
International Journal of Automation and Computing 15(2), April 2018, 181-193

DOI: 10.1007/s11633-018-1120-4

A Fuzzy Neural Network Based Dynamic Data Allocation
Model on Heterogeneous Multi-GPUs for Large-scale

Computations

Chao-Long Zhang1, 3 Yuan-Ping Xu1 Zhi-Jie Xu2, 3 Jia He2 Jing Wang4 Jian-Hua Adu1

1School of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China
2School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China

3School of Computing & Engineering, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
4Department of Computing, Sheffield Hallam University, Sheffield, S1 2NT, UK

Abstract: The parallel computation capabilities of modern graphics processing units (GPUs) have attracted increasing attention

from researchers and engineers who have been conducting high computational throughput studies. However, current single GPU based

engineering solutions are often struggling to fulfill their real-time requirements. Thus, the multi-GPU-based approach has become a

popular and cost-effective choice for tackling the demands. In those cases, the computational load balancing over multiple GPU “nodes”

is often the key and bottleneck that affect the quality and performance of the real-time system. The existing load balancing approaches

are mainly based on the assumption that all GPU nodes in the same computer framework are of equal computational performance,

which is often not the case due to cluster design and other legacy issues. This paper presents a novel dynamic load balancing (DLB)

model for rapid data division and allocation on heterogeneous GPU nodes based on an innovative fuzzy neural network (FNN). In this

research, a 5-state parameter feedback mechanism defining the overall cluster and node performance is proposed. The corresponding

FNN-based DLB model will be capable of monitoring and predicting individual node performance under different workload scenarios.

A real-time adaptive scheduler has been devised to reorganize the data inputs to each node when necessary to maintain their runtime

computational performance. The devised model has been implemented on two dimensional (2D) discrete wavelet transform (DWT)

applications for evaluation. Experiment results show that this DLB model enables a high computational throughput while ensuring

real-time and precision requirements from complex computational tasks.

Keywords: Heterogeneous GPU cluster, dynamic load balancing, fuzzy neural network, adaptive scheduler, discrete wavelet trans-

form.

1 Introduction

In the last decade, the powerful parallel computing ca-

pabilities of graphics cards and GPUs, originally driven by

the market demands for real-time and high-definition game

displays, have been widely accepted by the research com-

munities. Large scale and data intensive computational ap-

plications such as areal surface characterization filtration,

visual recognition, and natural language processing (NLP),

have been benefitted by this newly-found and cost-effective

computational powerhouse. It has also attracted increas-

ing attentions from researchers across the globe in devising

general hardware-based acceleration models for real world

engineering challenges[1−3]. Leading the trend, in 2007,

NVIDIA released the Compute Unified Device Architecture

Research Article
Special Issue on Automation and Computing Advancements for Fu-

ture Industries
Manuscript received October 9, 2017; accepted February 9, 2018;

published online March 12, 2018
This work was supported by National Natural Science

Foundation of China (No. 61203172), the SSTP of Sichuan
(Nos. 2018YYJC0994 and 2017JY0011) and Shenzhen STPP
(No. GJHZ20160301164521358).
Recommended by Associate Editor Hong-Ji Yang
c© Institute of Automation, Chinese Academy of Sciences and

Springer-Verlag Gmbh Germany, part of Springer Nature 2018

(CUDA) – a software framework that aimed at unifying the

efforts in harnessing the GPU powers for general-purpose

usages and special applications. It has greatly simplified

the GPU programming practices as well as embracing the

inherent data parallelism from GPU architectures. The

toolkit has significantly enhanced the performance of some

of the most common data and signal processing functions

such as fast fourier transform (FFT), Gaussian filtering, and

discrete wavelet transform (DWT) that are widely used in

applications such as face detection, DNA sequencing, and

more recently, machine learning systems such as convolu-

tional neural networks[4−6].

CUDA provides a scalable and integrated programming

model for allocating and organizing processing threads and

mapping them onto the computer hardware infrastructure

equipped with dynamical adaptation ability for all main-

stream GPU architectures[7]. In addition, CUDA has linked

and embedded a series of interfaces and APIs to assist direct

programming on GPUs instead of relying on various graph-

ics APIs (e.g., OpenGL) like in the so-called “GPGPU” era.

CUDA treats GPU as a standalone parallel computational

device that can realize data processing algorithms by using



182 International Journal of Automation and Computing 15(2), April 2018

C/C++-like programming routines and functions that are

familiar to mainstream programmers and researchers.

