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Abstract:   Due to the prevalence of social network services, more and more attentions are paid to explore how information diffuses and
users affect each other in these networks, which has a wide range of applications, such as viral marketing, reposting prediction and social
recommendation. Therefore, in this paper, we review the recent advances on information diffusion analysis in social networks and its ap-
plications. Specifically, we first shed light on several popular models to describe the information diffusion process in social networks,
which enables three practical applications, i.e., influence evaluation, influence maximization and information source detection. Then, we
discuss how to evaluate the authority and influence based on network structures. After that, current solutions to influence maximiza-
tion and information source detection are discussed in detail, respectively. Finally, some possible research directions of information diffu-
sion analysis are listed for further study.
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1   Introduction

Recent  years  have  witnessed  a  rapid  development  of

social  network  services  (SNS),  such  as  Twitter1, Face-

book2, and Sina Weibo3. More and more users are taking

them to  share  information  with  friends.  For  example,  in

Facebook, there are over 2.01 billion monthly active users

all  over  the  world  during  June  2017[1]. These  social  net-

works have the characteristics of openness (i.e., every one

can join and keep in touch with the outside world), inter-

action (i.e., users can interact with friends about a movie

or  an  accident  by  replying  or  reposting)  and  timeliness

(i.e., a user can update status messages at any time)[2, 3].

Users′ participations generate  tremendous  data  in  so-

cial networks. In Twitter, on average, 500 million tweets

are posted per day4. This data contains various informa-

tions.  For  example,  people  may  tweet  their  opinions  on

breaking  news;  or  may  just  update  messages  to  tell

friends what  have  happened in  their  daily  life.  Compan-

ies  may  hire  influential  users  to  promote  new  products

such as  movies  and  electronic  goods.  Besides,  those  in-

formation are flowing and can diffuse among users. Once

users see  something  interesting,  they  can  repost  or  for-

ward these contents to their  friends.  If  their  friends also

like the contents, they can further share them with their

own  friends,  which  thus  causes  information  diffusion  in

the  network,  i.e.,  the  so-called  effect  of  word-of-mouth.

Those users  who  adopt  the  information  are  called  influ-

enced or active.

However, how  the  information  diffuses  through  net-

works  is  usually  unknown.  Understanding  the  diffusion

mechanism behind massive information is important for a

wide range of applications, such as viral marketing[4–6], so-

cial  behavior  prediction[7–9],  social  recommendation[10–12],

and  community  detection[13–15].  This  issue  has  attracted

researchers  from  various  fields  including  epidemiology,

computer science, and sociology. They proposed different

kinds of information diffusion models to describe and sim-

ulate  this  process,  such as  the  independent  cascade  (IC)

model[16],  linear  threshold  (LT)  model[17, 4] and  epidemic

models[18].  Most  models  are  contagious  and  assume  that

the  information  starts  to  diffuse  from a  source  (or  seed)

node set, and other nodes can access the information only

from their neighbors.

The discovered diffusion models have been applied to

many practical applications. For example, first, by evalu-

ating  users′ influence, we  can identify  influential  spread-

ers[19, 20] and find experts[21–23].  Second,  by choosing seed

users  and  solving  the  so-called  influence  maximization

problem[4],  we  can  maximize  the  number  of  influenced

users.  This  is  significant  to  promote  new  products

through  the  word-of-mouth  effect[4] or  place  sensors  to

quickly detect contaminants in the water distribution net-

work in a city[24, 25]. Third, after the information diffuses
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from a set of source nodes for a period of time, it will in-

fluence more  nodes.  We  can  infer  the  source  nodes  ac-

cording  to  these  observed  influenced  nodes,  which  is

called information  source  detection.  It  can  help  to  pre-

vent  the  outbreak of  an epidemic[26–28] and trace  the  ru-

mor source in social networks[29, 30].

Therefore,  we  will  review  the  recent  development  of

information  diffusion  analysis  in  social  networks  and  its

applications. Fig. 1 gives  an  overview  of  this  paper.  The

rest  parts  are  organized  as  follows.  We  start  with  some

preliminaries of social networks in Section 2. Section 3 in-

troduces three  basic  kinds  of  information  diffusion  mod-

els. Then we list methods which are used to evaluate the

authority  and  influence  in  Section  4.  Sections  5  and  6

show the solutions to influence maximization and inform-

ation source detection, respectively.  Finally,  we conclude

some possible directions for further study in Section 7.

2   Preliminaries

G(V,E,W )

W = [wij ] eij

wij ∈ [0, 1]

wij = wji

A  social  network  can  be  denoted  as ,

where V is the node set of size n, E is the edge set of size

m, and . Edge  indicates the direction of in-

formation flow from node i to j with a propagation prob-

ability . Undirected networks can be converted

into directed ones by . Fig. 2 shows a toy social

network  with  10  nodes,  and  the  edges  indicate  possible

directions of  information  flows.  Lots  of  real-world  net-

works can be viewed as instances of social networks, such

as

wuv

1)  Microblogging  networks.  Nodes  represent  users  or

organizations. For example, in Twitter, if user v is a fol-

lower  of  user u,  there  will  be  an  edge  from u to v,  and

 is the probability u affects v and can be learned from

historical actions[31].

2)  Citation  networks.  Nodes  represent  papers  and

euv
euv

euv =
1

do(u)
do(u)

edge  indicates  paper v has  cited u. A  simple  ap-

proach to determine the propagation probability  from

u to v is  sharing u′s  influence  among  its  neighbors,  i.e.,

, where  is the out-degree of u.

euv

3)  Collaboration  networks.  Nodes  represent  authors

and  indicates author u and v have collaborated on at

least one  paper.  The  propagation  probability  is  propor-

tional to the number of papers that two authors has col-

laborated on.

euv4) Email networks. Edge  indicates user u has sent

at least a email to v. The propagation probability is pro-

portional to the number of emails between two users.

Different  kinds  of  information  can  spread  in  a  social

network,  such  as  innovations,  contagion,  opinions  about

specific events. Note that a node is influenced if it adopts

the information.  An influenced node will  further propag-

ate the information to its neighbors, i.e.,  word-of-mouth,

which causes information diffusion in the network. Thus,

except for specific explanation, every node has two states:

active (i.e., infected/influenced) and inactive. For example,

in Twitter, users reposting a funny tweet are active, while

others are inactive.

Datasets.  There  are  many  websites  providing  open
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Fig. 1     Overview of recent advances on information diffusion analysis included in this paper
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Fig. 2     A toy social network where edges indicate the directions
of information flows
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datasets of social networks for research. Here we list some

of them for easy reference.

1)  Stanford  large  network  dataset  collection5.  It  is  a

collection  of  more  than  50  large  network  datasets  from

tens of thousands of nodes and edges to tens of millions of

nodes  and  edges,  including  social  networks,  web  graphs,

road networks, Internet networks, citation networks, col-

laboration networks, and communication networks.

2) Aminer6. It provides a repository of external data-

sets  for  social  network  analysis,  including  microblogging

networks, patent  dataset  from  Patentminer.org,  know-

ledge linking dataset, mobile dataset and other online so-

cial networks.

3)  Social  computing  data  repository7. It  hosts  data-

sets from many different social media sites, most of which

have  blogging  capacity,  such  as  BlogCatalog,  Twitter,

MyBlogLog,  Digg,  StumbleUpon,  del.icio.us,  MySpace,

LiveJournal,  The  Unofficial  Apple  Weblog  (TUAW),

Reddit, etc.

4) KONECT8. Koblenz Network Collection (KONECT)

is a project to collect large network datasets for research-

ing in network science and related fields. It includes sev-

eral hundred network datasets of various types, including

directed,  undirected,  bipartite,  weighted,  unweighted,

signed and rating networks.

3   Information diffusion models

How the information diffuses through networks is un-

known and has been studied by researchers from various

fields including epidemiology[18],  computer science[16],  and

sociology[32]. They  proposed  different  kinds  of  informa-

tion diffusion  models  to  describe  and  simulate  this  pro-

cess.  Most  of  them  are  contagious  and  follow  two  rules

below:

Rule 1.  Every  piece  of  information  diffusion  starts

from several source nodes.

For example,  John is  a movie star and posts a tweet

on Twitter to promote his new movie. This may cause a

hot discussion among his fans, and thus he is the source

node initializing this diffusion.

Rule 2. Every  disseminator  can  access  the  informa-

tion only from its neighbors.

In the above example, Alice is a fan of John, and she

can only read the tweet from John or other fans′ retweet-

ing.

All  information  diffusion  models  are  consistent  with

Rule 2, but achieve Rule 2 in different ways. They can be

divided into  two categories:  1)  progressive  models  where

nodes can switch from being inactive to being active, but

do not switch in the other direction and 2) non progress-

ive models where nodes can switch in both directions and

allow  to  be  activated  for  many  times.  In  the  next  part,

we will  introduce  three  basic  information  diffusion  mod-

els,  namely  independent  cascade  (IC)  model,  linear

threshold  (LT)  model  and  Epidemic  models,  which  are

widely  used  and  are  fundamental  for  personal  influence

evaluation,  influence  maximization,  etc.  More  diffusion

models can be found here[33].

3.1   Independent cascade model

A0

A0

Independent  cascade  (IC)  model  was  proposed  by

Goldenberg et  al.[16] in  2001.  It  describes  a  diffusion like

Domino and assumes the information starts from a set of

active  seed  nodes ,  which  follows  Rule  1.  For  viral

marketing,  are  the  users  who  have  discounts  and

would like to promote the products  among their  friends.

Every active node cannot switch back to being inactive.

At

u ∈ At

wuv

A∞

A0

As time  goes  by,  inactive  nodes  can  receive  informa-

tion  from active  ones.  Specifically,  at  time t,  are  the

set of current active nodes. For node , it have only

one chance to affect its inactive adjacent node v with the

probability .  If  successful, v becomes  active  and  will

try  to  affect  its  own  neighbors  in  the  next  time-stamp

t+1,  otherwise v keeps  inactive  and u has  no  chance  to

affect v any more. If node v has more than two active in-

neighbors, they will affect v independently. The above ex-

plains  how the IC model  interprets  Rule 2.  This  process

continues  to  unfold  until  no  more  nodes  become  active.

Note  that  the  independent  cascade  model  is  progressive

and  stochastic,  thus  the  final  active  nodes  may

change  when  the  information  starts  from  different  seed

nodes .

3.2   Linear threshold model

θv∑
u∈V wuv ≤ 1 A0

Linear threshold  (LT)  model  was  proposed  by  Gran-

ovetter[17] in 1978. It assumes that each node v has a spe-

cific threshold  uniformly sampled from the interval [0,

1],  and .  Given  the  initial  seed  nodes ,

the diffusion  process  will  unfold  deterministically  in  dis-

crete steps. Specifically, in step t, nodes which were act-

ive  in  previous  step  will  remain  active,  and  an  inactive

node v becomes active if

∑
u∈Nin(v)

wuv ≥ θv (1)

Nin(v)where  is  a  set  of v′s  active  in-neighbors.  This

process  continues  to  unfold  until  no  more  nodes  become

active. We can see the probability that an inactive node

becomes  active,  increases  monotonically  as  more  of  its

neighbors become active.  What′s more, v′s threshold can

be considered as a weighted fraction of v′s neighbors that

must become active in order to successfully affect v.

In  summary,  there  are  two  main  differences  between

5https://snap.stanford.edu/data/
6https://cn.aminer.org/data-sna
7http://socialcomputing.asu.edu/pages/home
8http://konect.uni-koblenz.de/
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Tv

Tv

LT and IC models.  First,  active  nodes  in  the  LT model

have more than one chance to affect their inactive neigh-

bors.  Second,  node v′s  active  neighbors  will  affect v to-

gether  in  the  LT  model,  while v′s  active  neighbors  only

have one chance to independently affect v in the IC mod-

el.  However,  Kempe and McKendrick[18] proposed a  gen-

eral  threshold  model  and  a  general  cascade  model,  and

have  proven their  equivalence.  Besides,  both  LT and IC

models are special cases of the triggering model[18], where

each  node v independently  chooses  a  random  triggering

set  according  to  some distribution  over  subsets  of  its

neighbors,  and v is  active  if  it  has  a  neighbor  in  its

chosen .

