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Abstract: This paper proposes a novel nonlinear energy-based coupling control for an underactuated offshore ship-mounted crane,
which guarantees both precise trolley positioning and payload swing suppressing performances under external sea wave disturbance. In
addition to having such typical nonlinear underactuated property, as it is well known, an offshore ship-mounted crane also suffers from
much unexpected persistent disturbances induced by sea waves or currents, which, essentially different from an overhead crane fixed on
land, cause much difficulty in modeling and controller design. Inspired by the desire to achieve appropriate control performance against
those challenging factors, in this paper, through carefully analyzing the inherent mechanism of the nonlinear dynamics, we first con-
struct a new composite signal to enhance the coupling behavior of the trolley motion as well as the payload swing in the presence of ship's
roll motion disturbance. Based on which, an energy-based coupling control law is presented to achieve asymptotic stability of the crane
control system’s equilibrium point. Without any linearization of the complex nonlinear dynamics, unlike traditional feedback control-
lers, the proposed control law takes a much simpler structure independent of the system parameters. To support the theoretical deriva-
tions and to further verify the actual control performance, Lyapunov-based mathematical analysis as well as numerical simulation/ex-
perimental results are carried out, which clarify the feasibility and superior performance of the proposed method over complicated dis-

turbances.

Keywords: Energy-based control, offshore ship-mounted cranes, Lyapunov methods, underactuated, nonlinear control systems.

1 Introduction

Recently, a great surge in efforts have been seen to
tackle the control problem of underactuated mechatronic
systems, such as translational oscillator with rotational
actuator (TORA) systemsl!, underactuated vehicles 3,
underactuated surface vesselsl: 5], rotational-translational
actuator (RTAC) systemsl®l, underactuated robotic sys-
tems!”l, underactuated cranes(819, double-pendulum crane
systems[!l], etc.[2-19 which have less applicable control
inputs than the to-be-controlled system degrees of free-
dom (DOFs). Being a typical underactuated nonlinear
system, in marine industries, offshore cranes have been
playing increasingly important roles as strong transporta-
tion tools primarily due to their merits of high transport
capacity, super operation flexibility, less energy consump-
tion, etc. Suffering from external disturbances such as sea
waves, sea winds or currents, the ultimate regulation con-
trol objective of offshore ship-mounted crane systems is
the accurate and efficient positioning of payloads with
small swing against ship’s motion disturbances. However,
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during the transferring processes under harsh sea condi-
tions, there is always unexpected payload swing induced
by inertia and numerous external disturbances, which are
dangerous and may cause severe impacts to the people or
freights around. Hence, investigation of an effective con-
trol approach for an offshore ship-mounted crane is of sig-
nificant importance in terms of both theoretical value and
practical applications.

To effectively control an underactuated offshore ship-
mounted crane, which contains a trolley moving along the
boom and a payload connected by an inelastic wire, a
preferred technique is to appropriately control the trolley
motion by fully analyzing the inherent coupling mechan-
ism between trolley movement, payload swing and ship’s
motion. During past decades, many researches regarding
offshore crane control approaches have been developed
and reported in the literature, which can be roughly clas-
sified as linear methodology as well as nonlinear and in-
telligent strategies. For the former category, to simplify
control design, the complex nonlinear crane model has
been linearized around its equilibrium points, then a
number of linear control approaches, such as linear quad-
ratic regulator (LQR) control) optimal controlll in-
put shaping method22], etc., can be utilized. However, as
a means to achieve better control performance, the sys-
tem nonlinearities cannot be neglected and should be
strictly tackled, for which, nonlinear and intelligent



Y. Z. Qian et al. / An Energy-based Nonlinear Coupling Control for Offshore Ship-mounted Cranes 571

strategies, including anti-swing nonlinear controller(23],
sliding-mode control24, adaptive boundary controllerl25],
etc.126] are proposed.

