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Abstract: With the development of micro-electromechanical systems (MEMS), miniaturized, low-power and low-cost inertial meas-
urement units (IMUs) have been widely integrated into mobile terminals and smart wearable devices. This provides the prospect of a
broad application for the inertial sensor-based pedestrian dead-reckoning (IPDR) systems. Especially for indoor navigation and indoor
positioning, the IPDR systems have many unique advantages that other methods do not have. At present, a large number of technolo-
gies and methods for IPDR systems are proposed. In this paper, we have analyzed and outlined the IPDR systems based on about 80
documents in the field of IPDR in recent years. The article is structured in the form of an introduction-elucidation-conclusion frame-
work. First, we proposed a general framework to explore the structure of an IPDR system. Then, according to this framework, the IPDR
system was divided into six relatively independent sub-problems, which were discussed and summarized separately. Finally, we pro-
posed a graph structure of IPDR systems, and a sub-directed graph, formed by selecting a combined path from the start node to the end
node, skillfully constitutes a technical route of one specific IPDR system. At the end of the article, we summarized some key issues that
need to be resolved before the IPDR systems are widely used.
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1 Introduction

Pedestrian positioning information plays an increas-
ingly important role in human works and lives and
greatly improves the efficiency of human activities. With
the progress of society and the development of science
and technology, people’s demands for navigation and pos-
itioning are also growing. In the outdoor environment,
the global navigation satellite system (GNSS) is widely
used in outdoor positioning and navigation due to its
wide coverage and high positioning accuracy. However,
GNSS will not be able to work at locations where the
satellite signals are blocked, such as indoor environments,
around high buildings, dense forests, underground mines,
underground parking lots, underwater and so forth.
Therefore, other positioning methods are needed to make
up for this lack of GNSS. Many human activities are car-
ried out indoors, and the demands for indoor positioning
are also growing stronger. However, there are currently
no standard indoor positioning technologies which are
widely used in the world like GNSS. Every indoor posi-
tioning method proposed at present has its inherent ad-
vantages and disadvantages, and is not universally applic-
able. Zheng et al.lll divides the current indoor positioning
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technology into two categories: infrastructure-based ap-
proaches and infrastructure-free approaches.

The infrastructure-based approaches refer to the tech-
niques for deducing the indoor location by sensing the
signal of the devices arranged in advance in the indoor
environment. These devices include many available com-
municational technical facilities such as wireless fidelity
(Wifi), Bluetooth, wireless sensor networks (WSN), ultra
wide band (UWB), infrared? and visual facilitiesl® 4. A
big drawback of these methods is that the layout cost is
proportional to the indoor area. At the same time, these
devices are not arranged in advance in many indoor en-
vironments, obstructing wide promotion and application.

The infrastructure-free approaches refer to the posi-
tioning methods that do not need to receive signals from
devices arranged in the environment in advance. Among
these strategies, the typical methods are pedestrian dead-
reckoning algorithms which make use of the motion in-
formation measured by the inertial sensors mounted on
the pedestrians’ bodies to estimate the positions relative
to the starting point. These approaches are hardly con-
strained by any environments, meanwhile the layout costs
are only proportional to the number of users, thus the in-
frastructure-free approaches are generally cheaper than
the infrastructure-based approaches. Nevertheless, sub-
ject to the accuracy, drift and deviation errors of inertial
sensors, the continuous working time and application en-
vironments of these methods are greatly limited. Based
on this, many researchers proposed a variety of error-
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compensation methods, so that the final accuracy will be
significantly improved.

In this paper, we make an overview of the inertial
sensor-based pedestrian dead-reckoning (IPDR) systems
by decoupling the IPDR systems into several independ-
ent sub-problems of which the technical solutions are sep-
arately discussed and summarized. As a result, we pro-
pose a general framework of IPDR systems and regard a
specific IPDR system as a combination of techniques for
each sub-problem. This is a difference or innovation of
this article compared to other IPDR reviews such as [2, 5-7].

This paper is arranged in the form of an introduction-
elucidation-conclusion framework. The remainder of this
paper is organized as follows: In Section 2, a general
framework for understanding the IPDR system is pro-
posed. The methods used by each sub-problem are separ-
ately elaborated and compared in Section 3. The current
technical routes of the main research methods of IPDR
systems are portrayed by a directed graph in Section 4.
Finally, the conclusions are presented in Section 5.

2 General framework of IPDRs

Through all of the cited literature in this paper, it can
be seen that the main focus of the IPDR systems was
how to suppress and reduce the drifts and deviation er-
rors caused by inertial sensors. Taking full account of and
utilizing the external constraints of the motion character-
istics of the human body and the environments of activit-
ies, and deepening the deep-seated information of the
sensor output signals are the keys to error control. The
body is the creator of the human movements. Therefore,
the body's own constraints should be considered and ana-
lyzed first. In the process of human body movement, the
motion characteristics of different parts of the body are
not the same. For example, during the movements of
lower extremities, the soles of the feet periodically con-
tact with the ground during which the speeds are con-
sidered to be zero, and the legs can be viewed as two
periodic inverted pendulum models. More precise know-
ledge of human motion information will provide more reli-
able prior knowledge for error correction. For examples,
in the foot-mounted IPDR systems, zero-rate and zero-
angle velocity observations are obtained by measuring the
stance-phase period of each step, then the zero-velocity
update (ZUPT) and the zero-angle rate update (ZARU)
are performed to limit the errors within a short period of
time. In the IPDR systems based on the waist or leg-
mounted sensors, the step-by-step measurement informa-
tion is used to establish mathematical models to directly
estimate the steps’ sizes and headings. Furthermore, in
order to obtain accurate gait classification under com-
plex motion conditions, it is optional to classify move-
ments with classification algorithms or create more com-
plex models such as hidden Markov models (HMM). Con-
sidering the environmental factors, the analysis and ac-
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quisition of map and magnetic field information are ex-
tremely important.

The filtering algorithms which integrate all observa-
tion information are the core of the IPDR systems. The
commonly used filtering algorithms include extended Kal-
man filters (EKF), complementary filters (CF), particle
filters and so forth. On this basis, it is also necessary to
determine whether the trajectory estimations are directly
obtained by integrating the sensor measurement data —
inertial navigation systems (INSs) or by using the out-
puts of the sizes and headings of the steps — step and
heading systems (SHSs). In addition, the uses of particle
filters in conjunction with the outputs of INSs or SHSs
for dead reckoning are the choice of many in the literat-
ure when computational capabilities permit and detailed
maps are available. Fig. 1 shows the general framework of
the IPDR systems proposed in this paper based on the
cited literature.