3.3   Epidemic models

A0

wuv

γu

Some researchers adopt the epidemic models to simu-

late the infection and recovery processes of nodes in net-

works[34, 35], which are originally describing how a disease

spreads  within  a  population  in  epidemiology[18]. The  in-

formation or disease also starts from a set of infected seed

nodes .  The  simplest  is  the  susceptible-infected  (SI)

model[35, 36],  which  assumes  each  node  has  two  possible

states:  susceptible  and  infected.  When  a  node  is  in  the

susceptible state, it can potentially get infected by the in-

formation. Once a node u is infected, it will remain infec-

ted forever and spreads the information to its susceptible

adjacent node v with a probability of . Note that dif-

fusions along edges are supposed to be independent. The

susceptible-infected-susceptible  (SIS)  model[36] is  similar

to the SI model,  except that an infected node u can be-

come susceptible again with a probability of .

γu

λu

Susceptible-infected-recovered  (SIR)  model[18] general-

izes  the  SI  model,  and  assumes  a  node  has  three  states:

susceptible, infected and recovered. When a node u is in-

fected, it has a probability of  to recover and becomes

immune to the disease, which means u will not get infec-

ted  any  more.  Its  other  settings  are  similar  to  the  SI

model. Another epidemic model, i.e., susceptible-infected-

recovered-susceptible  (SIRS)[36] extends  the  SIR  model

and also assumes a node has the above three states. But

after node u recovers from being infected, it can become

susceptible  again  with  a  probability  of , Fig. 3 shows

the possible state changes of a node in the above four epi-

demic models.

Indeed, there are other epidemic models, such as sus-

ceptible  exposed  infected  recovered  (SEIR)[37],  maternal

susceptible  infected  recovered  (MSIR)[38], susceptible  ex-

posed  infected  recovered  susceptible  (SEIRS)[39].  Readers

can refer to the work[40] for more details. How to exploit

these  models  for  information  diffusion  analysis  is  under-

explored.

4   Authority and influence evaluation

Based on the above diffusion models, we can evaluate

the influence  or  authority  of  an  individual  in  social  net-

works, which is important for influential spreader identi-

fication[19, 20, 41] and expert finding[42, 21, 22]. A user′s influ-

ence and authority seem to be different at a first glance,

because  “influence”  measures  the  impact  that  it  has  on

others through out-links (e.g.,  persuading them to buy a

product)  while  “authority”  is  the  endorsement  received

from  its  followers  through  in-links.  However,  some

works[43, 44] have realized that they have a close relation-

ship because an individual earns its authority by influen-

cing others. In the next, we will show how to evaluate the

influence and authority.

4.1   Authority evaluation

In this  subsection,  we  focus  on  the  solutions  to  au-

thority evaluation which only  exploit  the  network struc-

ture, such as centrality based and PageRank. Readers can

find other methods by referring to the work[45].
4.1.1   Centrality based

There  are  many ways  to  compute  the  centrality  of  a

node  and  its  larger  value  means  more  influential.  The

first  and simplest  way is  degree  centrality,  which  equals

to the  number  of  links  upon  a  node.  In  a  directed  net-

work, we can use outdegree and indegree to measure the

centrality, respectively. For a node u, outdegree can eval-

uate its  importance  as  information  senders,  while  inde-

gree  measures  its  gregariousness.  That′s to  say,  the  lar-

ger u′s  outdegree  is,  the  more  users u will  affect.  While

the larger u′s indegree is, the closer u is to others.

A

auv = 1

auv = 0 ce(u)

For  degree  centrality,  it  considers  nodes  with  more

connections  to  be  more  influential.  In  fact,  the  influence

of a  node should be determined by its  neighbors.  Eigen-

vector centrality  provides  another  way  to  measure  indi-

vidual  influence  with  this  fact.  Let  be  the  adjacency

matrix, i.e.,  if node u is linked to node v, other-

wise .  Formally, u′s  eigenvector  centrality, ,

can be computed by

ce(u) =
1

λ

∑
v∈V

av,u × ce(v) (2)

 

S
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Fig. 3     Node state transition diagrams for four epidemic
models: (a) SI, (b) SIS, (c) SIR, (d) SIRS, where  and  is the
transition probability
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λwhere  is  a  fixed  constant.  This  equation  can  be

rewritten in vector notation as

λce = ATce (3)

ce = (ce(v1), ce(v2), · · · , ce(vn))T

ce A

where . Thus, we can see

 is  an  eigenvector  of ,  which  corresponds  to  the

largest  eigenvalue  according  to  Perron-Frobenius

theorem.

cc(u)

The third way to compute centralities is based on the

distance between nodes. 1) Node u′s closeness centrality[46],

,  is defined as the reciprocal of the average shortest

distance between u and others. Formally,

cc(u) =
1∑

v∈V

d(u, v)
(4)

d(u, v)

cb(u)

where  is the shortest distance between node u and

v, computed by the topological distance or weights along

the  path.  2) u′s  betweenness  centrality[47], ,  counts

the  number  of  shortest  paths  among  others  which  pass

through u. Formally,

cb(u) =
∑

s ̸=u̸=t∈V

σst(u)

σst
(5)

σst

σst(u)

cj(u)

where  is the number of shortest paths between s and

t,  and  is  the  number  of  shortest  paths  between s

and t passing  through u.  3) u′s  Jordan  centrality[48],

,  is  defined  as  the  reciprocal  of  the  maximum

distance between u and other nodes. Formally,

cj(u) =
1

max{d(u, v)|v ∈ V } . (6)

Note that  the  closeness  and  Jordan  centralities  as-

sume authoritative nodes can send information to others

as  fast  as  possible,  while  betweenness  centrality  shows

how important a node is in connecting others as a pivot.

When comparing nodes of graphs with different sizes,

we  can  normalize  the  aforementioned  centralities  by

things  like  the  number  of  nodes.  Readers  can  find  more

details in the work[36].
4.1.2   PageRank

x = (x(v1), x(v2), · · · , x(vn))T

PageRank[49] is originally used for evaluating authorit-

ies  of  Web  pages  and  as  the  cornerstone  of  Google′s
search engine9. It is also an extension of the normal eigen-

vector centrality discussed above. The general PageRank

values  of nodes in G can be

defined as

x = dWx+
1− d

n
e (7)

d ∈ [0, 1]

e

where  is  a  decay  factor, n is  the  number  of

nodes,  and  is  a  vector  fully  filled  with  ones.  This

equation  could  be  solved  by  the  power  iteration.  Please

refer to the work[50] for more details.

x = Wx x

W

1

n

The  random  surfer  model[49] can  explain  PageRank

vividly.  A  user  starts  surfing  on  a  web  page  and  then

clicks  current  links  randomly.  He  will  continue  clicking

until stopping at a desired page. PageRank assumes that

the  surfer  is  more  likely  to  stop  at  important  pages.

When d = 1,  shows that  is the stationary dis-

tribution  of  a  random  walk  with  as  the  transition

matrix.  But  in  real  scenarios,  many  pages  have  no  out-

link  or  are  in  a  small  loop  of  web  pages,  and  thus  the

surfer will be stuck. To overcome this problem, the surfer

can  randomly  open  a  new  page  and  keeps  surfing.  The

second term on the right side of (7) tells this strategy: If

the surfer is stuck, he will click a page with a probability

of .

e

q

Haveliwala[51] considered more  personalized  know-

ledge and proposed a topic-sensitive PageRank. The uni-

form  personalization  vector  in  (7)  is  replaced  by  a

nonuniform  whose i-th element equals to 1 if it belongs

to the target topic, otherwise it would be 0. Kleinberg[52]

designed  a  similar  algorithm,  called  HITS.  It  computes

the authority weight and hub weight in a subgraph simul-

taneously. Besides, Weng et al.[53] proposed TwitterRank,

an  extension  of  PageRank,  to  measure  the  influence  of

users  in  Twitter.  It  takes  both  the  topical  similarity

between  users  and  the  link  structure  into  account  to

measure the influence.

Due to its simplicity and effectiveness, PageRank has

been applied to complete many tasks, such as influential

spreaders  identification[19] and link prediction[11] in social

networks, item recommendation[54] and expert finding[22].

4.2   Influence evaluation

Someone′s influence can be considered as the ability to

affect  others.  Kempe  et  al.[4] defined  the  influence  of  a

node set A to be the expected number of active nodes at

the  end  of  the  process,  which  is  also  named  influence

spread, given that A is the initial active set. Many meth-

ods have been designed to compute this  value efficiently

and effectively.
4.2.1   Monte Carlo simulation

f(A)

Kempe  et  al.[4] proposed  to  run  Monte  Carlo  (MC)

simulations to estimate the influence spread under the IC

model or LT model. The MC simulation is a process: un-

der the  IC  or  LT  model,  we  diffuse  a  piece  of  informa-

tion from a node set A in  the network,  and can get  the

number  of  active  nodes  at  the  end  of  this  diffusion.

Therefore, the influence spread of a node set A,  denoted

as  can be estimated by

f(A) =
1

R

∑
v∈V

δ(v) (8)

δ(v)where R is  the count of  MC simulations,  and  is  an9https://www.google.com/
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δ(v) = 1indicator.  if  node v is  active  at  the  end,

otherwise  it  would  be  0.  Each  MC  simulation  is

independent,  and  thus  the  law of  large  numbers  ensures

that (8) converges to the real value as long as R is large

enough.  However,  this  method  is  time-consuming,

especially for large-scale networks.  The authors left  it  as

an open question to compute the influence spread.
4.2.2   Approximation methods

f(A)

π(i)

Chen  et  al.[55] further  studied  this  problem,  and  got

the following depressing result. Given a node set A, com-

puting its influence spread  is #P-hard under the IC

or  LT  model.[55, 56] Thus  some  researchers  try  to  design

approximation methods to estimate the influence spread.

Aggarwal  et  al.[57] proposed a  method,  SteadyState-

Spread,  to determine the expected information spread of

a given starting set of nodes A. They first computed the

steady-state  probability  that  node i assimilates  the

information by solving  the  following system of  nonlinear

equations.

π(i) =


1, if i ∈ A

1−
∏
j∈V

(1− wjiπ(j)), otherwise. (9)

That  means  in  order  to  let  node i assimilate the  in-

formation,  it  must  receive  the  information  from at  least

one of its neighbors. Then, the sum of steady-state assim-

ilation probabilities of all nodes can reach the desired in-

fluence spread.

Yang et al.[58] noted that (9) is not strictly applied to

some situations. For example, it is invalid when the net-

work has structural-defect node pairs. More importantly,

there are some difficulties in solving systems of nonlinear

equations,  such  as  convergence  and  multiple  solutions.

They illustrated  an  observation  that  influence  propaga-

tion probabilities  in  real-world  social  networks  are  usu-

ally quite small.  Then, they represented the steady-state

probability approximation by a linear system defined as

π(i) =
∑
j∈V

wjiπ(j). (10)

They  also  proposed  a  simple  iterative  algorithm  to

solve the linear system problem. We can see (10) is simil-

ar to (2). This indicates that the influence and authority

should have a latent relationship, which we will discuss in

the next subsection.

However, in many scenarios, the network where diffu-

sions take place is in fact implicit or even unknown. For

example,  in  viral  marketing  settings,  we  only  observe

people  purchasing  products  without  explicitly  knowing

who was the influencer that caused the purchases. Thus,

Yang and Leskovec[59] studied modeling information diffu-

sion in  implicit  networks.  They focused on modeling the

global influence of a node on the rate of diffusion through

the (implicit) network over time. Every node u has a par-

Iu(l)

V (t)

ticular non-negative influence function  which can be

considered  as  the  number  of  followup  mentions l time

units after u adopted the information. Then the volume,

,  the number of  nodes that mention the information

at  time t, is  the  sum of  properly  aligned  influence  func-

tions of nodes.

V (t) =
∑

u∈A(t)

Iu(t− tu) (11)

A(t)

tu ≤ t

where  denotes  the  set  of  already  active  nodes  that

got activated prior to time t, i.e., . They proposed a

non-parametric  approach  to  implement  the  influence

function.