Previous related works on parallelizing processes and

data were mainly achieved through using a single GPU

that had witnessed a moderate performance gain across the

board. However, due to the limitation of data storage for-

mat and space (memory), as well as the fixed number of

data streams available on a single GPU, previous works are

often struggling to fulfill the real-time requirements from

many large scale computational applications, this is espe-

cially problematic for the latest deep learning applications

that often require to process data sets with tens of gigabytes

(GB) in size (e.g., ImageNet)[8−10], never mentioned the

online areal surface texture measurement tasks for process-

ing surface texture data engaging complex filtration with a

large number of numerical tolerance parameters (e.g., pro-

cessing a data set with multi-level DWT)[11, 12]. Thus, in

comparison, multi-GPUs based acceleration solutions can

be flexible to achieve higher performance with relatively low

hardware costs. Numerous computational-intensive issues

that cannot be resolved by using the single GPU model have

been making steady progress in the context of multi-GPUs,

e.g., multi-GPUs based FFT[13] and Gaussian filtering[14].

In the meantime, several multi-GPUs based programming

libraries (e.g., MGPU)[15] and MapReduce libraries (e.g.,

GPMR and HadoopCL)[16, 17] have been developed by re-

searchers in the field.

It is a challenging task to fully utilize the parallel

computational power of multiple and interconnected GPU

nodes[18], which is especially true for the heterogeneous

multi-GPU systems. Unbalanced load problem may cause

low computational performance. To solve this problem,

the load balancing models that can intelligently allocate

tasks to individual GPU node are becoming the key so-

lutions. Chen et al.[19] proposed a task-based DLB solu-

tion for multi-GPU systems that can achieve a near-linear

speedup with the increasing number of GPU nodes. Acosta

et al.[20] had developed a DLB functional library that aims

to balancing the load on each node. However, these pi-

lot studies are based according to the corresponding sys-

tem runtime performance on the assumption that all GPU

nodes equipped in a multi-GPU platform have equal com-

putational capacity. In addition, task-based load balanc-

ing schedulers that these approaches have relied upon often

fall short to support applications with huge data through-

puts but limited processing function(s) – there are very few

“tasks” to schedule, e.g., DWT. These applications need

more attention in refining the task partition in each compu-

tational iteration taking into account of the data locality[18] .

In terms of data parallelism based load balancing sched-

ulers, Acosta et al.[21] presented a DLB model that dynam-

ically balances the workload using information established

by the first iteration of the computation, which failed to re-

spond to the information changes during the later compu-

tational iterations. In contrast, the strategies developed by

Boyer et al. and Kaleem et al. collect system information

during the system runtime[18, 22, 23], so they can support

the dynamic load balancing scheduling demands according

to the real-time feedback, which consolidate the foundation

for this study.

To optimize the load balancing problem among multi-

GPU nodes for large scale applications with highly repet-

itive computational procedures or iterations, this paper

presents a novel DLB model based on fuzzy neural network

(FNN) and data set division techniques for heterogeneous

multi-GPU systems, and this study is extended from our

previous publication[24]. In this study, five real-time state

feedback parameters closely relating to the computational

performance of every GPU node are defined. They are ca-

pable of predicting the relative computational performance

of each GPU node during system runtime. Using the con-

structed FNN and the devised advanced data distribution

method, a large data set can be adaptively divided to en-

hance the overall utilization of all hidden computing powers

from a heterogeneous multi-GPU system.

The rest of this paper is organized as follows. Section

2 presents a brief review over the preliminaries and related

works in the field. Based on the literatures, the rationales of

this research are justified; The proposed FNN DLB model

for multi-GPUs is explored and its features are discussed in

Section 3. Section 4 constructs a case study that demon-

strates how to improve the computational performance of

the lifting scheme of DWT by using the devised model. Sec-

tion 5 provides the test results of the design and evaluations.

Finally, Section 6 concludes the research with future works.

2 Related studies

2.1 GPU architectures and process model

Modern GPUs are not only powerful graphics engines,

but also highly parallel arithmetic and programmable pro-

cessors. More significantly, in 2007, NVIDIA introduced

the Tesla architecture, which was the first unified graphics

and computing architecture. After that, NVIDIA released

series of GPU architectures, i.e., Fermi, Kepler, Maxwell,

Pascal, and most recently, the Volta architecture. All GPU

cards produced by NVIDIA in the last decade are based

on these architectures. In the point of view of the hard-

ware architectures, all these models are similar but with

incremental improvements on memory sizes and their ac-

cessibility, the overall processing powers, and number of

streaming multiprocessors (SM) that each contains multi-

ple stream processors (SP, also named CUDA cores) and

special-function units (SFU). Modern GPU architectures

are based on a scalable processor array formed by SPs that

provides a high performance parallel computing platform.

CUDA is a parallel programming framework that was

designed especially for general purpose computing, and it

greatly simplifies the GPU programming practices. CUDA

adopts a SPMD (single program, multiple data) program-

ming model and provides a sophisticated memory hierarchy



C. L. Zhang et al. / A Fuzzy Neural Network Based Dynamic Data Allocation Model on Heterogeneous Multi-GPUs for · · · 183

(i.e., register, local memory, shared memory, global mem-

ory, texture memory, constant memory, etc.). Hence, a

GPU can achieve high data parallel computation through

elaborately designed CUDA codes empowered by the effi-

cient usage of different memories according to the respective

data features, including access mode, size and format.