An IPDR system usually needs to consider the follow-
ing issues. First, what kinds of sensors are considered to
constitute the measurement units? The commonly used
measurement unit is combined by accelerometers and
gyroscopes. Second, where are the measurement units
fixed to the body? Third, is the motion classification con-
sidered in the system? Fourth, what gait classification
and gait detection methods are considered? Fifth, is it ne-
cessary to use the environment factors? Sixth, what kind
of trajectory estimation strategy is considered, e.g., INS
or SHS? In addition, will the particle filters be adopted?
This article will analyze and summarize these sub-ques-
tions separately.

3 Sub-problems analysis
3.1 Sensor types and layouts

The different choices of sensor types and layout meth-
ods will lead to great differences in algorithm design. Dif-
ferent combinations of sensors determine different dimen-
sions of motion data perception. Simple sensor combina-
tions reduce the hardware model complexity, and corres-
pondingly require more complex algorithm designs to
achieve the same accuracy. Similarly, complex sensor
combinations increase the hardware model complexity,
but the algorithm complexity can be lower while obtain-
ing the same accuracy. How to achieve a balance between
these two complexities is one of the factors that needs to
be considered. In the process of walking, the movement
characteristics of different parts of the lower limbs are
different, and the designs of the algorithms correspond-
ing to different layout methods are also different.

1) Types

A classical inertial measurement unit consists of a tri-
axial accelerometer and a triaxial gyroscope. Sometimes,
a triaxial magnetometer is also integrated into the iner-
tial measurement unit, because the magnetometer can
output high-precision heading information under uniform
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and undisturbed geomagnetic conditions. However, due to
the large number of uncertain magnetic field disturb-
ances in the human activity environment, especially in
the indoor environment where there are serious magnetic
field disturbances, the output of the magnetometer may
seriously deviate from the true geomagnetic field direc-
tion, resulting in the magnetometer's data being unreli-
able for azimuth estimation. This is one of the reasons
why some IPDR researchers directly abandon or select-
ively use the magnetometers in their algorithms.

In addition, some researchers also use other sensors to
assist inertial measurement units to achieve the specific
purpose of motion detection, such as using a pressure
gauge fixed to the soleldl for measuring the foot's zero-rate
point by sensing the pressure of the sole of the foot,
measuring the height variation of the human body with a
barometer®, and some other used sensors like radar(l% or
ultrasonicllll. These aids can indeed reduce the difficulty
of the algorithm and improve the accuracy of the motion
detection, but this will make the system more complex.
The scope of this review is limited to the pure inertial
measurement unit (IMU)-based pedestrian dead-reckon-
ing (PDR) systems.

2) Layouts

The movement parameters of the human lower limbs
are the most relevant to the pedestrian trajectory, be-

cause the final trajectory is determined by the distance
and direction of each step. Therefore, it is a natural idea
to extrapolate the trajectory of a pedestrian through the
accurate perceptions of the data of the lower extremities.
The main parts of the lower limbs of the human body in-
clude the foot, calf, thigh and waist.

Since a PDR system based on shoe-mounted inertial
sensors was proposed by Foxlin in 2005112, a large num-
ber of foot-mounted IMU-based algorithms for IPDR sys-
tems have been proposed. The advantage of tying the
sensors to the foot is that it directly senses the move-
ment of the foot. If the trajectory of the foot can be
found, the trajectory of the body can also be determined.
The most important point of this method is that the feet
are in contact with the ground periodically and altern-
ately during walking, and during the small period of time
when the feet are on the ground, the speed and displace-
ment of the feet can be considered as zero — called zero
velocity point (or stance phase), meanwhile the foot pos-
ture can also be considered as constant. With this con-
straint, the estimated error can be corrected at each step
to achieve more accurate trajectory estimation. But the
movement of the foot is the most drastic one compared to
the other parts of lower limbs, and with the speed of the
movement increasing, the severe shaking will bring a lot
of errors.
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There are no clear zero-rate points when the sensors
are tied to the leg (thigh or calf), which means the zero
rate constraints are lost and cannot be used to correct the
like the foot-mounted methods.
during the walking process,

motion parameters
However, the periodic
changes of the leg posture can still be used for step detec-
tion. At the same time, the method of tying the sensors
to the leg is more convenient, easier to fix, and less viol-
ent than the foot-mounted method, which facilitates the
use of a portable device or a wearable device for pedestri-
an trajectory estimation.

Among the movements of lower limbs, the waist is
more stable than the thighs, calves and feet, which gives
the measurement units tied to the waist a more stable
measurement environment. This is an advantage for pos-
ture estimationl!3]. However there are still no clear con-
straints on the waist to correct the measurement para-
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meters in real time. Although the waist has the highest
point during walking, and the vertical velocity is zero at
this point, the duration of this point is very short and
can be considered as instantaneous, so it is still difficult
to consider the zero vertical velocity point of waist as a
constraint point.

Fig.2 shows the data outputs when the sensors are at-
tached to the feet, legs, and waist. It can be seen that the
characteristics of the data output by sensors at various
locations are different in the same motion state. It also
can be seen that the foot-mounted data has the strongest
periodicity and regularity, and the zero point and non-
zero point are clear which is a benefit for the gait divi-
sion and the performance of the ZUPT and ZARU. So,
the foot-mounted way is the most adopted method and
also the most accurate solution amongst these different
sensor layouts.
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Fig.2 Output data from sensors tied to different places while walking
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3.2 Motion types and classification al-
gorithms

People will encounter different situations while walk-
ing, and the types of activities will also change, accord-
ingly the model parameters will also not be the same.
The fixed model parameters are usually only useful for a
single state of motion and will no longer be suitable for
the complex and mixed athletic situations. Adjusting the
model parameters adaptively according to the type of mo-
tion is a method used by some researchers to solve the
motion trajectory estimation under this situations.

1) Motion types

The most common pedestrian movements are walking
and runningl!4 15, Based on this, some of the literature
considers other types of motion, such as upstairs, down-
stairs16-18] side steppingl!¥, standing[!” 201, etc. Consider-
ing some more detailed cases, Edel and K&ppel?! con-
sidered walking and running forward, backward and side-
ways, respectively. Edel and Koppel?2 established a data-
base of 14 different daily activities, which, besides walk-
ing and running, also includes jumping, falling, etc. Run-
ning was divided into the activities of running, sprinting,
jogging, while crouching and climbing were also con-
sidered in the literaturel?3l. Beaufils et al.24 further di-
vided walking into slow walking, normal walking and
quick walking. Uphill and downhill activities were con-
sidered in [25], while Elhoushi et al.26 considered the use
of escalators, elevators, and standing and walking on mo-
bile channels.

