOGSA classifier is the best one. For doing a good
comparison, it is desirable that the values of mean square
error (MSE) for all runs are close to the mean value. So,
the large value of STD indicates the high dispersion
around the mean value, that this is not desirable. The P-
value calculation is done for each algorithm to show how
strong the proposed algorithm is compared to each al-
gorithm. If this amount is less than 0.05 for each al-
gorithm, the proposed algorithm will have a significant
advantage. As can be seen in Table 1, the amounts of the
P-value for each algorithm are much less than 0.05. So,
the superiority of the proposed algorithm is very signific-
ant. These results for dsla are presented in Table 2.
Moreover, the classification accuracy of FNNPSOGSA is
compared with some popular machine learning classifiers
such as SVM and KNN in terms of classification rate.
Fig. 10 shows this comparison and it can be seen that the
classification accuracy of the proposed algorithm, FN-
NPSOGSA, is much better than others. All of the simula-
tion and results were done using the Matlab software.

For a good comparison, the FNNPSOGSA classifier
performance is compared with some benchmark methods
that test this dataset in similar conditions. Table 3 shows
the motor imagery classification accuracy obtained per
subject. As seen, the FNNPSOGSA approach reaches the

best accuracy in comparison with the method given
in [49], that includes common spatio-time-frequency pat-
terns to design the time windows for the motor imagery
task. The motor imagery classification procedure de-
scribed in [50] also involves the empirical mode decom-
position (EMD)-based common spatial pattern (CSP)
preprocessing. The proposed adaptive frequency band se-
lection together with the developed method of feature ex-
traction are not sufficient, causing a low classification
performance with a high standard deviation value. The
approach given in [51] is based on a robust learning
method that extracts spatio-spectral features for discrim-
inating multiple EEG tasks. The achieved motor imagery
classification has the lowest performance among the com-
parative approaches. Another technique given in [52] is
based on feature relevance analysis within the motor im-
agery classification framework. This method reached to a
92.86% classification accuracy that is good performance,
but the proposed method in this paper, FNNPSOGSA,
has the highest performance compared to the other tech-
niques in term of classification accuracy.

8 Discussions

PSO, GSA and PSOGSA have several parameters
which should be initialized. For PSO, we use these set-
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Table 1 Comparison of classification accuracy and mean square error (MSE) for the proposed algorithm to others

dsla dslb
Algorithm MSE (AVE£STD) P-value Accuracy (%) MSE (AVE£STD) P-value Accuracy (%)
FNNGSA 0.1356+0.0119 6.79E-08 86.1071 0.1770+0.0150 1.826 TE-04 87.0714
FNNPSO 0.1004+0.0096 0.0051 91.7500 0.1331+0.0167 0.0036 90.0000
FNNIPSO 0.1716+0.0417 6.80E-08 87.5000 0.2730%0.0430 1.826 TE-04 76.4286
FNNMPSO 0.1943+0.0458 6.80E-08 84.6786 0.2635+0.0489 1.826 TE-04 79.4286
FNNTACPSO 0.1909+0.0673 6.79E-08 84.7143 0.2630+0.0646 1.826 TE-04 77.7143
FNNPSOGSA 0.091410.0084 N/A 93.3929 0.098+£0.0188 N/A 94.3571
dslc dsld
Algorithm MSE (AVE£STD) P-value Accuracy (%) MSE (AVE£STD) P-value Accuracy (%)
FNNGSA 5.1898E-05+4.278 1TE-05 1.83E-04 100.0000 0.0309+0.0023 1.826 TE-04 96.6429
FNNPSO 0.0026+0.0026 1.82E-04 99.9286 0.0271+ 0.0065 5.8284E-04 98.0000
FNNIPSO 0.0300£0.0183 0.0028 97.5000 0.0726+ 0.0528 1.786 1E-04 94.1429
FNNMPSO 0.0199+0.0201 0.0399 98.1429 0.0638+ 0.0724 1.726 5 E-04 95.0714
FNNTACPSO 0.0204+0.0263 0.0257 98.0714 0.0454+ 0.0222 1.776 1E-04 96.7857
FNNPSOGSA 1.2041E-08+2.562 TE-08 N/A 100 0.0108=+ 0.0056 N/A 99.5000
dsle ds1f
Algorithm MSE (AVE£STD) P-value Accuracy (%) MSE (AVE£STD) P-value Accuracy (%)
FNNGSA 0.0226+ 0.0050 1.82E-04 98.9286 0.0090+£ 0.0022 0.0173 92.2857
FNNPSO 0.0214+0.0085 4.39E-04 96.5714 0.0084+ 0.0032 0.0340 99.4286
FNNIPSO 0.0492+0.0225 2.46E-04 87.5000 0.0264+ 0.0073 3.1307E-04 98.5000
FNNMPSO 0.0522 +£0.0188 1.81E-04 96.2857 0.0336+ 0.0244 0.0022 97.4286
FNNTACPSO 0.0568+0.0339 1.81E-04 96.0000 0.048 7+ 0.0290 3.2813E-04 97.0000
FNNPSOGSA 0.0036+0.0043 N/A 99.8571 0.0052+ 0.0047 N/A 99.6429
dslg
Algorithm MSE (AVE£STD) P-value Accuracy (%)
FNNGSA 0.0910=+ 0.0068 1.82E-04 93.7857
FNNPSO 0.0598+0.0104 4.39E-04 96.5714
FNNIPSO 0.0883+0.0420 2.46E-04 96.5000
FNNMPSO 0.1186£0.0451 1.81E-04 90.9286
FNNTACPSO 0.0800£0.0040 1.81E-04 94.7857
FNNPSOGSA 0.04451+0.0043 N/A 98.0000