Additionally, although the mechanical structure of an
offshore-mounted crane resembles that of a land-fixed
overhead crane, which has the same characteristic of un-
deractuation, the control problems for those systems are
fairly different mainly due to the unmatched interference
acting on the ship-mounted crane system induced by per-
sistent sea wave disturbances, which, largely upgrade the
difficulty in controller design for offshore ship-mounted
cranes. Therefore, many ambitious control schemes pro-
posed for land-fixed cranes covering double-pendulum
cranes/ll, 2729 overhead cranes(® 10,3032 tower cranesl? 33],
gantry cranesB4, etc., cannot be applied to offshore ship-
mounted cranes directly. Moreover, to tackle the un-
matched interference for a great variety of control sys-
tems, a number of methods like adaptive control al-
gorithml®] output tracking controll3%l, neural network-
based controlB7l, are also investigated.

So far, it is still a quite open problem for offshore
ship-mounted crane control due to some issues that re-
main unsolved, such as accurate positioning of payloads
with lower swing in the marine environment. To this end,
many attempts have been devoted to the improvement of
high-performance control schemes for such systems. For
example, besides the existing methods mentioned
abovel23-26] recently, two anti-swing nonlinear controllers
considering ship roll disturbances for an offshore boom
crane are proposed by Lu et al.38], which contain a full
state feedback controller as well as an output feedback
controller. Moreover, in dealing with some unknown peri-
odic sea wave disturbances, Qian et al.39 design an effi-
cient nonlinear adaptive learning control, which presents
good robustness against everlasting disturbances and un-
known parameters. For flexible marine installations,
through analyzing the vessel dynamics, He et al.[0 devel-
op a robust adaptive boundary control to achieve under-
water positioning operations. By constructing an elabor-
ate storage function, Sun et al.4ll provide a complete
Lyapunov-based nonlinear anti-swing control method for
an offshore crane, while for ship-mounted boom cranes
with ship roll and heave movements, a nonlinear control-
ler is proposed also by the same authors/42. Moreover, for
some systems with submerged payload hanging from off-
shore crane vessel, the nonlinear dynamic response has
been investigated by Hannana and Bail43l, while a fuzzy
sliding mode control approach has been proposedi44l.
However, either linearized dynamic model or accurate
knowledge is needed for the aforementioned control
strategies, which are restrictive for the control issues of
most offshore ship-mounted crane systems.

As a brief review, by examining the existing control
approaches for offshore ship-mounted cranes, the follow-
ing essential issues remain open and unresolved.

1) Most existing methods for complex offshore ship-

mounted crane systems need to linearize the nonlinear
crane dynamics or neglect some specific nonlinear terms
around the equilibrium point, which may not obtain high
control performance when the system states exceed the
small ranges due to external disturbances, e.g., under
harsh sea conditions.

2) For presently available closed-loop control meth-
ods for offshore cranes, they cannot theoretically guaran-
tee the asymptotic stability of the equilibrium point,
which is also a very important control problem for such
underactuated systems. Moreover, since an offshore ship-
mounted crane always suffers from some unmatched ex-
ternal disturbances, which are mainly caused by sea
waves or currents, the accurate positioning of the pay-
load with lower swing angle during transportation pro-
cess is an imperative requirement for the control system
in the industrial field.

3) Almost all existing control strategies are sensitive
to external disturbances, which lack robustness for such
offshore crane systems. Therefore, proposing of a high
performance control law against undesired extraneous
perturbations is of great importance.

Generally speaking, for control of mechanical systems,
an energy-based controller designing approach is feasible
and effective owing to its efficacy of energy elimination.
In this regard, for instance, an energy-based control
method for the regulation of overhead cranes is proposed
by Sun and Fangl4’l, while an energy-based control of
double pendulum cranes has also been developed!46].