Due to the differences in environment, region, coun-
try and so on, the types of human activities vary widely,
and it is impossible to cover and classify all types of hu-
man movements. However, by classifying some common
types of activities, more prior knowledge was obtained for
PDR systems, thus creating a potential for higher traject-
ory estimation accuracy.

2) Classification algorithms

a) Feature extraction

Before the classification is performed, the features of
the input data need to be extracted first. The original
output data of the inertial measurement units generally
include triaxial acceleration, triaxial angular velocity, and
triaxial magnetic field strength. A single frame of output
data can only represent one feature dimension. In order
to obtain more data features, it is necessary to analyze
other characteristics of the output data. As described in
[16], commonly used statistical features include: mean,
standard deviation, variance, mean absolute deviation,
root mean square (RMS), interquartile range, correlation
coefficient, etc. Zhang et al.[l8] divided the data features
into time domain features and frequency domain features.
The time domain features include the mean, maximum,
minimum, variance, and energy of acceleration and angu-
lar velocity; the frequency domain feature is the Fourier
transformation of statistical features in the time domain.

Elhoushi et al.26] gave more detailed feature types of iner-
tial sensors output data, including: 10 statistical features,
6 energy and module characteristics, 2 time domain fea-
tures, 6 frequencies domain features and 2 other features.

Intuitively, the more characteristic dimensions there
are, the better the separability of the data can be, but
the larger the data dimensions are, the greater the re-
quired calculations are. Therefore, when many features
are used, it is necessary to reduce the dimensions of the
features. This will undoubtedly increase the time com-
plexity of the algorithm. How to choose between feature
dimensions and algorithm efficiency is one of the factors
that needs to be considered in the classification of move-
ments.

b) Classification models

After the feature is extracted, the next step is to use
the features to train a specific machine learning model for
motion classification. There are many methods for pat-
tern classifications. In the references given in this article,
the main classification methods and their abbreviations
are as follows:

PNN - Probabilistic neural network classifier(¢l.

SVM - Support vector machine classifier(15: 18],

MLP — Muti-layer perceptron(i8,

DT — Decision treesl20: 26],

HMM - Hiden Markov modell17].

BA — Boosting algorithms(24].

BLSTM-RNN - Bidirectional long short-term memory
recurrent neural networks[21.

Table 1 shows some representative citations and their
performance in motion classification.

Of course, not all PDR algorithms need to classify the
motions, because adding the motion classification step
will undoubtedly increase the complexity of the al-
gorithms. Differences in the lectotype, number, and loca-
tion of sensors may cause the trained models not to per-
form well.

However, without considering other aids, in order to
achieve the trajectory estimation under complex environ-
ments and mixed motions, it can indeed increase the ac-
curacy of the estimations by adding motion classification
algorithms(!% 2], In the case where the precision of the in-
ertial sensors cannot be significantly improved, the more
prior knowledge about the movements there is, the bet-
ter the accuracies of the algorithms will be. Without any
prior identifications and classifications for the motions,
there is currently not such a robust algorithm that uses
only micro inertial sensors and does not rely on other aids
to accurately estimate the trajectories for any motions.
Therefore, it is a good choice to accurately classify and
recognize the motions in real time to achieve more accur-
ate trajectory estimations under complex motion condi-
tions.

3.3 Gait division strategies and methods
Gaits are basic features of the movements of human
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Table 1 Motion classification methods
Reference Sensors Features Classifiers Motion classes Accuracy
[21] 3D-gyroscope Normalized data BLSTM-RNN Forward, backward, 98.5%
3D-accelerometer sideways respectively
3D-magnetometer for running and
walking
[27] 3D-accelerometer Standard deviation; peak  Linear discriminant Walk stand, 83.20%(280m
value of the discrete Fourier ~ analysis (LDA) upstairs, combined walking)
transform; amplitude of the classifiers downstairs 82.87%(2350m
medio-lateral acceleration combined walking)
[18] 3D-gyroscope Mean value; maximum; SVM or MLP Walking, 98.7% (max)
3D-accelerometer minimum; variance; energy running, 87.9% (max)
upstairs, 92.9% (max)
downstairs 88.4% (max)
[26] 3D-gyroscope 10-statistical features; DT Stationary versus 97.2%
3D-accelerometer 6-energy, power, and standing on moving 84.2%
3D-magnetometer Barometer  magnitude; 2-time-domain; walkway
6-frequency-domain; . .
9-other features Walking versus walking 90.2%
on moving walkway 73.1%
Elevator versus 96.2%
escalator standing 94.1%
Stairs versus escalator 90.2%
walking 78.3%
[15] 3D-gyroscope Amplitudes of fast SVM Walking, Unclear
3D-accelerometer Fourier transformation running
(on foot) (FFT) of the gait data
[17] 3D-gyroscope Mean; variance; slope; HMM Standing, 98%
3D-accelerometer curvature walking, 90%
(on chest) running, 96%
going downstairs, 90%
going upstairs 91%
[20] 3D-gyroscope Signal norm; signal energy; DT Walking, Unclear
3D-accelerometer signal variance; spectrogram running,
(on pocket) standstill
[24] 3D-gyroscope Maximum; mean; standard BA Normal walking, Unclear
3D-accelerometer deviation; root mean square; running,
interquartile range;fast climbing,

fourier transform

descending stairs

lower limbs and are directly or indirectly related to the
displacements and trajectories of human motions. It is
impossible to directly integrate the original data to ob-
tain the pedestrian’s displacements under the limits of the
accuracies of inertial sensors. Therefore, it is necessary to
perceive and analyze the gaits information associated
with lower limb movements. Among the citations of this
paper, gait perception is one of the basic tasks that must
be included in almost all PDR systems.

1) Gait division strategies

According to different trajectory estimation strategies
and different sensor binding positions, diverse gait divi-
sion strategies are proposed in distinct articles. This sur-
vey divides the gait division strategies in the quotations
into two categories: abbreviated strategy and detailed
strategy.

As the name implies, the abbreviated strategy is to
simply divide the gaits, and usually only sense one or two
key events of the gaits. For examples, the very classic
strategy of dividing gaits as described in [28] is to use the
measurement unit attached on the foot to divide the gait
into the stance phase (the time period when the foot
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touches the ground) and the swing phase (time period
when the foot is off the ground). Diaz et al.29 attached
the IMU to the thigh to detect the only moment when
each foot landed to separate each step. Lan and Shih[3]
divided one step of walking into stance, heel off ground,
and heel touching ground events according to the changes
in waist height, and a measurement unit attached to the
waist was used to perceive the heel touching ground
event.

The detailed division strategy refers to dividing the
gait into three or more phases, and accurately distin-
guishing these phases from each other. Perry and Burn-
field3l divided one human walking step into 8 basic
phases:

Phase 1 (initial contact). This phase includes the
moment when the foot just touches the floor. Floor con-
tact is usually made with the heel.