tings: population size=30, c;=2, c2=2, w is decreased lin-
early from 0.9 to 0.2, maximum iteration=500, and stop-
ping criteria is maximum iteration. For GSA and
PSOGSA, we use these settings: population size=30,
c1=0.5, c'9=1.5, w= random number in [0,1], GO0=1,
a=20, maximum iteration is 500, and stopping criteria is
maximum iteration. The MSE and comparison conver-
gence curves are used to compare the aforementioned al-
gorithms. To perform a fairly good comparison, all al-
gorithms stop when the maximum number of replications
reaches 500. Ultimately, the convergence of the results
will be examined for a comprehensive comparison. Stat-
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istically, the PSOGSA algorithm is sufficiently capable of
preventing trapping at local minima that this fact is con-
firmed by statistical results in Table 1, and its conver-
gence track can be seen in Fig.9. The better performance
of the PSOGSA algorithm is due to the GSA algorithm's
search for all of the problem space and the high conver-
gence rate to achieve a general optimum with the PSO al-
gorithm. In general, it can be seen that FNNGSA does
not perform well compared to other classifiers. This weak-
ness is due to the low velocity of the search for gravity al-
gorithm that affects the exploitation of FNNGSA. The
learning algorithms used in MLP-NNs require not only
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Table 2 Statistical comparison results among all algorithms for EEG data set (dsla)
GSA PSO IPSO MPSO TACPSO PSOGSA
Number MSE Accuracy MSE  Accuracy MSE Accuracy MSE Accuracy MSE Accuracy MSE Accuracy
Runl 0.13897 90.714 0.11603 89.286 0.14613 91.429 0.17181 81.429 0.16429 91.429 0.08 94.286
Run2 0.145 77.857 0.09913 91.429 0.16534 86.429 0.19035 88.571 0.12857 93.571 0.09761 93.571
Run3 0.13797 90 0.09501 92.857 0.21912 83.571 0.20698 87.143 0.22595 80.714 0.09593 92.143
Run4 0.12382 91.429 0.09645 92.143 0.22997 77.143 0.15358 89.286 0.32703 61.429 0.08107 95
Runb 0.11884 90.714 0.09835 92.857 0.16148 90 0.22143 88.571 0.36935 52.143 0.0744 93.571
Run6 0.12444 71.429 0.09818 92.143 0.15421 91.429 0.12854 92.857 0.17257 87.143 0.09764 93.571
Run7 0.13387 77.143 0.10541 89.286 0.22249 75.714 0.14418 90 0.25626 77.143 0.08773 92.143
Run8 0.14007 90.714 0.08362 93.571 0.17608 85 0.17701 86.429 0.21524 81.429 0.08839 92.857
Run9 0.13692 91.429 0.11364 90.714 0.14955 90 0.22835 88.571 0.16498 85 0.10035 92.857
Runl0 0.12278 92.143 0.10314 90.714 0.14286 92.857 0.23694 82.857 0.17145 90 0.08282 95
Runll 0.16181 87.143 0.10166 91.429 0.13935 90.714 0.25575 79.286 0.23571 81.429 0.09555 92.143
Runl2 0.15601 87.143 0.11869 90 0.17143 90.714 0.16775 90 0.2 89.286 0.08047 95.714
Runl3  0.15428 52.143 0.08239 94.286 0.14961 87.143 0.22653 82.143 0.13547 91.429 0.08667 94.286
Runl4  0.13092 91.429 0.096 56 93.571 0.12857 93.571 0.1436 87.857 0.17143 90.714 0.09663 94.286
Runl5 0.13634 90.714 0.10403 92.143 0.15 92.143 0.17926 88.571 0.21321 80.714 0.09 92.143
Runl6  0.14156 90 0.10239 92.143 0.15005 91.429 0.31447 50.714 0.11429 94.286 0.0978 92.143
Runl7 0.1222 89.286 0.10514 91.429 0.24475 81.429 0.17481 80 0.15 92.143 0.09938 93.571
Runl8 0.13083 90 0.0869 92.857 0.15 91.429 0.2243 80 0.15 92.143 0.10579 92.857
Runl9 0.12383 89.286 0.09428 93.571 0.11429 94.286 0.19754 86.429 0.12461 91.429 0.09718 92.143
Run20 0.13084 91.429 0.10642 88.571 0.26625 73.571 0.14286 92.857 0.12778 90.714 0.09164 93.571
Mean 0.1356 86.1071 0.1004 91.7500 0.1716 87.5000 0.1943 84.6786 0.1909 84.7143 0.0914 93.3929
STD 0.0119 89.7869 0.0096 1.5968 0.0417 6.1902 0.0458 9.0067 0.0673 10.8979 0.0084 1.1084
P-value 6.79E-08 9.13E-08 0.0051 0.0016 6.80E-08 1.04E-05 6.80E-08 5.34E-07 6.79E-08 5.78E-06 N/A N/A
100