The computational capacity of a single GPU can some-

times satisfy the computational demands of numerous ap-

plications, for example in the conventional image filtering

and other transformation processes. However, it is still

falling short of processing some complex tasks engaging

massive data sets, for example in video indexing and visual

recognition, due to its limited memory space, instruction

length, and execution loops. One perceived solution is to

deal with large volume data sets in distributed processing

mode on multi-GPUs. At present, there are two represen-

tative categories of multi-GPU platforms, the standalone

computer type (a single CPU node with multiple GPU pro-

cessors), and the cluster type (multiple CPU nodes and each

accompanied by one or more GPU processors). In general,

the cluster computer systems require more complex com-

munication and data transmission due to their commonly

adopted peripheral component interconnect express (PCI-

E) architecture and network connections. Thus, the stan-

dalone computers have been chosen in this research.

2.2 Fuzzy neural network

Artificial neural network (ANN) is a branch of artifi-

cial intelligence (AI) that was first inspired by the “under-

standing” of how human brain works to process data and

summarizes patterns. In contrast with traditional meth-

ods that have to extract features from input data in a

rigid and almost mechanical manner, ANN based models

can automatically find features from training data, which

are called “learning from data”. One of successful appli-

cations relating to ANN is deep learning (DL) based on a

process model called deep neural network, e.g., Krizhevsky

presented the AlexNet to classify images in ILSVRC2012

(the ImageNet Large-scale Visual Recognition Challenge)

and achieved the winning performance with the test error

rate of 15.3%[8]. AlexNet is considered as the first success-

ful DL model. Later, in 2015, He et al.[25] presented a new

DL model, ResNet, that won the ILSVRC 2015 with an

incredible error rate of 3.6%.

Generally speaking, traditional fuzzy systems are built on

IF-THEN rules (i.e., fuzzy rules) which are acquired from

experimental knowledge of domain experts. Fuzzy systems

can solve complex decision-making issues when equipped

with abundant fuzzy rules[26]. Li et al.[27] designed a fuzzy

keyword search engine based on a fuzzy system for searching

encrypted data over cloud sources, and it solved the draw-

back of traditional techniques that struggled to match key-

words on cloud. Krinidis et al.[28] had improved the fuzzy

C-Means (FCM) algorithm and presented fuzzy local in-

formation C-Means (FLICM) algorithm based on fuzzy set

theory for image clustering. Compared with FCM, FLICM

is more effective and efficient, which provides robustness to

noisy images clustering.

Both fuzzy theory and ANN have been widely used in

decision-making applications. However, the main problem

of traditional fuzzy systems is that it is very difficult to find

experts who can extract and summarize knowledge from

their experiences, and extracted IF-THEN rules are usually

not objective, which means that traditional fuzzy models

are lacking of flexibility and robustness. Furthermore, the

ANN models are still inadequate in representing the expert

experiences. To solve these shortcomings, fuzzy neural net-

work was developed to combine the fuzzy rule based fuzzy

systems and ANNs. Thus, ANN models have been merged

into fuzzy systems to improve their efficiency and accuracy,

such that FNN was envisaged to be a promising model[29].

Kuo et al.[30] proposed a FNN based decision support sys-

tem of intelligent suppliers which is able to consider both

the quantitative and qualitative factors. Chen et al.[31] used

FNN to approximate unknown functions in stochastic sys-

tems, which not only reduced the online computation load,

but also achieved significant performance enhancement for

fuzzy control algorithm.

Fuzzy theory and ANN based load balancing approaches

have been widely used in traditional multi-CPU systems,

i.e., distribution systems, data centers, cloud computing

applications, etc. Saffar et al.[32] presented a fuzzy optimal

reconfiguration approach that combines fuzzy variables and

ant colony search method to balance the workloads on dis-

tribution systems. Susila et al.[33] developed a fuzzy based

firefly approach for dynamical load balancing purpose in

cloud computing systems. Toosi and Buyya[34] proposed a

fuzzy logic based DLB model for cost and energy efficient

purposes. These prior works have inspired the motivation of

adopting FNN for multi-GPU load balancing applications

investigated in this study.

In summary, based on the achievements of previous re-

lated works, it is anticipated as a feasible way to solve the

DLB issue by adopting the FNN model. This study explores

and implements a novel data-oriented load balancing model

by devising a FNN framework for large data sets with sim-

ple iterative tasks on heterogeneous multi-GPU systems.