Phase 2 (loading response). The phase begins with
initial floor contact and continues until the other foot is
lifted for swing.

Phase 3 (mid stance). This is the first half of the
single limb support interval.
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Phase 4 (terminal stance). It begins with heel rise
and continues until the other foot strikes the ground.

Phase 5 (pre-swing). It begins with initial contact
of the opposite limb.

Phase 6 (initial swing). The foot is lifted.

Phase 7 (mid swing). The swinging limb is oppos-
ite the stance limb.

Phase 8 (terminal swing). The final phase of swing
and it ends when the foot strikes the floor.

The gait classification strategies in most of the literat-
ure is based on simplifications of the above 8 gaits, result-
ing in many simplified gait classification strategies. The
above 8 gait stages were reduced into 4 gait states in [14,
32] which include state 1: gait Phases 1 and 2, state 2 :
gait Phase 3, state 3: gait Phases 4 and 5 and state 4:
gait Phases 6-8. In [33], one step is divided into four gait
events: foot strike (FS), flat foot (FF), heel off (HO), and
toe off (TO). These four gait events correspond in con-
notations to the 4 states in [32]. Ruppelt et al.’¥ also
simplifies the above 8 basic gait stages into 4 stages, as
shown in Fig.3, which are: Loading response: Phase 2;
Midstance: Phase 3; Terminal stance: Phases 4 and 5 and
Swing: Phase 6-8. Ren et al.?%l divided one step into
three phases, namely state 1: zero velocity interval, state
2: acceleration interval, and state 3: deceleration interval.

It is not difficult to see from the discussion of the
above division strategies that, whether in the abbrevi-
ated strategy or the detailed strategy, the touching
events in the time period when the foot touches the
ground were all detected. This is due to the good nature
of the time period when the foot is in contact with the
ground. First, this time period can be seen as the end of
this step and the beginning of the next step. If it only
needs to achieve the purpose of step counting or distin-
guishing each step, detecting the true subset of this time
period is enough. Secondly, during the period when the
foot is completely in contact with the ground, it has zero-
speed characteristics. In the algorithms that need to use
this time for error correction, the accurate detection of
this time period is particularly important. The purpose of
many detailed detections of gait events are to get a more

accurate time period when the foot completely touches
the ground, such as the flat foot event described earlier,
by sensing and removing the unstable time period before
and after this period from the touching event. Much of
the literature regarded the detection accuracies of this
touching events as important indicators for evaluating the
gait classification algorithms.

2) Gait division algorithms

The gait division algorithms study the methods that
distinguish each event or stage in the gait division
strategies. The simplest division algorithms are the
threshold-based methods. If the extracted features satisfy
the set thresholds, then the corresponding gait phases are
determined. The threshold-based methods can be divided
into the fixed threshold methods and the adaptive
threshold methods.

The fixed threshold methods refer to the approaches
for determining the gaits of input data using fixed de-
termination thresholds. Zhang and Mengl39 set the
thresholds for the net acceleration modulus and the angu-
lar velocity module values respectively. When both val-
ues of the input data are less than the set thresholds, it is
determined that the current moment belongs to the
stance phase. Tian et al.38 used the acceleration modu-
lus, acceleration local variance and angular velocity mod-
ulus, and the corresponding fixed thresholds to determ-
ine the zero-rate intervals of the steps. Hsu et al.[6] used
only the net acceleration modulus and its set fixed
threshold for gait determination. The outcomes of the
fixed threshold methods are often capable of meeting the
designer's requirements under the conditions where the
motions are not very complicated. Therefore, a large
number of documents use the fixed threshold methods to
determine the gait phases, such as [29, 30, 37—45]. As
early as in 2010, Skog et al.l6l. studied the three kinds of
commonly used threshold detectors: the acceleration-mov-
ing variance detectors, the acceleration-amplitude detect-
ors and the angular velocity energy detectors. They
proved that all these three types of detectors can be de-
rived from a same likelihood ratio test (LRT) framework.
However, the fixed thresholds are only suitable for the
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Fig.3 Motion analysis of a typical human gait cycle (cut from [34])
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single motion situations. In the case of complex and vari-
able motions, the error rates of the fixed threshold meth-
ods will greatly increase.

The adaptive threshold methods are improvements
over the fixed threshold methods, whose thresholds are no
longer fixed, but adjusted adaptively according to the dif-
ferent motion conditions. Different thresholds are set for
walking and running in [15, 23], and adaptively switched
based on the results of the movement -classification.
Mikov et al.[47l dynamically adjusted the threshold at the
current time instance based on the difference between the
maximum and minimum values of the filtered accelera-
tion in the last second and the dynamic threshold at the
previous moment. The idea of dynamically setting the
thresholds for gait determination is theoretically very
good, but not much of the literature uses the methods
which identify the types of movements first, then set the
adaptive thresholds. First, the motion classification tasks
will consume a certain amount of time and space, and
even if some motions are identified, it is difficult to dis-
tinguish the gait phases with corresponding fixed
thresholds. Secondly, the models that dynamically adjust
the thresholds are rarely proposed by researchers. In ad-
dition, some non-threshold methods are proposed and the
division effects are better than many threshold methods.

The non-threshold methods are the algorithms which
divide the gaits not only according to the thresholds, but
also mainly based on some other techniques. Using a hid-
den Markov model (HMM) to model the mutual trans-
formation between gait events is the most commonly used
non-threshold algorithm(2% 32-34 48] which mainly makes
use of the two properties of the gait events, i.e., period-
icity and sequentiality. Periodicity means that the move-
ments shown by the lower limbs of the human body are
repeating cyclically, while sequentiality indicates that the
occurrence of each gait event is strictly sequential within
a gait cycle. These two properties allow us to model the
real-time gait events with a finite state machine. For ex-
ample, Park and Suh(!4 divided the output data of the y-
axis of the gyroscope into four types of segments, corres-
ponding to the four stages of the gait, by dividing the
points which continuously preserve in a range of values
into a segment, and uses these segments to construct a
hidden Markov model which will be trained on the pre-
defined data set to determine which gait event each seg-
ment belongs to. The experimental results show that this
method is more accurate and robust than the fixed
threshold methods for detecting gaits. Similarly, Pana-
handeh et al.ll7 used a continuous Hidden Markov Model
to model the type of movement and gait at the same
time, achieving the simultaneous division of movement
types and gaits under the condition of mixture motions.

There are many other gait division techniques, such as
Bayesian network[49, fuzzy logicl®0: 51, subtraction cluster-
ingl28l, peak detection(!2l, zero crossing method?, etc.
Taborri et al.[53 introduced and summarized the gait clas-
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sification algorithms based on IMU in 2016. Interested
readers can refer to this article.