95
90
85 p
80 ¢
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Fig. 10 Comparison of MSE for the proposed algorithm to
others when applying them on MLP-NN

the ability to search robustly, but also the ability to oper-
ate accurately. According to the results of classification
by MLP-NNs trained by EAs, it can be concluded that
FNNPSO performance is better than FNNGSA. This su-
periority is due to the ability of the PSO algorithm to ex-
ploit more precisely. But this algorithm still has the prob-
lem of being trapped in the local minimum. This means
that the FNNPSO performs without stability. The res-
ults obtained by FNNPSOGSA prove that this algorithm
has both advantages of strong exploitation and good
search capability. In other words, the PSO and the GSA

have been successfully used and show very good perform-
ance in MLP-NN training, which the results confirm.
This means that FNNPSOGSA is capable of solving the
problem of trapping at the local minimum and has a high
convergence rate.

9 Conclusions

This paper has proposed the PSOGSA to train NNs
for motor imagery classification. The CSP method has
used to extract the feature of an EEG signal. Using CSP,
the data can be reduced from 59 dimensions to 10 dimen-
sions. Then, these features are classified using an MLP-
NN whose parameters are trained by PSOGSA algorithm.
The classification accuracy of this classifier was com-
pared with MLP-NN classifiers trained by other meta-
heuristic algorithms such as GSA, PSO, IPSO, MPSO,
and TACPSO. In addition to classification accuracy, an-
other parameter that demonstrates the performance of
the BCI system is the speed. In this problem, the conver-
gence speed indicated this parameter. It observed that
the GSA algorithm is good for its global search capabil-
ity, but it has the low convergence speed in the last itera-
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Table 3 Comparison the proposed method with other works in term of classification accuracy (average accuracy + standard deviation)

Subject Higashi and Tanakal49] He et al.[50] Zhang et al.[51] Alvarez-Meza et al.l>2] FNNPSOGSA (proposed)
dsla 92.30%02.50 67.70+02.20 77.20%+00.03 91.504+01.20 93.3929+01.1084
dslb 90.60+07.20 70.70+01.20 70.80%£0.02 96.50+03.37 94.3571+0.9421
dslc - 83.90+01.30 91.50+04.74 100+1.0710
dsld - 93.00+01.20 87.00+06.32 99.5000+£01.7021
dsle - 93.20%+01.20 91.50£07.47 99.8571+01.0178
dslf 93.301+03.60 - 76.801+0.03 98.50+02.42 99.6429+0.9987
dslg 94.10+04.10 - 80.00+0.03 93.50+07.09 98.0000£1.1270

Mean+ STD 92.58+01.51 81.70+12.06 76.20+03.87 92.86+03.77 97.8214+2.7890

tions. On the other hand, due to the unique advantage of
PSO in exploitation phase, the combination of both are
used, and called “PSOGSA”. The results showed that the
classification accuracy of MLP-NN trained by PSOGSA is
better than the other discussed algorithms and has the
best convergence. Statistical results showed that the per-
formance of proposed method, FNNPSOGSA, is very
good. In the future work, it would be interesting to in-
vestigate the performance of PSOGSA in training other
types of NNs such as radial basis function and recurrent
NNs.
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