Considering the previously mentioned facts, in this pa-
per, we present a novel nonlinear energy-based coupling
control for an offshore ship-mounted crane, which guaran-
tees the asymptotic stability of the equilibrium point and
achieves satisfactory control performance for various
transportation tasks. Specifically, via introducing an eleg-
ant composite error signal, which enhances the inner
coupling between system states and disturbed motion, an
offshore ship-mounted crane system is then transformed
into an interconnected system, which brings much con-
venience in controller design and stability analysis for the
reconstructed crane model. Based on which, as is gener-
ally known that energy can reflect and describe the mo-
tion and status of a dynamical system, through choosing
a proper Lyapunov candidate function, an energy-based
controller is then designed. The convergence of the
closed-loop system's equilibrium point is proven by Lya-
punov techniques and LaSalle’s invariance theorem. Fi-
nally, to illustrate the promising application prospect of
the proposed control method, numerical simulation and
experiments are both implemented, which clearly show its
effectiveness as well as the robustness against external
disturbances.

In summary, as the main contribution of this paper,
the proposed method successfully achieves an improved
control performance, which is presented as follows:

1) The newly defined coupling system states involve
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the inherent mechanism of the nonlinear dynamics,
which, along with the straightforward stability analysis,
guarantees the superior control performance of the off-
shore ship-mounted crane system.

2) Unlike traditional energy-based control methods,
the proposed controller takes full account of the state
coupling of the nonlinear dynamics, which takes a much
simpler structure independent of the system parameters.

3) The proposed controller is robust against numer-
ous external disturbances, which is demonstrated by nu-
merical/experimental results.

The remaining sections of the presentation are struc-
tured in the following manner. In Section 2, the original
offshore crane dynamics is briefly introduced, and for the
kernel part, a novel composite signal is developed and
then the model transformation is implemented. Section 3
refers to the processing of controller design and stability
analysis for the coupled crane system. Simulation results
are given in Section 4, while experimental results are im-
plemented in Section 5 to further demonstrate the superi-
or performance of the proposed control scheme. Section 6
draws the main conclusion regarding this work.

2 Crane dynamics and model trans-
formation

2.1 Dynamics and control objective

Considering the horizontal transportation stage of an
offshore ship-mounted crane, see Fig.1, the control issue
can be depicted as precise positioning and swing elimina-
tion of payloads under external disturbances caused by
sea waves or sea winds. Specifically, two frames are in-
volved, which include the land-fixed frame I, and the
ship-fixed frame I;. It can be seen from Fig.1 that, in the
inertia coordinate frame I,, the axes y, and z, are vertic-

L) Trolley
—~ )

o1
.- Cable

Payload

7 Ship

Fig.1 Schematic illustration of an offshore ship-mounted
crane
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al to the land and parallel with the ground, respectively;
while in the non-inertia coordinate frame I, which is de-
noted as the ship frame, ys and zs axes are vertical to the
shipboard and parallel with the ship deck, respectively.

In our previous work, the dynamics of the 2-dimen-
sional (2D) offshore ship-mounted crane, which contains
the disturbing effect of ship’s motion, can be given as fol-
lows[47:

(m1 =+ mg) Lr + mQC@Lé — mQLSQéQ =
F, 7f'rz+m1gsoz 7m2.qSOt 7fL.7: (1)

mQLCGEz + mQLzé +4 ngLSg_a = —fg (2)

where mi, ma, L,g denote the trolley mass, the payload
mass, the wire length and the gravitational constant,
respectively. L, (t) and 6(¢) represent the trolley position
and the payload swing angle relative to the ship
coordinate frame, respectively, which are also the to-be-
controlled system states. «(¢) is the ship’s rolling angle
relative to the land-fixed frame, which describes the
external disturbance. In (1), F(t) is the to-be-designed
control input, and fro(t) denotes the friction force
between the trolley and the boom.

Besides, fr,(t) and fg¢(t) are the disturbance-induced
inertial forces acting on each sub-system with the follow-
ing forms:

fLm = (mlh + mah — mzLC’9) a+
(mi1Ls +maLy +maLSy) a2+
2m2L959d (3)

f@ =mslL (hC@ — L — L;I;SQ) a+
moL (LZCQ + th) d27
QWQLLxSQd (4)

where h is a constant denoting the height of the boom.