There are two main purposes for gait division: one is
for step counting and the other is for zero point observa-
tion. These two observations play such an important role
in pedestrian trajectory estimation that the results of the
gait division are called pseudo-measurements to show
that they are as important as the original measurement
data. Table 2 shows some common gait division methods
in the literature.

3.4 Environment constraints

Normal human activities are constrained by environ-
mental constraints. If the environmental information can
be used effectively, it will provide more prior knowledge
for the IPDR systems and create more favorable condi-
tions for improving the performance. There are two kinds
of main environmental information that can be used for
pure IMU-based PDR systems — map information con-
straints and magnetic field information constraints.

1) Map information constraints

The map is an accurate description of the geospatial
environment, from which it is easy to obtain the possible
paths and directions of normal human activities. Ab-
dulrahim et al.l’4 extracted the straight line formed by
the outline of the building's edge in the aerial image, and
calculates the inclination of the straight line in the image,
based on this, then calculated the angles of the other
three vertical directions, forming the four main headings,
and assumes that the heading of the person's walking
need to be aligned with these four main headings. Based
on this method, the cardinal heading aided inertial navig-
ation (CHAIN) system is proposed by [55, 56]. However,
the assumptions of the four main headings are so rough
that in the case of complex passages the correction pro-
cess may cause large positional errors. Therefore, Gu et
al.57l proposed eight main headings to cope with more
complicated situations. Lan and Shih[3% proposed a map
matching method using a floor plan to locate users based
on the geometric similarity between trajectory data and
maps. Gu et al.l’8] defined the points of intersections of
the mutually perpendicular channels in the building as an
anchor, then corrected the trajectory through the
anchor's constraints.

Nevertheless, in many indoor environments, there are
no electronic indoor maps, limiting the use of map in-
formation to correct trajectories. Some map correction
methods will not work if the initial positions cannot be
determined. In addition, in the open environment, the
map provides very little constraint information, and al-
gorithms that strongly rely on environmental informa-
tion to correct the trajectory will perform poorly.

2) Magnetic information constrains

Earth's surface is covered with geomagnetic fields. The
undisturbed geomagnetic fields provide absolute heading
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Table 2 Methods of gait phase detection

Reference Classification Gait phases Sensors used Technique details
[12] No Stance, swing Gyro, acc Fix threshold
[42, 59, 60] No Stance, swing Gyro, acc thamin < |ax| < th'amax&a-ai < they & |wi| < themax
[14, 48] No Strike, flat, toe-off, swing y-axis gyro Fix threshold pre-segment + HMM estimate
[47] No Stance, swing Acc Adaptiveathreshaold and time limits
max — Qmin
e Th-1+ TR, © ty —tk—1 > 0.25
2 ty —th—1 < 3.5
[43, 44, 61] No Stance, swing Acc Fix threshold of variance 02 < L
[28] No Stance, swing z-axis acc Fix threshold pretreatment 4 subtractive clustering
35] No Stance, swing Acc, gyro Fix threshold ||ax| — g| < Ae & |wi| < Ac
[15] Walking, running Stance, swing Acc, gyro Fix threshold for walking same as [33] adaptive threshold
for running:
The, = 2800, — 488, Thy = 1.8U; — 2
SVM+FFT classifier for gait phase detection
[23] Walk, jog, run, sprint, Stance, swing Acc, gyro Different motion with different threshold
crouch, climb 1", a’ 1 B2
(SVM classifier) W ; 2|7~ giHEETJ'H + E| wkH <7
[21] Forward, backward, Stance, swing IMU Adaptively estimate step directly with BLSTM-RNN

running, walking
(BLSTM-RNN)

[25] Any motion Stance, first-half of swing,
second-half of swing
[39] No Stance, swing

Speed output

Acc, gyro

A HMM model to estimate the three states of a gait

Threshold based soft foot still signal for adaptive
bt F

1 1 ~2 ~3 ~4

F E C;C;C;C;

i=k—F

determination SFS; £

information. But, due to hard and soft magnetic interfer-
ences, headings measured by magnetometers are not
available at all times. Hence, judging whether the mag-
netic field information is available or not is the first prob-
lem that needs to be solved before making use of the
magnetometer to estimate the headings. Afzal et al.[62]
specifically analyzed the magnetic field errors including
three axial modulus errors and heading errors, and as-
sumed that the good and bad magnetic fields obey differ-
ent Gaussian distributions. Hence, the maximum likeli-
hood ratio method is used to evaluate the magnetic fields.
Magnetic field calibration is performed to make further
improvements in [63]. The local variance of the magnetic
field is used to perceive quasi-static magnetic fields (QSF)
with a fixed threshold in [64]. However, in the case of
huge hard magnetic or permanent magnetic interferences,
when a person is at rest, it is also judged as a quasi-stat-
ic magnetic field. Therefore, an error judgment test is
considered in [29]. These magnetic field anomaly detec-
tion (MAD) algorithms allow magnetic field information
to be selectively used in PDR systems.

3.5 Trajectory estimation strategies and
methods

The trajectory estimation algorithms are the methods
which estimate the trajectories of pedestrians by integrat-

ing the measurement data (IMU data), the layout inform-
ation of the sensor units, the motion event observations
(including movement types and gait events), and the en-
vironmental constraints. How to organically combine
these acquired information to obtain the dead-reckonings
is the core content of the PDR algorithm. Harlell di-
vided the PDR system into two categories:

INSs (inertial navigation systems). An INS is a
system that tracks position by estimating the full 3D tra-
jectory of the sensor at any given moment.

SHSs (step-and-heading systems). An SHS is spe-
cific to pedestrians, estimating position by accruing {dis-
tance, heading} vectors representing either steps or
strides.

Here, we specifically analyze how these two types of
PDR systems fuse the above observation information to
get the final dead reckoning, and summarize which data
fusion algorithms are used in these two types of systems.

1) INSs

The basic theory of INSs is based on the following: the
single integral over time of pure external acceleration can
obtain the real-time speed, and the double integral gets
real-time displacement. The one-time integration of the
gyro output data over time can give a real-time attitude.
The final trajectories can be obtained by the accumula-
tion of the displacements and the attitudes. However, due
to the effects of noise, measurement bias, and other dis-
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turbance factors, obtaining the trajectories through the
triple integration will make the estimation errors propor-
tional to the third power of time, which will bring huge
errors in a very short time. Therefore, how to use the fil-
ter algorithm and the various types of information men-
tioned above to limit and correct the growth of errors is
the core of INS systems.