More  methods  to  estimate  the  influence  spread  when

dealing  with  the  influence  maximization  problem will  be

introduced in Section 5.2.
4.2.3   PageRank with prior

Xiang  et  al.[44, 60] further  understood  PageRank  from

the perspective of influence propagation to explore the re-

lationship  between  authority  and  influence.  Specifically,

they  first  proposed  a  linear  social  influence  computation

model as follows.

fi→j

Definition 1.  Denote  the  influence  from node i to j

by , then

fi→i = αi, αi > 0 (12)

fi→j =
1

1 + λj

∑
1≤k≤n

wkjfi→k, for j ̸= i (13)

αi λj ∈ [0,+∞)where  is a prior probability value and  is

a damping factor[44].

wkj αi

αi = 1

λj

λj = λ λj = 0

αi = 1

λj ∈ [0, 1]

αi = 1

Equestion (13) shows that the influence from node i to

j is proportional  to  the  linear  combination  of  its  influ-

ence on j′s neighbors. That′s to say, if i wants to affect j,

he can successfully affect k and then k will affect j with a

probability of .  can be considered as the prior prob-

ability  for  node i to propagate  the  information.  For  ex-

ample, in viral marketing,  means node i is a seed

node and agrees to promote the product.  indicates how

much the influence will be blocked by node j. For simpli-

city, the authors set  for each node j. When 

and ,  (13)  degrades  into  a  linear  approximation

method for the IC model[58]. Besides, the authors said the

above  model  can  also  approximate  the  non-linear

stochastic  influence  model[57] by  setting  and

 carefully.

fi→V =
∑

j∈V fi→j

The authors noticed that PageRank is actually a spe-

cial case of the linear social influence model in Definition 1

with an appropriate priority.  This shows the reasonable-

ness of taking PageRank as a baseline in social influence

related applications[57, 54, 61]. Moreover, the authors found

individual  influence  has  an  upper

bound under their model, which can be exploited to accel-

erate the selection of top-K influential nodes, even for the
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topic-sensitive  task[44]. Based  on  the  influence  computa-

tion model  in  Definition  1,  they  further  proposed  inde-

pendent social influence and group PageRank, which will

be shown in the next two subsection.
4.2.4   Independent social influence

Actually, influences of different nodes may have over-

laps that  affect  the  same  part  of  other  nodes.  For  in-

stance,  in  a  social  network,  users u and v are  adjacent,

and u is  one  of  the  most  influential  users.  If  affecting u

successfully, v can affect more others with the help of u,

and  thus  its  observed  influence  is  much  larger  than  the

real  value.  Liu  et  al.[62] noted  this  scenario  and  tried  to

compute  the  independent  social  influence  based  on  the

linear model in Definition 1. They introduced the follow-

ing definition of independent social influence.

i ∈ S

f
S\i
i→j

Definition 2.  Denote  the  influence  from  node 

to j (independent from other nodes in S) by , then

f
S\i
i→i = 1 (14)

f
S\i
i→j = 0, j ∈ S\i (15)

f
S\i
i→j = d

∑
1≤k≤n

wkjfi→k, j /∈ S (16)

d ∈ (0, 1]where  is a damping factor[62].

f
S\i
i→j

From the difference with Definition 1, we can see that

 is essentially the influence of i on the network when

other nodes in S are “removed” from the diffusion. Thus,

the  “removed”  nodes  will  stop  receiving  and  forwarding

the  information from i.  The authors  found the  proposed

independent  influence  has  two  interesting  properties:  1)

The influence of a set of nodes is actually the sum of each

node′s independent influences. This is consistent with our

intuition. 2) Someone′s independent influence has an up-

per  bound.  Based  on  these  two  properties,  they  also

demonstrated  two  practical  applications:  rank  the  seeds

according to their independent influence to figure out the

contribution  of  each  selected  seed,  and  quickly  find  the

top-K influential nodes from the seed nodes S.
4.2.5   Group PageRank

Liu  et  al.[63] provided  a  bounded  linear  approach  for

influence  computation,  called  Group  PageRank.  They

first extended Definition 1 of influence to a set on anoth-

er node.

fS→j

Definition 3. Denote the influence from a node set S

to node j by , then

fS→j = 1, if j ∈ S (17)

fS→j = d
∑

1≤k≤n

wkjfS→k, otherwise (18)

d ∈ (0, 1]where  is a damping factor[63].

fS→T =
∑

i∈T fS→i GPR(S, T )

Then  they  found  that  the  influence  from S to T,

 has a upper bound , which

is called Group PageRank.

fS→T ≤ |T |
1− d

∑
i∈S

(1− d
∑
k∈S

tki)fPRi
△
= GPR(S, T ) (19)

fPRi

|S| = 1 GPR(S, T )

fPRi GPR(S, T )

GPR(S, T ) fPRi

fPRi

O(|S|2)

where  is the PageRank value of node i and can be

computed by (7). They have several interesting conclusions.

First,  Group  PageRank  is  also  a  generalization  of

PageRank  because  when ,  is

proportional  to .  Second,  is  essentially

the  sum  of  each  single  PageRank  of  nodes  in S with  a

“discount”.  That  means  the  mutual  influences  between

the nodes in S are removed when estimating the influence

spread of S. Third,  only depends on . If

computing  for  each  node  in  advance,  we  can

quickly  get  Group  PageRank  for  every  node  set  in

.

In  summary,  getting  the  exact  value  of  influence  is

hard,  and  thus  many  approximate  methods  have  been

proposed to  simplify  the  computation  process  and  im-

prove the efficiency.

5   Influence maximization

In this  section,  we  will  show  how  to  solve  the  influ-

ence maximization  problem  based  on  information  diffu-

sion models and influence evaluation.

In  a  social  network  such  as  Twitter,  which  users

should  be  selected  to  offer  discounts  and  then  let  them

promote a  new  product  through  the  word-of-mouth  ef-

fect?  Given  the  water  distribution  network  in  a  city,

where should we place sensors to quickly detect contam-

inants? Both of  them can be formalized as  the influence

maximization  (IM)  problem  that  selects  a  set  of  seed

nodes  to  maximize  the  expected  number  of  active  nodes

at  the  end  of  diffusion  process.  It  was  first  noted  by

Richardson  and  Domingoes[6] when they  mined  know-

ledge-sharing  sites  for  viral  marketing.  Then  Kempe  et

al.[4] formulated  it  as  the  following  discrete  optimization

problem.

Problem 1 (Influence manimization).

G(V,E)In a social network , influence maximization is

to select a seed node set S of size K such that

S = arg max
S⊂V

f(S), s.t. |S| = K

f(S)where  is the influence spread of S in this network[4].

There are  two intuitive  solutions:  one is  enumerating

and  selecting  the  subset  with  the  maximal  influence

spread.  This  will  lead  to  combinatorial  explosion  and  is

not applicable to large-scale networks. The other is select-

ing  top-K nodes  with  maximal  influences,  but  different

individual influences may overlap with each other so that
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their  collective  influence  is  not  the  maximal.  Kempe  et

al.[4] claimed that influence maximization is NP-hard un-

der  the  independent  cascade  (IC)  model  and  linear

threshold (LT) model. Therefore, many researchers focus

on this problem due to its wide applications and propose

various approximation methods to speed up the solutions,

which can be divided into four categories: greedy, heurist-

ic, reverse sampling and other algorithms.

5.1   Greedy algorithms

Kempe  et  al.[4] noted that  the  influence  spread  func-

tion f under the IC and LT model is monotone and sub-

modular.

f : 2V →
R f(S) ≤ f(T ) S ⊂ T ⊂ V

Definition 4 (Monotonicity). A set function 

 is monotone if  such that [4].

f : 2V → R
Definition 5 (Submodularity).  A  set  function

 is submodular if it satisfies

f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T )

S ⊂ Tfor any u and [4].

S∗

For a  non-negative,  monotone  and  submodular  func-

tion f,  let S be a set of size k obtained by selecting ele-

ments one at a time which provides the maximal margin-

al  increase  of  the  function  value.  Let  be  the  optimal

set that maximizes the value of f over all k-element sets.

Nemhauser et al.[64] have shown that

f(S) ≥ (1− 1

e
)f(S∗) (20)

1

e
i.e., S provides a (1 – )-approximation.

Algorithm 1. Framework of the greedy algorithm

Input:

G(V,E,W ) W = [wij ]　  – the network with 

　K – the number of seed nodes

Output:

　S – the seed set

S = ∅1) 

|S| ̸= K2) while  do

u = arg maxv∈V \S(f(S ∪ {v})− f(S))3) 　　

S = S ∪ {u}4) 　　

5) end while

6) return S

Therefore, Kempe et al.[4] proposed a framework of the

greedy algorithm to select seed nodes one by one and its

pseudo codes are listed in Algorithm 1. It starts with an

empty seed  set.  In  each  iteration,  we  compute  the  mar-

ginal  influence  gain  for  each  node,  and  then  the  node

which provides  the  largest  marginal  influence  gain  is  se-

lected into the set (i.e., Lines 3 and 4).

∆u(S)

∆u(S) = f(S ∪ {u})− f(S)

Definition 6 (Marginal influence gain).  Given  a

node set, the marginal influence gain of node u, , is

the  increase  value  of  influence  spread of S if u is  added

into S, i.e., [4].

(1− 1

e
)

(1− 1

e
)

This simple  algorithm  provides  an  amazing  perform-

ance guarantee that it can approximate the problem with

a  ratio  of , as  long  as  the  influence  spread  func-

tion f has the two properties (i.e., monotonicity and sub-

modularity)  at  the  same  time.  That′s to  say,  the  influ-

ence  spread  of  the  outputted  seed  set  of  Algorithm 1  is

provably within  of the optimal value.

KR|V |

We can see the bottleneck of Algorithm 1 is to evalu-

ate the influence spread of a seed set (i.e., the value of f).

Kempe  et  al.  ran  Monte  Carlo  (MC)  simulations  for R

times to estimate its value under the IC or LT model, as

described in Section 4.2.1. Thus, the Monte Carlo simula-

tion  will  be  executed  times  in  total  so  that  the

above greedy  algorithm  is  time-consuming  and  prohibit-

ive for large-scale networks.
5.1.1   Lazy evaluation

u ∈ V Sk ⊆ Sk+1 ⊆ V

Leskovec  et  al.[24] exploited  the  submodularity  to

avoid unnecessary  recalculations  of  the  marginal  influ-

ence gains in each iteration, and developed an efficient al-

gorithm, namely cost-effective lazy forward (CELF) selec-

tion. It is based on the diminishing returns property that

the earlier a node is selected into the seed set, the larger

marginal influence gain it can achieve. That means for a

node  and :

∆u(Sk) ≥ ∆u(Sk+1) (21)

Skwhere  is the seed set after the k-th iteration.

Algorithm 2. Cost-effective lazy forward (CELF)[33]

Input:

G(V,E,W ) W = [wij ]　  – the network with 

　K – the number of seed nodes

Output:

　S–the seed set

S = Q = ∅1) 

u ∈ V2) for  do

u.mig = ∆u(S) = f(S ∪ {u})− f(S)3)　　

u.round = 04)　　

∗.mig5)　　add u to Q in the decreasing order of 

6) end for

|S| ̸= K7) while  do

8)　　u = the first element in Q

Q = Q− {u}9)　　

u.round == |S|10)　　if  then

S = S ∪ {u}11)　　　

12)　　else

u.mig = ∆u(S) = f(S ∪ {u})− f(S)13)　　　

u.round = |S|14)　　　

∗.mig

15)　　　add u to Q again in the decreasing order of

　　　　　　

16)　　end if

17) end while

18) return S

Its pseudo  codes  are  shown  in  Algorithm 2.  Specific-

ally, it initializes each node′s marginal influence gain (i.e.,
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∗.mig

∗.mig

.mig

u.mig

 in Algorithm 1),  which are added into a list Q in

the  decreasing  order  of . In  each  iteration,  assum-

ing  node u has  the  largest  in Q,  we  recompute  its

real  marginal  influence  gain  relative  to  the  current  seed

set S by  Monte  Carlo  simulations.  Then,  we  can  adopt

the lazy evaluation strategy: If u′s new gain is still larger

than other nodes′ in Q, we can select u into S and jump

into the next iteration, which thus avoids unnecessary re-

calculations of other nodes′ marginal influence gains. Oth-

erwise,  we  update  with  the  new  gain  and  repeat

the above steps.

(1− 1

e
)

Eventually,  CELF  not  only  keeps  the  performance

with a ratio of , but also achieves 700 times spee-

dup, compared with the basic one in Algorithm 1. Goyal

et al.[65] further optimized Algorithm 2 based on the sub-

modularity  property  of  the  spread  function  in  influence

propagation models, and introduced CELF++ which has

an improvement of CELF by 17%–61%.