In this paper, we mainly consider the transportation
tasks from deck to deck, whose control objective is to po-
sition the payloads accurately with lower payload swing.
Above all, before the controller design, the target posi-
tion yq can be described through analysing the geometric
relationship as

Yd = Lga + LSe, (5)

where L4 and 0, are introduced as target values of the
system states including trolley position and payload
swing angle. Based on the fact that 65 = «(t), one has

Lya = ya — LSa (6)

0 = a. (7)

Then, the error signals ei(¢) and e2(t) can be con-
sequently defined as
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€1 (t) = Lz - de = L:E — Yd + LSa (8)

eg(t):ﬁ—ﬁdze—a. (9)

Hereto, the basic control tasks of an offshore ship-
mounted crane can be summarized as follows:

1) To regulate the suspended payload from its initial
position to the desired location, denoted as yq in the
land-fixed frame I, corresponding to the target values of
system states [Lzq, Gd]T.

2) To suppress the residual payload swing (i.e., the
swing after the cargo arrives at yq) in the land-fixed
frame I,,.

3) To eliminate the effect induced by external sea
wave disturbances within finite time.

More specifically, to stabilize the offshore ship-moun-
ted crane system at the desired equilibrium point, the
main control objective is given by

[e1(t) é1(t) e2(t) é2(t)]" =1[0 0 0 0]". (10)

From an arbitrary initial status in the presence of the
unexpected additive disturbances fr., fo. Namely that, a
proper control law Fy(t), which efficiently eliminates the
oscillations of the platform and suppresses payload swing
angle, is required to be proposed in this paper.

2.2 Model transformation

In order to enhance the coupling behavior of system
states and facilitate the subsequent controller develop-
ment and analysis, in this subsection, the model trans-
formation is performed. Substituting formulas (3) and (4)
into the original dynamics (1) and (2), respectively, and
after some mathematical manipulations, one can obtain:

(m1 4+ m2) (LI + hd) + moCyL (9 _ a) _
mo LSy (9 — d)2 =

F.L' - fra; + mlgsa - mQQSa - (ml + m2) Lza2 (11)

maLCly (LI ¥ hd) + maL? (é - a) + magLSy_a =

moLSeLyct — maL (LeCo + hSp) &°+
2m2LS9de. (12)

Herein, based on the form of (11) and (12), we define the
novel composite error signals £1(¢) and £2(¢) as

&1 =é1+ dap (@) + A (e2) (13)

Eo=0—c=é (14)

where Ao, \¢ € RT are positive constant gains, ¢ (a),
¢ (e2) denote the yet-to-construct scalar functions with
regard to a(t) and ez (t).

Taking the time derivative of (13) and (14), respect-
ively, we have

f=6+ag (@) + 2 202, (15)

=0-d=é (16)

while integrating those functions of (13) and (14), one
obtains:

/Ot& (T)dT:€1+>\a/(;t<,D(Oé(T))dT+
e [ oten (ar a7)

/Ot & (1) dr = ea. (18)

Then, substituting (13)—(18) into (11) and (12), the
coupled dynamics model can be rewritten as

(m1 +ma) & +maCyLés — maLSe&s =
Fo— fra+m1gSa — m2gSa—(m1+mz) La&’+

(m1 4+ m2) (—Lga — hét)+

(m1 4+ m2) (Aa@ (@) + Ae %;2)52) (19)

maLCo€1 + maL€s + magLSe—o =
maL(SgLyét — (LyCo + hSe)d® + 2Sp L)+
maLCy(—Lizg — hét) + AamaLCyp(a)+

)\gmgLCe L(gg?) rfg. (20)

To facilitate the following analysis, based on (19) and
(20), the matrix form of an offshore ship-mounted crane
system is compacted as

M +Veé =Fo+ fr+ F* + F, (21)
where the coupled system error vector is defined as

EW=[&®) &@) ] er? (22)

the inertia matrix Mg (t) € R**? and the centripetal
Coriolis matrix V¢(t) € R**? have the following forms as

o mi1 +mos maCyL
Me = [ maoLCy m2L2 :| (23)
and
_ O 7m2LS90.