First, we consider the roles of various types of inform-
ation, described earlier in this article, in the INS system.

a) Zero velocity update (ZUPT) and zero-angular rate
update (ZARU)

Under the assumption that the speed and angular ve-
locity of the sole should be zero during the flat foot or
stance phase period when the sole is completely in con-
tact with the ground, once the flat foot or stance phase is
identified or detected, we can observe that the velocity
and the angular velocity are zero, i.e., they are zero-velo-
city pseudo-measurements. The zero-velocity pseudo-
measurements are compared with the system output to
obtain the error observation which will be compensated
to the system output to limit the long-term accumula-
tion of errors. This process is called zero-velocity update
(ZUPT) and zero-angular update (ZARU). It is worth
noting that ZUPT and ZARU are only for the situation
where the sensors are tied to the foot. For the situations
where the sensors are tied to other positions, ZUPT and
ZARU cannot be used because they do not meet the hy-
pothesis of zero-rate pseudo-measurement. Therefore, the
INS systems mainly research the foot-mounted-based
PDR algorithms.

Although the ZUPT and ZARU techniques can well
limit the accumulation of integral errors, the final ac-
curacies of trajectory estimation are very dependent on
the precision of the flat foot phase detection. Hence, a lot
of researches have been devoted to improving the accur-
acy of gait classification. However, as the speed of move-
ment increases, the time during when the sole is com-
pletely in contact with the ground is very short, making
the flat foot detection more difficult.

b) Heuristic heading reduction (HDR)

HDR was first proposed by Borenstein et al.[55 which
is mainly based on the assumption that when the roads
and the channels are straight, the human headings are
changeless. If the algorithm judges that the heading is
unchanged, the heading deviation can be corrected. The
use of HDR can limit the constant heading drifts, espe-
cially in the case where ZARU is not available, such as in
non-foot-mounted PDR systems, the headings can be con-
fined within a certain range by HDR methods.

In the case where the direction of walking is changed
slowly, the HDR easily judges the heading unchanged, on
the contrary. How to solve this problem needs to be con-
sidered before using HDR algorithm.

c¢) Heading observation of magnetometer

Under the ideal geomagnetic conditions, the magneto-
meter can output the user’s absolute heading without in-
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tegral options. The heading accuracy obtained from the
filtered magnetometer’s output is pinpoint. Therefore,
many researchers also use the magnetometers outputs to
compensate for the heading errors of gyros integral.
However, due to the fact that the geomagnetic field is
very susceptible to the hard magnetic interference of the
surrounding environments, the deviations measured by
magnetometers may sometimes be too large to be used.
Therefore, only when the tolerable magnetic field interfer-
ences are detected, may the output of the magnetomet-
ers be integrated with the gyro integral to estimate the
headings/64].

d) Data fusion filter

The most commonly used filter in the INSs is the ex-
tended Kalman filter (EKF), of course, other filters in the
Kalman filter families, such as unscented Kalman filter-
ing (UKF)I66, 67 complementary Kalman filtering
(KF)8] cubature Kalman filtering{®(CKF), are also oc-
casionally used for filtering. Some papers also use comple-
mentary filtersl6l: 701, Ashkar et al.[6] evaluated the per-
formance of the EKF and UKF in trajectory estimation
and found that the estimation accuracy of EKF and UKF
is basically the same, but UKF needs more computation-
al overhead. Therefore, the EKF performs better overall.
The filtering methods are divided into direct estimation
and indirect estimation. The direct estimation means that
the filter directly outputs the final tracking data, and the
indirect estimation means that the filter estimates the er-
rors of the tracking data which will be compensated to
the integration results. The commonly used method is the
indirect estimation which estimates the state vector that
contains 15 error states, including three-dimensional er-
rors of acceleration, angular velocity, velocity, displace-
ment, and attitude respectively. As shown in Fig.4, a
typical INS structure for estimating the error vectors us-
ing EKF is derived from the literaturel4s: 59,

e) Outcome of INS + EKF + ZUPT + ZARU + HDR
+ Compass algorithm

Abdulrahim et al.4 specifically evaluated the per-
formance of this framework in 2010. Their reports showed
that the position errors exceeded 15% for INS + EKF +
ZUPT only, were 8% for INS + EKF + ZUPT + ZARU,
and 2%-10% for INS + EKF + HDR, 0.68% 5% for INS
+ EKF + ZUPT + Compass, and 0.38%—1.5% for INS +
EKF + ZUPT + ZARU + HDR + Compass. The latest
article published by Zhang et al.8] in 2017 shows that
the 3D trajectory estimation error based on this frame-
work is from 0.207% to 0.350% and the average position
error is within 1m. This error has basically reached the
user's acceptable range. However, the actual situations
are much more complicated than the experimental condi-
tions, and the types of movement are also complex and
varied. It is still difficult to make the accuracies in prac-
tical applications as accurate as in the experimental en-
vironments.

2) SHS trajectory estimation strategy
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The basic idea of step and heading systems (SHSs) is
to divide the walking process into steps, and use the
measurements outputs of each step to directly estimate
the step size and heading, then accrue the {length, head-
ing} vector to estimate the positions. The key issues in-
volved in SHSs include: perceptions and divisions of
steps, step sizes estimation, and step headings estimation.
The step perceptions and divisions have been specifically
discussed in Section 3.3. Here we summarize the step
sizes estimation and headings estimation methods.

a) Step size estimation

Most non-foot-mounted PDR systems use the SHSs
trajectory estimation strategies because non-foot-moun-
ted systems do not have clear zero-rate points and can-
not perform the very important ZUPTs to limit drifts.
The SHSs usually use mathematical models to directly
model the measured data in one step to estimate one step
size. Since there are no integrals, it is a linear relation-
ship between distance errors and time.

Table3 summarizes some of the estimation models of
the step sizes in the literature. In essence, the step sizes
can be obtained by using the acceleration integrals.
Therefore, there are large corresponding relationships
between the acceleration characteristics and the step
sizes. From Table3, it can also be seen that the most
commonly used step features are the differences between
the maximum and minimum acceleration in one step.

INS using EKF with ZUPT, ZARU, HDR and Compass

Some of the literature assumes that the human lower
limb movements are similar to that of inverted pendu-
lum models. Therefore, one step length can be estimated
by using the characteristics of the leg length and height
variation in one step, as shown in Table 313 30], In some
models, features such as cadence and acceleration vari-
ance which reflect the severity of the movement are also
used as inputs of models2l: 29I In [71], the vectors com-
posed by the features mentioned above are input into a
trained back-propagation artificial neural network (BP-
ANN) to directly estimate the step sizes, and the results
show that the estimated error range is 1.7% to 2.1%
which is 2% lower than that of the frequency models and
nonlinear models mentioned above. Since artificial neural
networks can fit almost any functions and can consider
many dimensions of the input features at the same time,
training a good artificial neural network model to estim-
ate the step sizes is usually better than artificially design-
ing a fixed mathematical model.