∆u(Sk) =

GPR(Sk ∪ {u}, V )−GPR(Sk, V ) GPR(S, V )

fPRi

fPRi GPR(S, V )

Besides,  Liu  et  al.[63] explored  Group  PageRank  in

Section  4.2.5  as  the  influence  spread  and  adopted  the

greedy framework to solve this  problem. In the (k+1)-st

iteration,  node u′s  marginal  influence  gain  is 

,  where  is

defined by (19) and only depends on . After we get

 for  each node in  the initialization,  can

be quickly  obtained  by  looking  up  the  buffer.  The  au-

thors have shown that this gain also follows (21) and has

the diminishing returns property. Therefore, they applied

the above  lazy  evaluation  into  practice  and  the  experi-

mental  results  show  their  method  is  more  efficient  than

two  heuristic  algorithms,  namely  influence  ranking  and

influence estimation (IRIE)[66] and prefix excluding max-

imum influence arborescence (PMIA)[55] which will be dis-

cussed in the next subsection.

5.2   Heuristic algorithms

Although  aforementioned  methods  exploit  the  lazy

evaluation to  speed  up  the  greedy  algorithm,  their  run-

ning  time  on  large-scale  networks  is  still  very  high.

Therefore, many researchers start to develop heuristic al-

gorithms  to  further  improve  the  efficiency  of  influence

spread evaluation according to properties of specific diffu-

sion models.
5.2.1   Shortest path

t = d(S, v) d(S, v)

Due to the hardness of getting an exact calculation or

a good estimate of influence spread, Kimura and Saito[67]

proposed  two  models,  shortest-path  model  (SPM)  and

shortest-path-1  model  (SP1M),  to  simplify  the  IC model

and  to  efficiently  obtain  good  approximate  solutions  to

the influence  maximization  problem,  when  the  propaga-

tion  probabilities  through  links  are  small.  In  SPM,  each

node v has  the  chance  to  become  active  only  at  step

, where  is the topological distance from

S to v.  That means each node is activated only through

the  shortest  paths  from  an  initial  active  set.  Namely,

t = d(S, v) t = d(S, v) + 1

SPM  is  a  special  type  of  the  IC  model  where  only  the

most  efficient  information  can  spread.  While  in  SP1M,

each node v has a chance to become active only at steps

 and . They showed that the ex-

act  value  of  influence  spread  in  SPM and SP1M can  be

computed efficiently.

(1− 1

e
)

More  importantly,  adopting  the  greedy  framework  in

Algorithm  1  can  guarantee  the  output  with  a  ratio  of

 in  the  SPM  and  SP1M  diffusion  models.  But  a

critical  drawback of  SPM and SP1M is  that  they ignore

the influence probabilities among users and only consider

the topological structure.
5.2.2   Degree discount

When  selecting  the  seed  nodes  one  by  one,  Chen  et

al.[68] explored the effect of the selected seed nodes on the

rest nodes. They adopted the node degree to estimate its

influence and proposed two degree discount heuristics  to

diminish that effect.

1)  SingleDiscount:  Each  neighbor  of  a  newly  selected

seed will discount its degree by one. This heuristic can be

applied to all information diffusion models.

2)  DegreeDiscountIC:  This  is  a  more  accurate  degree

discount heuristic for the IC model with a small propaga-

tion probability p. When selecting v into the seed set, the

increase of the expected number of active nodes is

1 + (dv − 2tv − (dv − tv)tvp+ o(tv))× p (22)

dv tv
tv

dv

where  is  the  degree  of v,  and  is  the  number  of v′s
neighbors that are already selected as seeds. The larger 

is, the more discount  will get.

They  have  shown  that  the  above  degree  discount

heuristics achieve much larger influence spread than clas-

sic  degree  and  centrality-based  heuristics.  What′s  more,

DegreeDiscountIC achieves almost equal influence thread

with the greedy algorithm when tuned for a specific influ-

ence cascade model.  However,  they have no performance

guarantee for general graphs.
5.2.3   Maximum influence path

Chen et al.[55] extended SPM and SP1M by consider-

ing  maximum  influence  paths  (MIP)  instead  of  shortest

paths, to approximate the actual expected influence with-

in the social network. Its main idea is to use local arbor-

escence structures of each node to approximate the influ-

ence propagation.

θ

θ

Specifically, a maximum influence path between node

u and v is the path with the maximum propagation prob-

ability from u to v. They first computed maximum influ-

ence  paths  between  every  pair  of  nodes  in  the  network

via  a  Dijkstra  shortest-path  algorithm,  and  ignore  MIPs

with  probabilities  smaller  than  an  influence  threshold ,

which  can  effectively  restrict  the  influence  computation

into  a  local  region.  Then  they  aggregated  MIPs  starting

or  ending at  each node into  the  arborescence  structures,

which represent the local  influence regions of  each node.

Different values of  control the size of these local influ-
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ence  regions.  Thus  this  heuristic  method  is  able  to

achieve  tunable  balance  between  efficiency  (in  terms  of

running  time)  and  effectiveness  (in  term  of  influence

spread).  The  authors  only  considered  the  influence

propagated through  these  local  arborescences,  and  re-

ferred to  this  model  as  the  maximum influence  arbores-

cence (MIA) model[55].

w ∈ V \S

When the  graph is  sparse  and  the  propagation  prob-

abilities  on  edges  are  small,  to  improve  the  efficiency,

they  provided  a  variant  of  MIA,  called  prefix  excluding

MIA (PMIA) with a batch update[55]. When selecting the

next seed,  for  every node v,  PMIA recomputes  its  in-ar-

borescence  so  that  every  seed  candidate  has  a

path to v while not passing through any seed in S. As a

result,  all  selected seeds  form a sequence S according  to

the selection order, so that any seed s in S has alternat-

ive  paths  to  all  nodes v that  do  not  pass  through  any

seed in the prefix of S proceeding s.

(1− 1

e
)

Moreover, they have proved that the influence spreads

in the MIA and PMIA models are submodular and mono-

tone[55]. Therefore, adopting the greedy algorithm in pre-

vious  subsection  under  the  MIA  and  PMIA  model  can

also  approximate  the  problem  with  a  ratio  of .

Results  from  extensive  simulations  on  several  real-world

and synthetic networks demonstrate that their algorithm

was the best scalable solution to the influence maximiza-

tion problem at that time.

After  that,  many  works  try  to  further  extend  the

above  algorithm,  e.g.,  IRIE[66],  local  directed  acyclic

graph  (LDAG)[56] and  simple  path  (SIMPATH)[69].

IRIE  integrates  a  new  message  passing  based  influence

ranking  (IR),  and  influence  estimation  (IE)  methods  for

influence  maximization  in  both  the  independent  cascade

(IC) model and its extension IC-N that involves negative

opinion  propagations.  In  each  round  of  selecting  a  seed

node, the greedy algorithm uses Monte Carlo simulations

while  PMIA uses  more  efficient  local  arborescence  based

heuristics to  estimate  the  influence  spread  of  every  pos-

sible candidate. This is especially slow for the first round

where the influence spread of every node needs to be es-

timated. Therefore, Jung et al.[22] proposed a novel glob-

al  influence  ranking  (IR)  method  derived  from  a  belief

propagation approach, which uses a small number of iter-

ations to generate a global influence ranking for the nodes

and then selects the highest ranked node as the first seed.

To  avoid  the  overlapping  influence,  they  integrated  IR

with  a  simple  influence  estimation  (IE)  method,  so  that

after one seed is selected, they can estimate additional in-

fluence impact of this seed to other nodes in the network,

and then  use  the  results  to  adjust  next  round  computa-

tion of influence ranking. IE is much faster than directly

estimating marginal  influence  gain  of  many seed candid-

ates. When combining IR and IE together, we obtain the

fast IRIE algorithm.

On  the  other  hand,  LDAG[56] and  SIMPATH[69] are

tailored  for  the  LT model.  LDAG exploits  the  fact  that

computing  influence  spread  in  directed  acyclic  graphs

(DAGs) can be done in linear time. It constructs a local

DAG surrounding  every  node v in the  network,  and  re-

stricts the influence to v within the local DAG structure.

This makes influence computation tractable and fast on a

small DAG.  Then  the  authors  combine  the  greedy  al-

gorithm with a fast scheme that updates the incremental

influence  spread  of  every  node.  While  SIMPATH builds

on the fact that the spread of a set of nodes can be calcu-

lated as the sum of spreads of each node in the set on ap-

propriate induced subgraphs under the LT model. It iter-

atively selects seeds in a lazy forward manner like CELF.

Instead  of  using  expensive  MC  simulations  to  estimate

the  spread,  it  can  be  computed  by  enumerating  the

simple paths starting with the seed nodes within a small

range of  neighborhood,  where  the  majority  of  the  influ-

ence flows since probabilities of paths diminish rapidly as

they get longer.

In general,  these  heuristic  algorithms  are  more  effi-

cient for large-scale networks through properties of specif-

ic diffusion  models,  but  few  of  them  can  keep  the  per-

formance guarantees under the standard IC and LT mod-

els described in Section 3.

5.3   Reverse sampling algorithms

Recently,  Borgs  et  al.[70] made a  theoretical  break-

through and inspired many researchers to solve the influ-

ence maximization  problem  from  a  quite  different  per-

spective  of  reverse  sampling,  which  has  approximation

guarantees  and  is  even  more  efficient  than  the  above

heuristic algorithms.

We first  introduce  two  concepts  for  better  explana-

tion.

1− we

Definition 7 (Reversa reachable set).  Let v be  a

node in G, and g be a graph obtained by removing each

edge e in G with  probability. The  reverse  reach-

able (RR) set for v in g is the set of nodes in g that can

reach v (That is, for each node u in the RR set, there is a

directed path from u to v in g.)[71].

GDefinition 8 (Random RR set). Let  be the dis-

tribution  of g induced by  the  randomness  in  edge  re-

movals  from G.  A  random  RR  set  is  an RR set gener-

ated on an instance of g randomly sampled from G, for a

node selected uniformly at random from g[71].

Borgs  et  al.[70] proposed  a  reverse  influence  sampling

(RIS) method under the IC model. It runs in two steps:

1) Generate a certain number of random RR sets from

G.

2) Use the standard greedy algorithm for the maxim-

um  coverage  problem[72] to  select k nodes  to  cover  the

maximum number of RR sets generated.

Its main idea is if a node u appears in a large number

of RR sets, then it should have a high probability to ac-

tivate  many  other  nodes  under  the  IC  model;  in  that
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case, u′s influence  spread  should  be  large.  More  import-

antly, RIS can return a ( )-approximate solution

with  at  least  probability  in 

 time.  They  also  shown  it  is  near-optimal  since  any

other  algorithm guarantees  the  same approximation rate

and  succeeds  with  at  least  a  constant  probability  must

run in  time (i.e., the lower bound).
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However, RIS has a large hidden constant factor in its

time  complexity  so  that  its  practical  efficiency  is  rather

unsatisfactory.  Tang  et  al.[71] borrowed  ideas  from  RIS

and proposed a two-phase influence maximization (TIM)

algorithm. It first computes a lower-bound of the maxim-

um expected influence spread among all  size-k node sets

and then uses  the  lower-bound to  derive  a  parameter .

Then it samples  random RR sets from G, and derives a

size-k node set that covers a large number of RR sets like

RIS.  It  can  return  a  ( )-approximate  solution

with at least  probability in 

expected time.  TIM+ improves TIM by adding an inter-

mediate  step  that  heuristically  refines  into  a  tighter

lower  bound  and  leads  to  higher  efficiency.  After  that,

Tang et al.[73] designed another method, influence maxim-

ization via martingales (IMM) to further improve the effi-

ciency. It has the same performance guarantees with TIM

and TIM+, but offers significantly improved empirical ef-

ficiency and can be extended to a larger class of diffusion

models.  The  experimental  results  show  IMM  is  often

faster in orders of magnitude than the states of the art in

terms of  computation  efficiency,  including  heuristic  al-

gorithms  such  as  IRIE[66] and  SIMPATH[69].  Meanwhile,

Cohen et al.[74] designed a sketch-based influence maxim-

ization (SKIM) algorithm.