In (21), F. € R? denotes the control input as

@ Springer



574 International Journal of Automation and Computing 15(5), October 2018

T

F.=[F. 0] (25)

with F, representing the only actuating force on trolley
motion. The friction force vector f.(t) € R? is depicted
as

fo=[ —fe 0" (26)

In addition, for the coupling disturbance vectors,
F* (t) € R? and F, (t) € R? are collected as

F =[ fi moLf; |" (27)

and

Fo=[fa fo] (28)

respectively, the details are as follows:
fi =mi1gSe — M2gSa — (M1 + m2) Lya* (29)

I3 =8SpLyct — (LoCo + hSp) & + 259 L6+
mQLCG(_I/Id — ha) (30)

and

fa1 =(m1 +mg2) (—Lga — hé)+

m+m) (o (@) + 22526 ) @

. 0
fa2 = AamaLCy¢ (a) + Aem2LCy %(?)62 (32)

Analogous to many other Euler-Lagrange systems(! 14,
the following properties and assumption are also valid for
the transformed model (21) as:

Property 1. The inertia matrix M in (23) is sym-
metric and positive definite.

2

1 ..
Property 2. The matrix of (*Mg —‘/5) presents
skew symmetric property, namely that

z" (%M5 - vg) r=0, VreR’ (33)

Assumption 1. Without loss of generality, consider-
ing the movement range of payload swing subject to the
physical constraints, we assume that

<O—a<—. (34)

oy
]

Remark 1. It is noteworthy that this assumption is
widely used in the crane-related literaturel® & 11, From an
industrial perspective, considering that the payloads are
heavy enough in practice and it is almost impossible to go
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above the trolley, this assumption is reasonable.

3 Controller
analysis

design and stability

In this section, a novel energy-based nonlinear coup-
ling controller is derived on the basis of the coupled off-
shore ship-mounted crane model, which achieves simul-
taneous precise positioning and effective load swing sup-
pression.

3.1 Controller design

First of all, instead of using feedforward or predictive
control frameworks, we determine to derive an energy
analysis-based controller. Based on this, for the control
objective of (6), (7) and on the basis of the coupled error
signal (22), the system mechanical energy is represented
as follows:

E = %gTMg +mgL(1—Co_q) (35)

whose time derivative can be calculated, by utilizing
(21)—(32) and the property of (33), as

E=¢"(ME+ %Mg) +magLSe—a(f — &) (36)

which derives:

B =t (P — fra+ fi + (m1+ma2)(~Loa — hit) +

7]
(m1 +ma2) Aatp (@) + (M1 + mo) )\57%262)52) +
2
. . 0
maLéa(aCop (@) + £ + 2020 gy),
(37)
Then, define the energy-based controller as
. 0
Fo = =D (ms +m2) (@) = A (s +ma) 2212 g,
t
ket —y [ & (r)dr+ from
0
S+ (ma +ma) (de + hd)
(38)

where k¢, k, € R are positive control gains.
Moreover, in order to decrease the closed-loop system
energy, based on the form of (36), we choose

AaCoip () = —f3 (39)
and
¢ (e2)
e -1<0 (40)
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where the yet-to-construct functions defined in (13) can
be consequently selected as

o) =5 [ e (41)
and
Bles)=—(0-0). (42)

Substituting (41) and (42) into (38), the ultimate form
of controller can be given as

Fo = keta — k/ &1 (1) dr + fram

i+ (m1+mg) (L:c(i + hd) +

(m1 + m2) % + Ag (m1 +ma2) &2 (43)

where ke, kp € R" are positive control gains, with the
coupling system states &1(t), &€2(t) defined in (13) and
(14), respectively.

3.2 Stability analysis

The stability of the overall closed-loop system is ana-
lyzed subsequently by using Lyapunov techniques and
LaSalle's invariance theorem.