However, the above-mentioned mathematical models
with parameters are generally obtained based on the ex-
perience in normal walking or running data, and will
completely fail for some abnormal movements such as
marking time. Marking time may have a large accelera-
tion difference and a high step frequency, but no step
length. If we use the model mentioned in the literature,
we will get a normal step size. Problems like this have
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Table 3 Methods of step length estimation in SHSs

Step length estimation

Reference
Parameter description Model
[72] K : constant coefficient L= K X Vamax = amin
amax: Maximum acceleration
amin: Minimum acceleration
[73] K: constant coefficient ZN lal
amax: Maximum acceleration L= TN Gmin
amin: minimum acceleration L=kKx—N
a;: acceleration sample Gmax — Gmin
[74] K : constant coefficient SN ladl
a;: acceleration sample L=Kx{ %
[13] L: the length of leg d=2x+v2x Lh—h2
h: the height chenge of step
[75] K: constant coefficient ZN llaxl
Gmax: maximum acceleration L =K x =,=l—— % {/amax — Gmin
amin: Minimum acceleration
ay: acceleration sample
[30] L: the length of leg D=2x\/I?—(L-h?)
h: the height chenge of step
[76] thysopseare: StATt time of the step ASp = cta
Lhyoppnat €nd time of the step (thorepmng — thatepstart)
co, c1: the constant parameters
[29] h: height I=hx(aX feep+b)+c
fstep: step frequency
a, b, c: calibration parameters
[21] Ay, the forward walking step length Ajw =e+ f/Var(a:)
Ay, the forward running step length
v ‘ Afr =g+ hy/V 2
Apy: the backward walking step length gr=97h ar (a:)
Var (a.): the variance of the z-axis acceleration during a step Apy =k +my/Var (az)
e, f, g, h, k, m: the linear regression parameters
ste st st stel ste
[77] aet = @ — alth,, a4y, foralier < asier
a®'°?  peak value of the ste b= ;’”’ ) step step
_tpwk»t P P Blog (a,pp,f) +7, fora,,; > a7
@y altey,: Valley value of the step
3: the scale factor v: the offset
[71] fstride: the stride frequency Trained a BP-ANN model to stimate the step

accmax: maximum acceleration
accmin: minimum acceleration
Oace: acceleration standard deviation

length. The input vector is
Xi = {fstride, ACCmax; Tace; ACCmin, R}

h: height of test subjects

not been solved well at present.

b) Heading Estimation

In a foot-mounted SHS system, the headings estima-
tion can be similar to the INSs. However, many SHSs are
not based on the foot-mounted methods. In these cases,
the ZUPT and ZARU cannot be used to limit the head-
ing drifts due to the loss of zero-rate points, thus the
headings can only be corrected by other means.

The simplest way is to estimate the attitude of the
measurement units with attitude calculation algorithms,
and to derive the headings through the attitudes. Using
the map constraints(30 58, 60, 71l and quasi-static magnetic
fields[29 45, 62-64] summarized above to correct the head-
ings is a method used by many documents.

The heading outputs by the SHS systems are usually
two-dimensional, so the general SHS systems will not be
able to be used for the estimation of three dimensional
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trajectories. How to perceive vertical height changes
based on inertial sensors is a tricky problem.

3.6 Particle filter

In addition to the previously mentioned ways of using
map information for heading constraints, another way to
combine maps with INS or SHS systems is through a
particle filter. A particle filter is an approximate solution
to a Bayesian filter("8l. It approximates an arbitrary prob-
ability density function by finding a set of random
samples propagating in the state space, and replaces the
integral operation with the sample mean to obtain the
minimum variance estimation of the system state. A
number of particles are randomly generated on the map
according to a certain distribution in PDR systems that
incorporate particle filtering. Each particle represents a
three-dimensional position and has its own weight which
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is adjusted and updated in real time according to the in-
puts and status of the system. It is an iterative process
that mainly includes the following steps!:

Propagation. Each particle updates its own state
based on the state of the system at that time. For ex-
ample, when the SHS system outputs a state {step
length, heading}, each particle changes its position and
heading according to the state.

Correction. Each updated particle gets its weight ac-
cording to a system evaluation function or constraint. For
example, the weights of the particles that pass through
the wall during the update are set to zero.

Re-sample. According to the weight of each particle,
a certain number of particles are re-sampled in propor-
tion to form a new set of particles which will enter the
next iteration of the update process.

According to [42, 55, 76, 79-81], a general framework
for particle filters used in PDR systems is summarized, as
shown in Fig. 5.

In the propagation step, the added random noise rep-
resents the uncertainty of the estimation results due to
IMU measurement noise. The most commonly used ran-
dom noise is Gaussian noise, of course, but it can also be
non-Gaussian noise. The noise variance can be fixed[55 78l
or dynamically changed according to the real-time state
measurementsi? 76, During the determination of the
particles’ weights, in addition to removing the particles
which pass through the wall, other constraints may also
be used to determine the weights of the surviving
particles. Abdulrahim et al.l’4 utilized the cardinal head-
ing aided inertial navigation (CHAIN) method to ensure
that the particles whose headings are closer to the main
headings are with greater weights. Gu et al.’"l updated
the particle weights by considering the prior knowledge of
constraints of eight discrete principal directions and hu-
man behavior categories. Medina et al.80 took the loca-
tion estimated at each step as the center of a circle with a
radius of 2 to 3 meters, and calculated the shortest dis-

Inertial
Sensors

Accelerometer, gyroscope,/magnetometer

INS or SHS

lstepa AWswp

{ny | {m}

tances from the center of the circle at every 9 degrees to
the walls, then endowed the long-distance areas with
large weights, and the short-distance areas with small
weights. In the resampling process, the number of res-
ampling particles can be fixed®, or dynamically
changed!™]. The number of the particles requires a trade-
off between the estimating accuracy and the computa-
tional overhead. There are also many resampling meth-
Kullback-Leibler (KLD)
sampling[™, polynomial sampling (straightforward multi-

ods, such as divergence
nomial resampling strategy)®), etc.

During initializing particles, if there is no prior know-
ledge, the easiest way is to evenly distribute all particles
throughout the map, but this method requires a large
number of initial particles in order to cover the entire
map space. When the considered map is large, the initial
computational costs will be very large, and even the
particle update process takes a longer time than motions
of one step. In addition, many buildings are symmetrical,
and if the initial position is unknown, it is possible that
the estimated trajectory is not unique. Therefore, it is ne-
cessary to use some auxiliary means to reduce the initial-
ization particles, such as using Wifi to initialize the ap-
proximate location, manually setting the initial position,
or using magnetometers to estimate the initial heading.
When considering the use of particle filter in a PDR sys-
tem, determining an effective initialization method is an
important way of improving the system's efficiency.