(1− 1

e
)

Nguyen  et  al.[75] designed two  novel  sampling  al-

gorithms  SSA  and  D-SSA,  aiming  to  achieve  minimum

number of RIS samples. However, Huang et al.[76] revised

their work  and  discovered  inaccuracies  in  previously  re-

ported technical results on the accuracy and efficiency of

SSA  and  D-SSA,  which  was  set  right  by  then.  They

presented a revised version of SSA, dubbed SSA-Fix that

restores -approximation  at  the  cost  of  increased

computation  overheads.  The  experimental  results  show

that SSA and D-SSA are more efficient than IMM when

k is  large  under  the  IC and LT models.  They suggested

that there exists opportunities for further scaling up influ-

ence maximization with approximation guarantees.

5.4   Other algorithms

There are various other algorithms for influence max-

imization, and here we demonstrate four typical methods

which may bring us new perspectives.

First,  now  that  evaluating  influence  spread  on  the

whole  network is  time-consuming,  can we just  deal  with

1− e−
1

1+θ∆d

θ

∆d

θ = 0

(1− 1

e
)

it  on  the  community-level?  A  community  is  a  densely

connected  subset  of  nodes  that  are  only  sparsely  linked

with the remaining network[15]. Wang et al.[77] noted this

idea  and  proposed  a  community-based  greedy  algorithm

(CGA),  for  mining top-K influential nodes in mobile  so-

cial networks, following the divide-and-conquer principle.

Specifically,  they  first  extended  a  community  detection

method so that it can divide the network into communit-

ies based on information diffusion models. Then they pro-

posed  a  dynamic  programming  method  to  incrementally

choose the  communities  to  be  processed.  Within  a  com-

munity, we can adopt any existing algorithm to detect in-

fluential  nodes,  such  as  PageRank  and  CELF.  Besides,

they have proved that CGA obtains a ( )-ap-

proximation,  where  is the  threshold  used  in  the  com-

munity  detection  and  is  the  maximal  difference

between  the  number  of  nodes  affected  by  a  node  in  the

network and that in a community. When , the num-

ber of generated communities will  be 1,  which means all

communities will be combined into one, CGA is the same

as the original greedy algorithm with -approxima-

tion.

Second, Wang et al.[78] noticed that influence maxim-

ization finds some influential  nodes whose influences can

cover  the  whole  network,  which  is  similar  to  selecting

some  informative  rows  to  reconstruct  a  matrix.  Thus,

they proposed a novel framework, named data reconstruc-

tion for  influence  maximization  (DRIM),  from  the  per-

spective of data reconstruction. They first constructed an

influence matrix, each row of which is the influence of a

node  on  other  nodes.  Instead  of  using  time-consuming

Monte Carlo simulations to estimate the influence spread,

they turn to the linear social influence model in Definition 1,

which gives  us a closed-form solution to the influence of

each  node.  Then,  they  selected  the  most  informative k

rows  to  reconstruct  the  matrix  and  their  corresponding

nodes are the seed nodes which could maximize the influ-

ence spread. The experimental results show that the pro-

posed framework is at least as effective as the traditional

greedy algorithm[4]. However, this framework has no per-

formance guarantee and its time complexity is too high.

Third,  Jiang  et  al.[79] proposed a  totally  different  ap-

proach based  on  simulated  annealing  (SA)  to  the  influ-

ence maximization  problem.  Simulated  annealing  simu-

lates  the  process  of  metal  annealing  and  optimizes  the

solutions to  a  number  of  NP-hard  problems.  The  pro-

posed  SA  based  algorithm  for  influence  maximization

problem will  converge  towards  optimum as  the  iteration

number  grows  larger.  SA  can  escape  the  local  optimum

and  is  able  to  learn  to  improve  the  influence  spread  of

solution set automatically.  They also designed two heur-

istic methods to accelerate the convergence process of SA,

and a new method of computing influence to speed up the

proposed algorithm.

Finally,  indeed,  users′ influences  and  the  network
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structure are dynamic over time. The previous works are

done only in static networks. Rodriguez and Schölkopf[80]

focused on influence maximization in continuous time dif-

fusion  networks.  They  described  how  continuous  time

Markov chains allow us to analytically compute the aver-

age total number of nodes reached by a diffusion process

starting in a set of seed nodes. They also showed that se-

lecting a set of most influential source nodes in the con-

tinuous time influence maximization problem is NP-hard,

and developed an efficient approximation algorithm with

provable  near-optimal  performance.  Wang  et  al.[81] stud-

ied  the  incremental  influence  maximization  for  dynamic

social networks. They designed an incremental algorithm,

dynamic  influence  maximization  (DIM),  for  the  linear

threshold model. It consists of two phases: initial seeding

and  seeds  updating.  They  also  proposed  two  pruning

strategies for the seeds updating phase to further reduce

the running time. While Wang et al.[81] tried to track the

influential  nodes  in  dynamic  networks.  They  modeled  a

dynamic  network  as  a  stream  of  edge  weight  updates,

which embraces many practical scenarios as special cases,

such  as  edge  and  node  insertions,  deletions  as  well  as

evolving  weighted  graphs.  Their  key  idea  is  to  use  the

polling-based methods and maintain a sample of random

RR sets  so  that  we  can  approximate  the  influence  of

nodes with provable quality guarantees.

5.5   Variants of influence maximization

There have been many variants of  the classical  influ-

ence maximization for different applications. Here we will

briefly  discuss  some  of  them  and  hope  to  attract  more

readers for further study.

First,  try  to  generalize  the  influence  maximization

problem or  add more  constrains  to  the  original  formula-

tion in Problem 1. For example, budgeted influence max-

imization  (BIM)  is  identifying  a  small  set  of  influential

individuals  who  can  influence  the  maximum  number  of

members within  a  limited  budget.  It  was  formally  de-

scribed  by  Kempe  et  al.[4] and  attracted  much  attention

later[82, 83].  While  Yang  et  al.[84] took  a  step  further  and

proposed  the  continuous  influence  maximization  (CIM)

problem. It  deals  with a real-world scenario:  Imagine we

are introducing a new product through a social network,

in which we can get the purchase probability curve with

respect  to  discount  for  each  user  in  the  network.  Based

on  that,  it  can  be  decided  what  discount  should  be

offered  to  those  social  network  users  so  as  to  maximize

purchases under a predefined budget. We can see CIM is

a generalization of influence maximization (IM) and BIM.

Besides, Aslay et al.[85] studied the revenue maximization

problem in  incentivized  social  advertising.  It  is  to  alloc-

ate  advertisements  to  influential  users  with  the  rational

goal  of  maximizing  its  own  revenue.  They  consider  the

propensity  of  advertisements  for  viral  propagation,  and

carefully  apportion  the  monetary  budget  of  each  of  the

advertisers between incentives to influential users and ad-

engagement costs.

Second,  in  many  real-world  cases,  marketers  usually

target certain products at particular groups of customers.

For  example,  a  cosmetic  company  would  want  its

products  to  attract  more  women  than  men.  Li  et  al.[86]

formulated the  above  as  a  labeled  influence  maximiza-

tion  problem,  which  aims  to  find  a  set  of  seed  nodes  to

trigger  the  maximum  spread  of  influence  on  the  target

customers in a labeled social network. The label informa-

tion  is  widely  available  in  current  social  networks,  by

which  users  describe  their  personal  interests,  graduated

colleges,  hometown,  age,  skills,  etc.  Tang  et  al.[87] con-

sidered  the  magnitude  of  influence  and  the  diversity  of

the influenced crowd at the same time, and formulated it

as the diversified influence maximization problem. An ob-

vious case is that this could reduce the risk of marketing

campaigns, as the proverb goes: “Don′t put all your eggs

in  one  basket”.  Besides,  Liu  et  al.[88] combined  targeted

marketing  with  viral  marketing  to  build  a  better  and

stronger marketing  business.  Targeted  marketing  identi-

fies typical customers and concentrates marketing efforts

on  these  customers,  which  could  make  the  promotion  of

items  much easier  and  more  cost-effective.  They  studied

the problem of maximizing information awareness in vir-

al marketing with constrained targets.

Third,  Wang  et  al.[89] considered  both  active  nodes

and  informed  nodes  that  are  aware  of  the  information

when they study the coverage of information propagation

in a  network.  They  proposed  a  new  problem  called  in-

formation  coverage  maximization  that  aims  to  maximize

the  expected  number  of  both  active  nodes  and  informed

ones, and showed this problem is NP-hard and submodu-

lar in the IC model. After that, they further studied the

activity  maximization  problem[90] which  selects  a  set  of

seed users to maximize the expected total amount of ex-

citements for  a  piece  of  new  information.  It  is  substan-

tially different  from  the  renowned  influence  maximiza-

tion problem and cannot be tackled with the existing ap-

proaches. In a social network, the excitements among dif-

ferent  users  even  at  the  same  information  are  different.

They aim to find an optimal set of seed users under a giv-

en  budget,  and  start  information  propagation  from  the

seed users so as to gather the maximum sum of activity

strengths among the influenced users.

Finally, sometimes,  more  than  one  type  of  informa-

tion  such  as  different  information  about  competitive

products  is  spreading  in  social  networks.  He  et  al.[91] fo-

cused  on  the  blocking  maximization  problem  under  the

competitive  linear  threshold  (CLT)  model,  which  states

that one entity would try to block the influence propaga-

tion of its competing entity as much as possible by stra-

tegically selecting a number of seed nodes that could ini-

tiate the propagation by themselves. They extended LD-

AG[56] and  designed  an  efficient  algorithm  competitive

local  directed  acyclic  graph (CLDAG) which utilizes  the
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properties of  the  CLT  model,  to  address  this  issue.  Be-

sides, it is supposed that one of the competitors could en-

hance its influence by creating new links. A natural ques-

tion  is,  when  the  number  of  new links  is  limited  due  to

limited resource, how to add these links so as to maxim-

ize the influence of  the given competitor over the others

(called competitiveness). Zhao et al.[92] formulated it as a

competitiveness maximization  problem  on  complex  net-

works. They take two cases into consideration: maximize

the number of  supporters  of  the competitor  and maxim-

ize  the  total  supporting  degree  of  normal  agents  toward

the competitor. Besides, many individuals also care about

the influence of  themselves  and want to  enhance the in-

fluence. Thus, Ma et al.[93] considered an individual influ-

ence  maximization  problem  that  maximizing  the  target

individual influence by recommending new links.

6   Information source detection

The  purpose  of  influence  maximization  is  to  find  a

small set of seed nodes to maximize the expected number

of  activated  users.  But  when  observing  which  nodes  are

active after a piece of information has diffused in the net-

work, can we infer the source or seed nodes triggering this

observed diffusion result? For example, after a rumor has

spread  among  the  network,  we  want  to  find  the  rumor

source  nodes  to  stop  its  dissemination.  This  problem  is

called  information  source  detection  (or  patient-zero),

which can be considered as the reverse process of inform-

ation diffusion. It also has attracted many researchers to

study, due to its  wide range of  applications such as epi-

demic  outbreak  prevention[26–28] and rumor  source  tra-

cing in social networks[30, 29].

S∗ t0
t(t ≥ t0)

GI

GI(VI , EI)

VI EI P (GI |S)
GI

After the information starts to spread in the network

G from an unknown source node set  at time , there

will be many nodes being infected till time . Note

that  we  assume  every  node  usually  has  three  possible

states:  infected  (i.e.,  active),  susceptible  (i.e.,  inactive)

and  recovered,  like  epidemic  models.  Let  denote  the

infected  subgraph  which  consists  of  infected

nodes  and their inter-edges .  represents the

likelihood to  observe  if the  information  starts  to  dif-

fuse  from  the  node  set S.  Information  source  detection

aims to  identify  the  source  nodes  initiating  the  diffusion

process based  on  the  observed  node  states  and  the  net-

work structure, which can be formally defined as follows:

G(V,E) GI(VI , EI)

t(t ≥ t0)

Ŝ

Ŝ = arg maxP (GI |S)
t0

Problem 2 (Information source detection). Giv-

en  graph  and  the  infected  subgraph 

observed at time , information source detection is

to  select  set  of  source  nodes  such  that

, i.e.,  the  largest  likelihood  to  ob-

serve  the  infected  subgraph.  is  the  unknown time the

information started to spread.