Theorem 1. Under the proposed nonlinear controller
(43), the payload is driven to the desired position while
the swing can be damped out globally in the sense that

lim [ e é1 ex & ] =[0 0 0 0]". (44)

t—o0

Proof. Let a positive definite Lyapunov candidate
function V' (t), based on the energy of (35), be defined as

1
1% :ifTM.f +mgL (1 —Co_a)+

%kp (/Ot & (7) d7)2 > 0. (45)

Taking the time derivative of (45), and substituting
the controller of (43) as well as the results of (36), (41)
and (42), one leads to

V=&, (—kgslfkp / & (7 dr + ky / & <T>df)f

AemaLCo€S
(46)

implying that
V = —ke€? — AemaLCyé2 < 0. (47)

According to (47), it is easily shown that the closed-

loop system states around the equilibrium points are
stable in the Lyapunov sense, namely that

§1(t),&2(t) € Leo (48)
then, from (13) and (14), we have
La(t),0(1) € Loo (49)

which, together with (43) and (45), indicates

Lo (1), /0 & (1) dr, /0 &()dr el (50)
as well as
e1(t),e2(t) € Lo = (51)

F, (t) € Leo. (52)

Furthermore, to facilitate further analysis of the
closed-loop system, let A be the largest invariant set in S
as

S:{el,él,eg,ég:V:O} (53)

in which, it follows from (47) and (53) that

51207 £2=O:>
&=0, =0 (54)

Then, putting (54) into (21), by utilizing (8), (9) and
(13)—(16), in the set A, we have

éx =& =0
Fz_frz"_fal"‘fl*zo
faz +maLf5; =0

9S9_0 =0 (55)
implying that
eao=0—a=0

t
/ & (r)dr=0= (56)

0
e1=0= (57)
é1 =Ly —Lea=0= (58)
Ly = Lya (59)

where it is not difficult to show that the largest invariant
set A contains only the closed-loop system'’s equilibrium
point:

[er(t) é1(t) ex(t) é(®)] =[0 0 0 0]". (60)
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Finally, using LaSalle's invariant theorem, the conclu-
sion of Theorem 1 can be obtained as

lim [en en ex & ] =[0 0 0 0]" (61)

O

Therefore, a direct application of LaSalle invariance

theorem approves (44), which achieves the main control

objective of accurate positioning of payload with lower
swing angle under persistent external disturbances.

4 Numerical simulation

In this section, we implement some groups of numeric-
al simulation tests in the environment of Matlab/Sim-
ulink and provide the simulation results to verify the per-
formance of the designed offshore ship-mounted crane
control system.

As stated previously, the control objective is to posi-
tion the payload of the offshore ship-mounted crane to
the expected accurate point against some external dis-
turbances. Before the simulation/experiment, the dynam-
ic model depicted in (21) is implemented in the
Matlab/Simulink environment, and the parameters of the
offshore ship-mounted crane system are chosen as

m1 = 4.3 kg, ma = 0.5 kg
L=03m, h=0.58m
g=9.8m/s’.

4.1 Simulation 1

In this group of simulation, high control performance
of the proposed controller (43) subjected to sea wave dis-
turbances has been fully testified.

Firstly, the initial states of the system are selected as

L.(0) =0m, 6(0) =0 deg

and the desired position of payload and the ship motion
disturbance are set as

Yqa = 0.15m
a = 0.5co0s (0.1¢) — 0.5 deg.

To obtain proper performance, through carrying out
abundant numerical simulations, the control gains for the
proposed energy-based controller in this group are selec-
ted as follows:

kp=8, ke =5
Ae =15, Ay =5.5.

Under unmatched sea wave disturbances, the follow-
ing results of the designed ship-mounted crane control

system are presented in Fig.2, together with the results of
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the newly designed coupling states £1(t) and &2(t) in the
last two subgraphs, so as to facilitate comparison.
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Fig. 2 Simulation 1: Trolley displacement error e (t), payload
swing angle e2(t), and the new composite signals &1 () and &2 (),
respectively.