4 Technical roadmap of IPDRs

This article uses object-oriented thinking to analyze
the various sub-problems involved in the PDR systems,
decouples each sub-problem from the specific PDR sys-
tems, and analyzes and summarizes each sub-problem
separately. Through the analysis and discussion in this
paper, we propose a graph structure of IPDR systems,
which is composed of nodes and directed edges between

Wall constrains

New paticle .
Re-sample ] weights

CHAIN
etc.
Correction
Particle
states
Updated
particle

Random noise
sequences

Weighted
averages

Position estimation

Fig. 5 General framework of PF used in PDR
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Fig. 6 General technical roadmap of IPDRs

each sub-problem discussed above. A specific set of paths
from the beginning node to the end node constitute a
subdirected graph, which we call a "technical route" of a
specific PDR system. Fig.6 shows the structure of the IP-
DR technology roadmap:

The nodes in each stage in Fig.6 can be combined
with each other, i.e., the technical means adopted in each
stage are combinations of each individual technology. For
example, during the motion classification stage, SVM,
HMM, etc. can be used alone or in combination with each
other as the motion classification algorithm. A set of
paths from the start node to the end node form a technic-
al route. For example, the technical route of a PDR sys-
tem composed by the bold green lines in Fig.6 indicates:
Using accelerometers and gyroscopes as measurement
units, binding them to the feet, classifying motions by us-
ing hidden Markov models (HMMSs), using adaptive
thresholds for gait segmentation, considering maps and
heuristic heading constraints, and using INS strategies to
estimate the trajectory without using particle filters. The
ellipses in Fig.6 indicate other unlisted technical meth-
ods in each section. In this way, we can intuitively choose
how to design an inertial sensor-based PDR system. Of
course, the diagram depicts only the main frame of the
PDR system. It is possible to add more other methods for
each section on this basis.

5 Conclusions

This paper does a survey and analysis of pure inertial
sensor-based PDR systems (IPDRs) from the macro and
micro perspectives. From a macro perspective, this paper
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proposes a general framework and a generic technology
roadmap structure of IPDRs. From the micro perspective,
using object-oriented thinking, the IPDR systems are di-
vided into several relatively independent sub-problems to
be discussed in detail, and the technical methods applied
to these sub-problems in the current literature are sum-
marized. This article provides a clear framework for the
follow-up IPDR researchers or designers from these two
aspects. IPDR system researchers can conduct in-depth
research on each of the sub-issues summarized in this pa-
per, propose new solutions, or improve on existing found-
ations. It is also possible to combine the existing technic-
al solutions in each sub-problem differently to propose a
new technical route.

Many researchers now claim that their proposed IP-
DR systems have sub-meter accuracies, and the ratio of
position error to true trajectory distance is usually less
than 3%. More accurately, the state-of-the-art foot-moun-
ted PDR approaches have achieved a error rate less than
0.3%, such as the proposed method by [48], which has
achieved a error rate 0.217%, 0.350% and 0.207% respect-
ively in their experiments in which the total length of the
route line is about 310m and the error distance is from
0.160m to 1.084m. This has largely reached the expecta-
tions of everyday users. With the development of MEMS
technology, the characteristics of low cost, small size, low
power and high precision will make micro inertial sensors
more and more applicable to our daily life. Especially the
popularity of handheld devices and the wide application
of wearable devices in recent years provide a broad pro-
spect for the development of applications based on micro-
electromechanical systems (MEMS). Therefore, the IP-
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DR systems are expected to be widely used in environ-
ments without GNSS signals to provide users with loca-
tion and navigation services. There is much research on
the IPDR systems based on inertial sensors of mobile ter-
minals, but the results are not very significant. To
achieve a wide range of applications and popularity, there
are still some problems that need to be resolved in the
current IPDR systems.

The initialization problem. Since the IPDR sys-
tems estimate the relative displacements with respect to
the initial position, in the positioning application, without
the help of other information, IPDR systems will not be
able to obtain the initial position in a map and thus lose
the reference point. Even if particle filters are used, the
system may not converge to a specific location in a long
period of time without initializing an approximate loca-
tion first, or the position obtained in a symmetrical envir-
onment is not unique. Although it is a seemingly feasible
method to use Wifi to perform initialization, this in-
volves Wifi positioning, a completely different approach
from IPDR, and Wifi signals are not available in many
cases. Therefore, how to initialize the position of the IP-
DR systems is a difficult problem that needs to be solved.

Error accumulation problem. Most of the current
standards for measuring the accuracies of the IPDR sys-
tems are the percentage of error with respect to the true
moving distance. Although numerically, the error percent-
ages of these implementations look very good, under long-
distance running conditions, the error distance between
the estimated position and the true position will also in-
crease, which means that after a certain period of time,
the output errors of the IPDR system may completely ex-
ceed the user's acceptable range. Initializing the position
intermittently with some known position may be a meth-
od of suppressing large absolute errors. However, this in
turn depends on the solution of the initialization problem.

Problem of the restriction of activities. So far,
almost all proposed IPDR systems are based on traject-
ory estimations under a limited number of normal mo-
tions. In real life, there will be a large number of differ-
ent types of activities and activity scenes. Under com-
plex motion conditions, it is difficult for existing IPDR
systems to achieve the accuracy claimed by the research-
ers. Although the use of a more powerful classification al-
gorithm for motion classification is a method to improve
the performance of IPDR systems in complex motion
situations, there are differences in the number of categor-
ies and the strategies for motion classification in different
literature, and no uniform standards. In addition, there is
a lack of authoritative databases for the classification of
inertial motion data.

Fixed position problem. The basic premise of the
IPDR systems is that the measurement units are fixedly
attached to the human body. This is one of the major
obstacles for the design of IPDR systems using smart
phones. It is difficult for a smartphone to be fixed to a

part of a person's body during exercise. Even if it is
placed in a trouser pocket, the posture of the smart-
phone relative to the leg will be constantly changeable.
But, considering the wide using of hand-held devices,
there is research on hand-held PDR being advanced as
well, such as [26, 81]. And the hand-held PDR is also a
worthy research area in the future.

Some aids or hybrid navigation systems are currently
temporary solutions to the above problems. This article is
only for the overview of pure inertial sensor-based PDR
systems. Many assisted trajectory estimation methods or
integrated navigation systems that use auxiliary sensors
other than inertial sensors do have good performance, but
they are beyond the scope of this article.
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