For  example,  in Fig. 4,  we  observe  seven  infected

nodes and  want  to  identify  the  source  node.  This  prob-

lem  is  challenging  due  to  many  aspects.  First,  we  often

t0

observe  only  one  snapshot  of  the  network  and  get  the

states  of  some  nodes,  which  is  just  a  part  of  the  whole

diffusion process. That means we just know which nodes

are infected, but cannot distinguish the propagation paths

that indicate who infects who and when they are infected.

Second, the  actual  information  diffusion  laws  are  un-

known,  which  cannot  be  comprehensively  described  by

the  models  in  Section  3.  Third,  information  diffusion  is

highly dynamic and has a great variety of patterns when

initiated from different sources. For instance, a photo will

be shared for many times if it is posted by a celebrity in

social  networks.  Forth,  there  are  usually  multiple  source

nodes in  real-world  scenarios,  while  the  number  is  un-

known.  Finally,  the  time-stamp  when the  information

started to diffuse and how long it has lasted, are also un-

available.

Shah  and  Zaman[35] are  among  the  first  to  consider

this problem. After that, many efforts have been devoted

to different  cases,  which  can  be  divided  into  three  cat-

egories[94] according to  the  observed  node  states:  com-

plete  observation  partial  observation  sensor  observation.

Fig. 5 shows  three  examples  of  observed  diffusion  results

for each  category.  In  the  next  part,  we  will  briefly  de-

scribe  the  corresponding  solutions  to  detect  the  source

nodes of the observed three categories in recent years.

6.1   Detection with complete observation

In this subsection, we introduce some detection meth-

ods with  the  complete  observation.  It  means  when  ob-

serving  the  diffusion  at  time t after  the  information  has

spread, we will get the complete states of all nodes in the

whole network. That′s to say that we can identify which

nodes are  infected,  and  which  are  recovered  or  still  sus-

ceptible.
6.1.1   Rumor center

When  noticing  the  source  detection  problem  in  their

seminal work, Shah and Zaman[35] provided a systematic

study on finding the source of a computer virus in a net-

work.  They  assumed  there  is  only  one  source  node  and

described  the  virus  spreading  in  a  network  with  the  SI

model,  a  variant  of  the  popular  SIR  model.  Then  they

constructed  the  following  maximum  likelihood  estimator
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Fig. 4     Information diffusion in a toy social network, where the
orange node 5 is the source node and gray nodes are infected,
while others are susceptible. Edges indicate the directions of
information flows. Color versions of the figures in this paper are
available online.
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for the virus source.

v̂ = arg max
v∈VI

P (GI |v∗ = v) (23)

v̂ v∗

R(v,GI)

GI v ∈ VI

VI

v̂

where  and  are  the detected source  node and actual

source  node  respectively.  They  showed that  in  a  regular

tree, the above estimator equals to select a node with the

maximal rumor centrality, , which is the number

of  permitted  permutations  of  nodes  that  result  in  a

spanning  tree T of  and  begin  with  node .  A

permitted  permutation  is  a  permutation  of  the  nodes  in

 subjected  to  the  ordering  constraints  set  by  the

network  structure.  Thus,  the  detected  source  node  is

called a rumor center.

R(v,GI)Luckily,  they  found  the  rumor  centrality  of

node v has a simple expression for trees:

R(v,GI) = |VI |
∏
u∈VI

1

T v
u

(24)

T v
u

O(|VI |)

Tbfs(v)

R(v, Tbfs(v))

where  is the number of nodes in the subtree rooted at

node u with node v as the source. They also designed an

efficient message-passing algorithm to compute the rumor

centrality  for  each  node,  running  in  time.

However, they further noted that permitted permutation

is  also  known  as  a  linear  extension  of  the  poset,  while

counting  its  number  falls  in  the  complexity  class  #P-

complete in general graphs[30]. To extend their method to

general graphs, they assumed the virus spreads from node

v along  a  breadth  first  search  (BFS)  tree  rooted  at v,

, and detected the rumor center with the maximal

rumor centrality . Besides, they proved that

the rumor center is equivalent to the distance center on a

tree. What′s more, on trees which grow faster than a line,

the  estimator  in  (23)  always  has  non-trivial  detection

probability,  whereas  on  trees  that  grow  like  a  line,  the

detection probability will go to 0 as the network grows.

Their method has several limitations in some aspects.

First, it is only applicable for the case when there is one

source node.  Second,  it  only  considers  the  infected  sub-

graph and neglects other uninfected nodes which are also

important for detecting the source. Third, rumor central-

ity assumes  that  the  probabilities  of  all  permitted  per-

mutation are equal for general graphs.

Vs

Vs

Vs

P (GI |S)

After  that,  some  researchers  tried  to  improve  this

method. Dong et al.[95] constructed a maximum a posteri-

ori (MAP) estimator to detect a single source from many

suspect  nodes  under  the  SI  model.  A  priori  knowledge

will indicate the set of suspect nodes  in different cases.

For  example,  with  cardinality k forms  a  connected

subgraph of G, or  contains only two suspect nodes sep-

arated by  their  shortest  path  distance.  Then  they  pro-

posed a local rumor center, which is a generalized rumor

centrality, to identify the source from suspects. For regu-

lar tree-type networks with node degree, they also charac-

terized the correct detection probability of the source es-

timator upon observing some infected nodes, in both the

finite and asymptotic regimes. Inspired by the derivation

of rumor center, Chang et al.[26] proposed a greedy meth-

od to estimate the likelihood . Its basic idea is to

find the upper bound of the probability of permitted per-

mutations that start with the same node.

Besides,  Wang  et  al.[96] addressed  the  problem  of

single  rumor  source  detection  with  multiple  independent

observations  under  the  SI  model  by  joint  rumor  center.

Suppose k different  rumors  originate  from  a  common

node in the network, which can be regarded as k times in-

dependent rumor spreading with the same rumor source.

For each rumor spreading, we can observe a correspond-

ing  infected  subgrpah.  For  regular  tree  graphs,  they

showed the detected source is a node that maximizes the

product of  its  rumor  centralities  in  each  infected  sub-

grpah. They found even with two observations, the detec-

tion probability at least doubles that of a single observa-

tion.  Luo  et  al.[97] considered  the  problem  of  estimating

the  multiple  infection  sources  and  the  infection  regions

(subsets  of  nodes  infected by each source)  in  a  network.

They exploited the Voronoi partition to estimate the in-

fection  regions  and  combined  two  regions  to  find  two

source nodes with their source estimation method, an ex-

tension of rumor centrality. They proved that if there are

 

(a) Complete observation (b) Partial observation (c) Sensor observation

Origin Infected Susceptible Unknown Infected sensor Susceptible sensor

Fig. 5     Three examples[94] of observed diffusion results corresponding to three categories of observation for information source detection
in a network, whose edges between nodes are hidden for brevity
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at  most  two  infection  sources  in  a  geometric  tree,  their

estimator identifies the true source nodes with a probabil-

ity going  to  one  as  the  number  of  infected  nodes  in-

creases. However, this method can hardly be used in the

real  world,  especially  on  large-scale  networks  due  to  its

high time complexity.
6.1.2   Eigenvector center

The second kind of source detection methods is based

on  the  eigenvector  center,  which  exploits  the  adjacent

matrix analysis. For example, Fioriti and Chinnici[27] pre-

dicted the  multiple  sources  of  an  outbreak  with  a  spec-

tral technique. They proposed to use the node dynamical

importance (DI) which is the reduction of the largest ei-

genvalue  of  the  adjacency  matrix  after  a  node  has  been

removed, to  assess  the  most  prominent  nodes  of  a  net-

work. They noted that a large reduction after the elimin-

ation of a node implies the node is relevant to the aging

of an infection  network.  Dynamical  importance  (i.e.,  dy-

namic age) of node v is defined by

DIv =
|λnew

m − λm|
λm

(25)

λm λnew
mwhere  and  are the maximum eigenvalues of the

adjacency  matrix  and  the  one  after v is  removed,

respectively.  The  detected  source  nodes  are  those  with

the  highest  DI  values.  Results  show  that  the  spectral

technique is able to identify the source nodes if the graph

approximates a tree sufficiently.

GI

GI

Besides,  based  on  the  minimum  description  length

(MDL)  principle,  Prakash  et  al.[28] proposed  a  novel

method, NETSLEUTH, under the SI model. The total de-

scription length of  a diffusion consists  of  two parts:  cost

of  the  model  to  identify  the  source  nodes S and  cost  of

describing the infected subgraph  given a source set S.

NETSLEUTH can identify the set of seed nodes and vir-

us propagation ripple  which starts  with those nodes and

best  describes  the  given  snapshot.  They  showed  we  can

easily  optimize  the  description  length  of  the  virus

propagation ripple  for  a  given seed set  by greedily  max-

imizing the  likelihood.  For  single  source  node,  the  likeli-

hood  has  an  upper  bound,  which  can  be  maximized  by

finding the smallest  eigenvalue of  the Laplacian submat-

rix  corresponding  to  the  infected  graph .  To  find  the

next source node, they first remove the previous selected

source node  from  the  infected  subgraph.  Then,  they  re-

peat the above steps on the remaining subgraph until the

MDL  cost  function  stops  decreasing.  As  a  result,  it  can

identify the best set of seed nodes in a principled manner,

without choosing k, the number of seed nodes in advance.

However,  the  computation  of  eigenvalues  at  each  step

makes this  method  not  applicable  for  large-scale  net-

works.
6.1.3   Sampling methods

The  third  kind  of  source  detection  methods  is  based

on  sampling  to  estimate  the  likelihood  of  observing  the

GI

GI

GI

infected subgraph for  each node.  Different  with previous

methods,  they  focus  on  the  stochastic  diffusion  models,

such  as  the  independent  cascade  (IC)  model  and  linear

threshold  (LT)  model.  For  example,  Zhai  et  al.[98] de-

signed a Markov chain Monte Carlo  (MCMC) algorithm

to find the single source of a cascade given the snapshot

under the IC model. They formulated the detection as a

source inference problem with maximum likelihood estim-

ation  like  Problem  2,  and  proved  its  #P-completeness.

Note that  the  generation  of  infected  subgraphs  corres-

ponds  to  a  specific  distribution .  Because  calculating

the exact value of likelihood is #P-hard, they proposed to

use  the  Metropolis  algorithm to  sample  in  a  Markov

chain. When the MCMC chain converges,  the stationary

distribution will  be . After  that,  they counted the  in-

fected  subgraphs  which  equals  to  the  observed  one  of

each node, and selected a node with the maximal value as

the  source  node.  However,  this  method  is  time-consum-

ing when the number of infected nodes is large, and it is

hard  to  judge  the  convergence  of  MCMC  to  stop  the

sampling.  Zhang  et  al.[99] further  extended  this  method

for source detection under the LT model.

VI

Besides, Nguyen et al.[100] proposed a new approach to

identify multiple infection sources by searching for a seed

set S that  minimizes  the  symmetric  difference  between

the  cascade  from S and ,  a  set  of  observed  infected

nodes.  They  designed  an  approximation  algorithm,

sampling-based  infection  sources  identification  (SISI),  to

identify infection sources without the prior knowledge on

the number of source nodes. Inspired by other works[70, 71],

SISI contains two key components: an efficient truncated

reverse infection sampling (TRIS) to compute the object-

ive with high accuracy and confidentiality, and an innov-

ative transformation  of  the  studied  problem  into  a  sub-

modular  cost  covering  problem  to  provide  high  quality

solutions  with  performance  guarantees.  Note  that  SISI

works  for  most  progressive  diffusion  models,  and  has

provable guarantee for the problem in general graphs.
6.1.4   Diffusion kernel

A diffusion kernel can represent diffusion processes in

a given  network,  but  computing  this  kernel  is  computa-

tionally challenging in general. Feizi et al.[101] proposed a

path-based network diffusion kernel which considers edge-

disjoint shortest  paths  among  pairs  of  nodes  in  the  net-

work, and can be computed efficiently for both homogen-

eous and heterogeneous continuous-time diffusion models.