It can be seen from these results that, the proposed
controller achieves satisfactory performance under extern-
al disturbances, in the sense that the trolley position er-
ror e1(t) goes to zero within about 10s while the swing
angle error ex(t) is always bounded around the origin and
can also converge to zero within 10s during the entire
transportation process.

Moreover, the new composite signals are also depicted
in Fig.2 to show more transient response of the offshore
ship-mounted crane system, which greatly improves the
efficiency of the control strategy with rapid convergence
of system states.

4.2 Simulation 2

To further show the superiority of the proposed en-
ergy-based control method, in this group of simulation,
some comparative numerical tests with linear quadratic
regulator (LQR) controller are then implemented.

Generally speaking, a traditional LQR controller has
the following form as48]

Fp = —Kiepz — Koér, — Kzeg — Kség

where to implement fair experiment, the proper control
gains of LQR controller are solved by Matlab as follows:

Ky =81, Ko =371
K3 =—24.0, K4 = 1.8.

In this group of simulation, the desired position of
payload and the ship motion disturbance are set as
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Ya = 0.5 m
a = 0.18sin (0.1¢) deg

with the initial states both selected as
Lo(0) =0m, 6(0) =0 deg.

After careful tuning, to achieve fair simulations, the
control gains for the proposed energy-based controller are
selected as

Corresponding simulation results are depicted in
Fig. 3, which give the trolley position error ei(t), the pay-
load swing angle 6(t) as well as the external disturbance
a(t), respectively.

> ~ -~
g 0 /- - ; P —~ -
v 1 o~ — -
72 1 1
0 5 10 15 20
2 ' —— Energy-based control
EN AN = Loveowo
T 0 AN — — ]
< Py
-2 ! . . .
0 5 10 15 20
0.2
5
s 0
N
70.2 1 1 1
0 5 10 15 20
Time (s)

Fig. 3 Simulation 2: Trolley displacement error e1(t), payload
swing angle e2(¢) and ship roll disturbance a(t), respectively

It can be obviously seen from the comparative simula-
tion results that, driven by the proposed controller, the
error of trolley displacement and the payload swing angle
both converge to zero within 10s under persistent sea
wave disturbances, which performs better than that of
the LQR controller. Additionally, asymptotic conver-
gence of system states can be guaranteed under the pro-
posed controller, which shows a better performance than
a simple linear controller such as LQR control.

5 Hardware experiment

From a practical perspective, this section exhibits
some hardware experimental results to further test the
performance of the proposed control method.

Based on a self-built offshore ship-mounted crane test
bed® 39, some actual experiments are conducted to fur-
ther verify the actual performance of the proposed ap-

proach. As shown in Fig.4, this system consists of four
parts, including a kernel control component, an actuat-

ing device, a mechanical framework and a chassis.

Trolley

Offshore ship-mounted
crane system

Fig. 4  Self-built offshore ship-mounted crane hardware experi-
ment platform

In the system, the trolley moving along the boom and
the steel rope connected with the suspending payload are
driven by two SYNTRON alternating current (AC) servo
motors, respectively. The swing angle of the payload is
measured by angular sensors installed beneath the boom.
Besides, the function of the chassis in this platform is to
imitate the motion of sea waves and other unknown dis-
turbances.

For real-time control algorithm implementation,
Matlab/Simulink real-time Windows target running un-
der Windows XP operating system is established for the
control system. For the actuating device, seven actuators
are communicated with seven AC servo motors so as to
control the mechanical system. Moreover, one Google
technology GT2-800-ACC2-V2.0V motion control board
with I/O interfaces is employed as the data acquisition
unit to collect data from the encoders and convey control
signals to the driver so that the control voltage can be
applied to the AC servo motors successfully.

Beforehand, regarding the utilized offshore ship-moun-
ted crane hardware platform (see Fig.4), the physical
parameters of the testbed are configured as

m1 = 3.5 kg, ma = 0.5 kg
L=03m, h=0.58m
g=9.8m/s?.