They used  this  network  diffusion  kernel  to  solve  the  in-

verse  diffusion  problem,  named  network  infusion  (NI)

with both  likelihood  maximization  and  error  minimiza-

tion.  They  applied  this  framework  to  both  single-source

and multi-source diffusion, and single-snapshot and multi-

snapshot observations,  using  both  uninformative  and  in-

formative prior probabilities for candidate source nodes.

l1

Pena  et  al.[102] casted the  problem  of  source  localiza-

tion on graphs as the simultaneous problem of sparse re-

covery and diffusion kernel learning (SR-DKL). A  regu-
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larization term enforces the sparsity constraint while they

recover the sources of diffusion from a single snapshot of

the diffusion process. The diffusion kernel is estimated by

assuming  the  process  to  be  as  generic  as  the  standard

heat diffusion.
6.1.5   Others

Zhu and Ying[103] presented a new source  localization

algorithm  under  the  independent  cascade  (IC)  model,

called the short-fat tree (SFT). Loosely speaking, the al-

gorithm  selects  a  node  as  the  source  such  that  the

breadth-first  search  (BFS)  tree  from  the  node  has  the

minimum depth but the maximum number of leaf nodes.

They also established the performance guarantees of SFT

for both  tree  networks  and  the  Erdos-Renyi  (ER)  ran-

dom  graph.  On  tree  networks,  SFT  is  the  maximum  a

posterior (MAP) estimator.

6.2   Detection with partial observation

In  some  scenarios,  we  can  only  observe  the  states  of

partial  nodes  at  a  given  time t.  Jiang  et  al.[94] summar-

ized them as four cases.

µ1) Nodes reveal their states with probability  if they

have been infected.

2) We can identify all infected nodes, but cannot dis-

tinguish susceptible or recovered nodes, because some in-

fected nodes may recover from the disease with a probab-

ility such as in the SIR model.

3)  Only  the  nodes  infected  at  time t are  observed,

while the states of other nodes infected before time t are

missing.  For  example,  the  observed  black  nodes  in  the

ring in Fig. 5 are infected at time t.

4)  We only observe a part  of  nodes at  time t due to

some  limitations  such  as  financial  and  human  resources.

Note  that  some  observed  nodes  may  be  infected  before

time t.

In the next part, we will introduce some typical solu-

tions to different cases.
6.2.1   Jordan center

This  kind  of  methods  selects  a  Jordan  center  as  the

detected  source  node,  which  has  the  maximal  Jordan

centrality  defined in  (6).  That  means Jordan center  is  a

node minimizing the maximum distance with other nodes.

Zhu  and  Ying[104] studied  the  source  detection  problem

under  the  popular  Susceptible-Infected-Recovered  (SIR)

model. Given a snapshot of the network, we know all in-

fected nodes but cannot distinguish the susceptible nodes

and  recovered  nodes.  The  network  is  assumed  to  be  an

undirected graph and each node in the network has three

possible  states:  susceptible  (S),  infected  (I), and  re-

covered (R). Nodes in state S can be infected and change

to state I, and nodes in state I can recover and change to

state R.

They formalized  this  problem  with  maximum  likeli-

hood estimation (MLE). To solve it, we need to consider

all possible infection sample paths, which is impossible for

t0

large-scale  networks  with  unknown  initial  infection  time

. To overcome this difficulty, they proposed to find the

sample  path  which  most  likely  leads  to  the  observed

snapshot, and viewed the first node associated with that

sample path as the information source. They proved that

for  infinite-trees,  the  estimator  is  a  node  that  minimizes

the  maximum  distance  to  the  infected  nodes,  i.e.,  the

Jordan center.  A  reverse-infection  algorithm  was  pro-

posed to find such estimator in general graphs. In the al-

gorithm, each infected node broadcasts its identity in the

network, and then the node who is the first to collect all

identities of infected nodes declares itself as the informa-

tion source.  Ties  are  broken  based  on  the  sum  of  dis-

tances to the infected nodes. They showed it can output a

node  within  a  constant  distance  from  the  actual  source

with a high probability, independent of the number of in-

fected nodes and the time the snapshot is taken.

Zhu  and  Ying[105] further  extended  this  method  for

source detection under the heterogeneous SIR model with

sparse observations. They assumed that a small subset of

infected nodes are reported. The heterogeneous SIR mod-

el allows different infection probabilities along edges and

different recovery probabilities at different nodes. Besides,

Luo  et  al.[106, 107] explored the  sample  path  based  ap-

proach  for  source  detection  under  SI  and  SIS  models.

They  obtained  the  same  conclusion  as  under  the  SIR

model:  the  detected  source  is  a  Jordan center.  However,

the Jordan  center  method  is  designed  for  tree-like  net-

works, which are very different from real-world networks.
6.2.2   Message passing methods

P i
S(t)

P i
I (t) P i

R(t)

The  second  kind  of  methods  is  based  on  message

passing.  Lokhov  et  al.[108] took the  infected  and  uninfec-

ted nodes to detect the source node under the SIR model.

They introduced an effective inference algorithm based on

dynamic  message  passing  (DMP)  equations.  Let ,

 and  denote  the  marginal  probabilities  that

node i is susceptible (S), infected (I), and recovered (R)

at time t, respectively. They first used the following DMP

equations to estimate the marginal probabilities of a giv-

en node.

P i
S(t+ 1) = P i

S(0)
∏
k

θk→i(t+ 1)

P i
R(t+ 1) = P i

R(t) + µiP
i
I (t)

P i
I (t+ 1) = 1− P i

S(t+ 1)− P i
R(t+ 1) (26)

θk→i(t+ 1)

µi

where  is  the  probability  that  the  infection

signal  has  not  been passed  from node k to i up to  time

t+1,  and  is  the  recovery  probability  of  node i.  Then

they exploited a mean-field-type approach to approximate

the likelihood of  the observed states  as  a product of  the

marginal probabilities.  A node maximizing the likelihood

is  selected  to  be  the  source.  Importantly,  DMP remains

efficient in the case where the snapshot sees only a part

of  the  network.  Hu  et  al.[109] extended  DMP  to  the
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susceptible-infected-recovered-infected  (SIRI)  model  and

proposed  an  algorithm  known  as  the  heterogeneous

infection  spreading  source  (HISS)  estimator  to  infer  the

infection source. It is able to incorporate side information

(if  any)  of  the  observed  states  of  a  subset  of  nodes  at

different  times,  and  of  the  prior  probability  of  each

infected or recovered node to be the infection source.

As  noted  by  the  authors,  DMP  has  two  drawbacks.

First,  the  space  of  initial  conditions  considered  must  be

explored  exhaustively.  Second,  DMP  relies  on  a  further

assumption  of  single-site  factorization  of  the  likelihood

function,  which  is  not  necessarily  consistent  with  the

more  accurate  underlying  approximation.  Altarelli  et

al.[110] realized these and conducted Bayesian inference for

this  problem  on  a  factor  graph  under  the  SIR  model.

They  derived  belief  propagation  (BP)  equations  for  the

probability  distribution  of  system  states  conditioned  on

some  observations,  which  is  more  accurate  than  DMP.

Besides, BP can be used to identify the origin of an epi-

demic outbreak in the SIR, SI,  and similar models,  even

with multiple  infection  seeds  and  incomplete  or  hetero-

geneous information. They further generalized the analys-

is to more realistic cases in which observations are imper-

fect[111].  They  said  it  also  can  give  accurate  predictions

about  the  future  evolution  of  an  outbreak  from  which

only  a  partial  observation  (noisy  and/or  incomplete)  of

the current state is available.

DMP and BP have been shown to perform better than

centrality based methods,  such as Jordan center and ru-

mor center  in previous sections.  However,  DMP and BP

are too time-consuming for  large-scale  networks,  because

they need to run on the whole network which may have

large number of nodes.
6.2.3   Diffusion reconstruction

Some  methods  are  based  on  diffusion  reconstruction

which recover  the  states  or  propagation  paths  of  un-

known  nodes.  For  example,  Zang  et  al.[112] presented  a

multi-source  locating  method  based  on  a  given  snapshot

of  partially  and  sparsely  observed  infected  nodes  in  the

network.  They  first  introduced  a  reverse  propagation

method  to  detect  recovered  and  unobserved  infected

nodes  in  the  network,  and  then  used  community  cluster

algorithms  to  change  the  multi-source  locating  problem

into  a  bunch  of  single  source  locating  problems.  At  the

last step, they identified the nodes with the largest likeli-

hood as the source nodes in the infected clusters.

Gundecha  et  al.[29] tried  to  seek  the  provenance  (i.e.,

sources or originators) of information for a few known re-

cipients by recovering the information propagation paths

in  social  media.  The  proposed  method  exploits  easily

computable node centralities of  a large social  media net-

work.  Feng  et  al.[113] studied  the  problem  of  recovering

other  unknown recipients  and  seeking  the  provenance  of

information based  on  a  few  known  recipients.  They  ex-

ploited the property of frequent pattern and node central-

ity measures to find important nodes.

6.2.4   Others

Karamchandani  and  Franceschetti[114] extended  the

rumor  centrality  for  source  detection  under  probabilistic

sampling, i.e., each node reports its status with probabil-

ity p. They computed the centralities of each node in the

reported rumor  subgraph  which  is  the  minimum  sub-

graph that  connects  all  infected  nodes.  Besides,  Brock-

mann and Helbing[115] proposed a novel concept of effect-

ive distance, which can be used to reconstruct the origin

of  outbreaks.  Shi  et  al.[116] proposed a  two-stage  method

under  the  SI  model  that  first  locates  a  set  of  suspected

source nodes and then identifies the infection source from

the  candidate  source  nodes  by  the  Markov  random field

method. Zhang et al.[117] studied the diffusion sources loc-

ating problem by learning from information diffusion data

collected only from a small subset of network nodes. They

presented a  new  regression  learning  model  that  can  de-

tect  anomalous  diffusion  sources  by  jointly  solving  five

challenges: unknown  number  of  source  nodes,  few  activ-

ated detectors,  unknown initial  propagation time,  uncer-

tain  propagation  path  and  uncertain  propagation  time

delay.

6.3   Detection with sensor observation

Sometimes,  due  to  the  large  quantity  of  nodes  in  a

network, we have to select some specific nodes as sensors

to  monitor  the  information  diffusion,  such  as  choosing

some  users  in  a  social  network  and  many  computers  in

the  Internet  to  stop  the  spread  of  wrong  information.

That means at time t, we can observe the states of these

selected  sensors.  More  importantly,  sensor  nodes  also

provide the state transition time (i.e.,  when they are in-

fected) and infection directions (i.e., which adjacent nodes

the  information  comes  from).  In  the  next  part,  we  will

show how to use those data to detect the source nodes.
6.3.1   Delay distance estimator

Ta

o1
d o1 Ta

s ∈ T

ok
P (s, ok) µs

o1
µs,k = |P (s, ok)− P (s, o1)|

Pinto  et  al.[118] estimated  the  location  of  the  source

from  measurements  collected  by k sparsely  placed

sensors. Every edge has a deterministic propagation time,

which  is  independent  and  identically  distributed  with  a

Gaussian  distribution.  The  information  diffusion  follows

the continuous SI model, where an infected node will re-

transmit  the  information  to  all  of  its  other  neighbors  in

propagation  delays.  To  minimize  the  scale  of  seeking

sources,  they  first  determined  a  unique  sub-tree  ac-

cording  to  the  direction  from  which  information  arrived

at the sensors. Given a sensor node , calculate the ob-

served delay, , between  and the other sensors in .

Then they assumed an arbitrary node  as the source

node, and got the diffusion time from s to , denoted as

. After that, the deterministic delay, , is calcu-

lated  for  every  sensor  node  relative  to ,  where

.  For  a  general  propagation

tree, the optimal estimator is given by

ŝ = arg max
s∈Ta

µT
s Λ

−1(d− 1

2
µs) (27)
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Λ

o1

O(n) O(n3)

where  is  the  delay  covariance.  That  means  the

detected  source  is  a  node  minimizing  the  distance

between  the  observed  delays  and  deterministic  delays  of

sensor  nodes  relative  to .  It  is  optimal  for  arbitrary

trees,  and  achieves  the  maximum  probability  of  correct

localization  in .  However,  it  runs  in  for

general  graphs  with  the  BFS  heuristic  method,  which  is

too unsatisfactory to large-scale graphs.

Agaskar and Lu[119] described an alternate representa-

tion  for  the  susceptible-infected  (SI)  infection  model

based on geodesic distances on a randomly-weighted ver-

sion of  the  graph.  This  representation  allows  us  to  ex-

ploit  fast  Monte  Carlo  (MC)  algorithms  to  compute

geodesic distances and to estimate the marginal distribu-

tions for each observer, and then compute a pseudo-likeli-

hood function that is maximized to find the source.

o1, o2, · · · , ok
to1 , to2 , · · · , tok

Besides, Shen et al.[120] developed a time-reversal back-

ward spreading (TRBS) algorithm to locate the source of

a  diffusion-like  process  efficiently.  Sensors 

receive  the  information  at  time .  TRBS

consists of two steps. First,  for arbitrary node i, it  com-

putes the reversed arrival time for each sensor and leads

to a vector

Ti = [to1 − t̂(i, o1), to2 − t̂(i, o2), · · · , tok − t̂(i, ok)]
T (28)

t̂(i, ok) ok

T1,T2, · · · ,Tn

O(kn logn)
O(n2 logn)

where  is the shortest time delay from node  to i,

and  follows  a  certain  distribution,  such  as  Gaussian  or

uniform  distributions.  Second,  calculate  the  variance  of

the elements in  and select a node with the

minimum  variance  as  the  source.  It  runs  in 

and  in  the  worse  case.  Fu  et  al.[121] further

extended this method for multiple sources detection with

limited observers.
6.3.2   Others

Seo  et  al.[122] followed  the  intuition  that  the  source

node  must  be  close  to  the  infected  sensors  but  far  from

the  negative  monitors,  and  proposed  four  metrics  (FM):

1) Reachability to all positive monitors. It calculates how

many positive monitors are reachable from each node. 2)

Distance to positive monitors. They sorted the suspected

sources by increasing total distances from positive monit-

ors. 3)  Reachability  to  negative  monitors.  For  each  sor-

ted node v, they counted the number of negative monit-

ors  that  are  not  reachable  from v and  preferred  larger

counts. 4) Distance to negative monitors. It is more nat-

ural  that  negative  monitors  are  far  from  rumor  sources,

so  nodes  with  larger  distance  to  negative  monitors  are

preferred.

l1

Offline learning models do not meet the needs of early

warning,  real-time  awareness,  and  real-time  response  of

malicious  information  spreading  in  social  networks.

Therefore,  Wang  et  al.[123] combined  online  learning  and

regression-based detection (OLRD) methods for real-time

diffusion source detection with sensors.  They proposed a

new  non-convex regression model as the learning func-

tion,  and  an  online  stochastic  sub-gradient  algorithm

(OSS) to optimize the objective.

Sometimes,  some  sensors  may  fail  to  report  their

states. Louni et al.[124] noted this and addressed the prob-

lem of locating the source of a rumor in large social net-

works where some of these sensor nodes have failed. They

estimated  the  missing  information  about  the  sensors  by

doubly  non-negative  matrix  completion  and  compressed

sensing (DNMC-CS)  techniques.  It  first  used  the  com-

pressed  sensing  method  to  recover  sporadically  missing

measurements and the doubly non-negative (DN) comple-

tion to  recover  measurements  missing  in  bursts.  Then it

detects the rumor source based on the recovered measure-

ments with a maximum likelihood (ML) estimator.

In  conclusion,  we  compare  some  typical  methods  for

different  scenarios  in Table  1 and  have  several  findings.

First, most  current  methods  are  detecting  the  informa-

tion sources under epidemic models, such as SI and SIR.

While  other  models  such as  IC and LT are more widely

used for information diffusion analysis in social networks.

Under  these  models,  it  is  promising  to  solve  the  source

detection  problem,  like  [100]. For  example,  we  can  ex-

tend current methods to more diffusion models according

to  the  difference  among  them.  Second,  current  methods

have  no  performance  guarantee  with  respect  to  generic

graphs,  except  for  SISI[100].  Many  of  them  can  only

provide  guarantees  in  some  specific  cases.  For  example,

the  basic  rumor  center  ensures  that  the  probability  of

correct detection  is  bounded  uniformly  away from 0  un-

der the SI model for regular expander trees and geomet-

ric  trees[35].  Zhu and Ying[104] proved that  Jordan center

can  output  a  node  within  a  constant  distance  from  the

actual  source  with  a  high  probability  for  regular  trees.

Therefore, we can follow SISI and propose more effective

methods  with  performance  guarantees  based  on  reverse

sampling  algorithms  for  influence  maximization  in

Section  5.3.  Third,  detection  methods  with  both  partial

and sensor observations are running on the whole graph,

which  is  unsatisfactory  for  large-scale  graphs.  Therefore,

reducing their time complexities is necessary.

6.4   Similar problems

a

In literature,  there  are  some  problems  similar  to  in-

formation source detection defined in Problem 2. For ex-

ample, Lappas et al.[34] defined the problem of k-effectors,

which  selects  a  set  of k active nodes  that  can  best  ex-

plain the observed activation states, , in social networks.

Formally, k-effectors is a set S of active nodes (effectors),

of cardinality at most k such that

C(S) =
∑
v∈V

|a(v)− α(v, S)| (29)

α(v, S)is minimized, where  is the probability that node v

is  active  at  the  end  of  the  diffusion  process  if S is  the
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|S| ≤ K
∑

v∈V α(v, S)

|S| ≤ K
∑

v∈V |a(v)− α(v, S)| = 0

source set.  They proved that the k-effectors (0) problem

is NP-complete under the IC model and it is NP-hard to

approximate  for  general  graphs.  For  tree  graphs,  the

problem can be solved optimally in polynomial time using

a dynamic programming algorithm. From (29), we find k-

effectors  is  a  generalization  of  influence  maximization,

which  can  be  considered  as  selecting  a  node  set S with

 such  that  is  maximized.  What′s
more, k-effectors  is  a  relaxation  of  source  detection

defined  in  Problem  2,  which  tries  to  infer  a  node  set S

with  such  that .  This

also reflects the relationship between source detection and

influence  maximization.  Bulteau  et  al.[125] provided  a

more  thorough  computational  complexity  analysis  of k-

effectors.  They exploit  a  parameterization measuring the

“degree of randomness” which might be proven useful for

analyzing  other  probabilistic  network  diffusion  problems

as well. Besides, Nguyen et al.[126] studied the k-suspector

problem  which  aims  to  find  the  top k most  suspected

sources  of  wrong  information  such  that  the  number  of

original  attackers  included  is  maximized,  and  claimed

NP-hardness of the problem under the IC model.

7   Conclusions and future research
topics

To conclude, we have reviewed recent advances on in-

formation diffusion analysis in social networks and its ap-

plications  in  this  paper.  Specifically,  we  first  introduced

three typical  information  diffusion  models,  namely  inde-

pendent cascade (IC) model, linear threshold (LT) model

and epidemic models, which can be used to describe how

the  information  diffuses  in  a  network.  Then,  we  showed

three practical  problems:  authority  and  influence  evalu-

ation, influence maximization, and information source de-

tection. Authority and influence evaluation in social net-

works is important for influential spreaders identification

and expert finding, while influence maximization contrib-

utes to  viral  marketing  and  sensor  placement.  Informa-

tion  source  detection  has  a  wide  range  of  applications

such  as  epidemic  outbreak  prevention  and  rumor  source

tracing  in  social  networks.  Although  many  efforts  have

been  devoted  to  these  problems,  there  are  still  some

rooms for improvement. Here we will list several possible

directions for further study.

First, current  information  diffusion  models  have  per-

 

Table 1    Comparison of different methods for information source detection, where h is the number of independent observations[96], r is
the iteration times, l is the number of edge-disjoint shortest paths among pairs of nodes[101], t0 is the time how long the information has

diffused, and tr is the maximal recovery time allowed[110]. The performance guarantees are with respect to generic graphs.

Observation Method Graph Diffusion models # of sources Performance guarantee Time complexity

Complete

Rumor center (RC)

Basic RC[35] tree SI single None O(|VI |2)

Local RC[95] Tree SI Single None O(|VI |2)

Joint RC[96] Tree SI Single None h×O(|VI |2)

Multi RC[97] Tree SI Multiple None O(|VI |k)

Eigenvector center
DI[27] Generic SI Multiple None O(|VI |3)

NETSLEUTH[28] Generic SI Multiple None O(|VI |3)

Sampling methods

MCMC[98] Generic IC Single None r ×O(|VI |2)

SISI[100] Generic SI/IC/LT Multiple
2

(1− ϵ)2
∆ O(

m∆Λ

|Es|+∆2
)

Diffusion kernel
NI[101] Generic SI Multiple None O(|VI |l(m+ n log(n)))

SR-DKL Generic Heat Multiple None r ×O(n2)

Partial

Jordan center[104] Tree SIR Single None O(n3)

Message passing methods
DMP[108] Generic SIR Single None O(t0dn2)

BP[110] Generic SIR Multiple None O(rmt0t
2
r)

Diffusion reconstruction[112] Generic SIR Multiple None O(n3)

Complete

Delay distance estimator

Gaussian[118] Tree SI Single None O(n3)

MC[119] Generic SI Single None O(
n logn

ϵ
)

TRBS[120] Generic SI Single None O(n2 logn)

Others
FM[122] Generic SI Single None O(n3)

OLRD[123] Generic SI Multiple None O(rn2)
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fect theoretical properties for further analysis, but simpli-

fy real-world  scenarios  which  are  actually  very  complic-

ated.  Users  can  access  the  information  from  external

sources  such  as  TV,  newspaper  and  other  websites,  not

only from its neighbors in a social network. Besides, there

may  be  multiple  types  of  information  spreading  in  the

network at the same time, such as information of compet-

itive products.  Therefore,  it  is  promising  to  model  mul-

tiple types  of  information  diffusion  in  heterogeneous  so-

cial networks  with  external  influence.  For  example,  My-

ers et al.[127] presented a model in which information can

reach  a  node  via  the  links  of  the  social  network  or

through  the  influence  of  external  sources.  Besides,  Zhan

et  al.[128] studied  the  influence  maximization  problem  in

multiple  partially  aligned  heterogeneous  in  online  social

networks.

Second, large  scalability  is  one  of  the  biggest  chal-

lenges  to  apply  influence  maximization  and  information

source  detection  in  real-world  applications,  especially  for

large-scale networks. Solutions to influence maximization

have  achieved  a  great  improvement  after  reverse

sampling algorithms are proposed by Borgs et al.[70], and

thus we  can  bring  in  the  experience  to  accelerate  solu-

tions  to  information  source  detection,  like  Nguyen  et

al.[100] Besides, implementing  these  solutions  in  distrib-

uted programming is another practical direction.

Third, most current solutions are applicable for static

networks,  and  they  neglect  that  networks  are  dynamic

and evolving. For example, a user may unfollow some of

his  friends  in  some  time  and  his  personal  interests  may

change on different topics. That′s to say, the tie strengths

among  different  users  are  varying  over  time.  We  should

take this fact into account so as to analyze the informa-

tion diffusion in social networks better.

Forth,  deep  learning  has  been  applied  to  many tasks

of social  network analysis  recently,  such as  network em-

bedding[129, 130] and link prediction[131]. The real process of

information  diffusion  in  social  networks  is  complicated

and sometimes unobserved. Can we design deep learning

methods for analyzing the information diffusion? For ex-

ample, when we input the network structure and a user′s
attributes  such  as  the  age,  gender,  posts,  into  a  deep

learning based model, we can output this user′s influence.

Bourigault  et  al.[132] proposed  a  representation  learning

approach for  information  source  detection  in  social  net-

works. It relies neither on a known diffusion graph nor on

a hypothetical diffusion law, but directly infers the source

from diffusion records.

Finally, it is attractive to incorporate the information

diffusion  analysis  with  other  practical  problems,  such  as

behavior prediction for social users[8, 133, 134]. For example,

social users are usually affected by multiple companies at

the  same  time,  and  not  only  the  user  interests  but  also

these social  influences  will  contribute  to  the  user  con-

sumption behaviors. Ma et al.[135] proposed a general ap-

proach to figure out the targeted users for social market-

ing, taking  both  user  interests  and  multiple  social  influ-

ences  into  consideration.  Valuable  users  should have the

best  balanced  influence  entropy  (being  “Hesitant”)  and

utility scores (being “Interested”). Wu et al.[133] took the

underlying social theories to explain and model the evolu-

tion  of  users′ two  kinds  of  behaviors:  users′ preferences

(reflected in  user-item  interaction  behavior)  and  the  so-

cial  network  structure  (reflected  in  user-user  interaction

behavior).  Xu  et  al.[8] tried  to  reveal  how  the  social

propagation  affects  the  prediction  of  cab  drivers′ future

behaviors.
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