For sufficient verification, based on these conditions,
we will carry out two groups of hardware experiments.
Specifically, we will first demonstrate the satisfactory per-
formance of the proposed control method under harsh sea
wave disturbances. Then, in experiment Group 2, addi-
tional experiments will be implemented to verify the ro-
bustness against unexpected disturbances such as pay-
load swing perturbations.
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5.1 Experiment 1

In this subsection, the first group verifies the control
performance of our approach under external sea wave dis-
turbances, with the target value of payload set as

yq = 0.15m

and the external disturbance chosen as
LT
a(t) =0.3 sm(z) deg.

To obtain better performance, the control gains for
the experiment are tuned as

ky =15, ke = 25
Ae = 10, Ao = 10.

As the control objective of this group of experiment is
to drive the trolley to arrive at its target destination de-
noted as yq = 0.15m, while suppressing and eliminating
the swing angle, Fig.5 plots the experimental results of
the system error signals. Under the action of the pro-
posed energy-based control method, as clearly shown in
Fig. 5, the trolley is successfully driven to reach the tar-
get position within a short time, and the payload swing
angle is successfully suppressed within a small range of
[—0.3 deg, 0.3 deg].

0.2
= 02 /V\N\,ﬂl‘l\/\IV\ﬁ’v‘—~~
_04 n L L
0 5 10 15 20
0.5

e, (deg)
o

o (deg)
=)

Time (s)

Fig. 5 Experiment 1: trolley displacement error e (25)7 payload
swing angle e2(t) and ship roll disturbance a(t), respectively

Besides, the ship roll disturbance «(t) is also depicted
in the third subgraph of Fig.5 to clearly show the im-
posed sustained external disturbances on an offshore ship-
mounted crane.

Therefore, the accurate positioning and anti-swing
performance of the proposed nonlinear controller can be

fully demonstrated in this group of experiments.

@ Springer

5.2 Experiment 2

Furthermore, another test in this group is implemen-
ted to verify the robustness of the closed-loop control sys-
tem against transient payload swing perturbation during
transportation process, whose experimental results are
shown in Fig. 6.

__, Payload swing
perturbation

e, (deg)
o

'Paylolad sw'ing
perturbation

e, (deg)
o

o (deg)
=)

0o 2 4 o6 8§ 10 12 14 16 18 20
Time (s)

Fig. 6 Experiment 2: trolley displacement error e; (t), payload
swing angle ez (¢) and ship roll disturbance «(t), respectively,
under transient payload swing perturbation

Specifically, for practical purposes, we set the target
value of payload as

ya = 0.5 m

and choose the external disturbance as
LT
a(t) =0.3 sm(Z) deg.

Here, the control gains for the experiment are selec-
ted the same as in Experiment 1 as follows:

kp =15, ke = 25
Ae = 10, Ao = 10.

As clearly shown in Fig.6, some unexpected external
disturbances are added to the payload swing angles on
purpose at about the 8th second (see the red marked
places), while the control performance is still satisfactory
in terms of asymptotic convergence, which demonstrates
superior performance of the proposed controller.

Overall, with these simulation/experimental results, it
can be concluded that the proposed energy-based control
method allows for robustness, which is important for
practical use.

6 Conclusions

This paper provides energy-based coupling control ap-
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proach for an offshore ship-mounted crane. Successfully
settling the challenges associated with underactuated
property and unmatched external disturbances of such
kind of systems, the proposed novel controller enhances
the coupling behavior between trolley motion, payload
swing and ship roll motion and then leads to an im-
proved control performance. Based on the coupled model,
a novel energy-based nonlinear controller is developed on
the basis of system’s mechanical energy, then Lyapunov
techniques as well as LaSalle's invariant theorem are co-
herently utilized to further analyze the asymptotic stabil-
ity of the closed-loop crane system. Simulation and exper-
imental results are then included to demonstrate the su-
perior control performance even in terms of transient pay-
load swing perturbations. In forthcoming efforts, the con-
trol of 3D offshore ship-mounted crane which includes ro-
tation motion of the boom should be taken into consider-
ation, while more complex control problems such as
tracking control are also involved in our future work.
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