2.3 Conventional multi-GPU strategies

Fig. 1 demonstrates a traditional load balancing model

based on the pure data set division method[2], where: 1)

A large raw data set is divided into n small chunks (sub-

sets) (n is equal to the number of GPU nodes in a targeted

multi-GPU system), and each data chunk is distributed to

a GPU node respectively; 2) Each GPU node processes the

corresponding subset; 3) The final results can be generated

after merging the outputs of each GPU node. This ap-

proach is very simple and useful, however, it is likely to

cause unbalanced load problem when the multi-GPU sys-

tem contains different types of GPU hardware with unequal

computational performance, known as heterogeneous multi-

GPU platforms. As a result, the overall performance of a



184 International Journal of Automation and Computing 15(2), April 2018

multi-GPU platform is restricted to the GPU node that has

the lowest computational capability due to delayed merging

process.

Fig. 1 A traditional load balancing model based on the pure

data division method

In a heterogeneous multi-GPU system, there are differ-

ent types of GPUs having unequal computational perfor-

mance, e.g., the multi-GPU workstation used in this study

has two GPU cards – a middle-low-end (NVIDIA GTX 750

Ti) and a high-end GPU (NVIDIA GTX 1080). As the tra-

ditional data division method is still struggling to support

heterogeneous multi-GPU systems, Acosta et al.[21] devel-

oped a DLB library (named ULL Calibrate lib) for hetero-

geneous systems aiming to solve the task allocation prob-

lem. ULL Calibrate lib can balance tasks dynamically to

adapt system conditions during execution. This approach

shows sound results for iterative operations, but has low

performance when dealing with applications of large data

throughputs with limited processing instructions – the too

few “tasks” problem for the scheduler. For example, in sur-

face metrology, metrologists often apply DWT functions to

extract the surface texture characteristics from large volume

of measured data[35]. Thus, in these cases, a data-oriented

load balancing model is more suitable than the task-focused

ones.

Boyer et al.[18] explored a data-oriented DLB approach

that supports GPU programs having a few kernels to pro-

cess large volume data set iteratively. The main idea of

Boyer′s work is to predict the potential computational per-

formance of each GPU node, and then divide the remain-

ing data set according to the execution time of each GPU

node for processing its previous assigned data set: 1) The

host function sends initial small data chunks respectively

for each GPU node and launches the corresponding ker-

nels of each GPU. Assuming there are two GPU nodes in a

multi-GPU system, a small data chunk is D, ti indicates the

processing time of the i-th GPU and Ci is the corresponding

potential performance of the i-th GPU, then

Ci =
D

ti
. (1)

2) The host function divides the remaining data for each

GPU node. Let W be the remaining data set to be sched-

uled and Wi indicates the data set for i-th GPU, then

W=
∑

i

Wi. (2)

In the balanced situation, all GPU nodes should finish

their computations at the same time satisfying the follow-

ing equation:

C1W1=C2W2. (3)

According to (1) and (3), Wi can be given as:

W1=
t1W2

t2
. (4)

One of the drawbacks of this load balancing model is that

it is disputable whether the initial execution time can ac-

curately predict the real computational ability of a GPU.

More specifically, a modern GPU card can have hundreds or

even thousands of CUDA cores, e.g., NVIDIA GTX 750 Ti

contains 640 cores, and NVIDIA GTX 1080 has 2560 cores.

As a result, a small data set may cause a low GPU utiliza-

tion rate, which causes the inaccurate performance predic-

tion. For instance, in this study, we tested and evaluated

the execution time for processing a small surface measure-

ment data set by using DWT on these two GPUs respec-

tively, experimental result shows that the processing time of

these two GPUs are almost the same because both of them

cannot fully use their hardware resources as there are not

enough data to process. In this case, the data allocated on

each GPU node will be of the same size by using (4), which

is not different from the pure data set division method (see

Fig. 1). In addition, these previous load balancing models

failed to respond to the fluctuation of computational per-

formance that is frequently occurred on multi-GPU systems

in the real world.

The proposed DLB model in this paper aims at predict-

ing the computational performance according to the real

hardware conditions rather than testing the processing time

with a small data set, such that it improves the accuracy of

performance prediction and supports real-time response to

the fluctuation of computational performance.

3 Load balancing on heterogeneous

multi-GPU systems

3.1 DLB idealism

To solve the unbalanced load problem and to respond

to the fluctuation of computational performance from a

heterogeneous multi-GPU system, this paper presents a

novel DLB model for optimizing the overall parallel com-

putational performance of large scale data computations

on multi-GPU systems while ensuring the good price-

performance ratio based on the FNN and dataset division

method. In this model, the original data set is divided into

several equal-sized data units and these data units are orga-

nized into n groups (n is equal to the number of GPU nodes

in a specific multi-GPU platform) by using the scheduler,

see Fig. 2. The number of data units assigned to each GPU



C. L. Zhang et al. / A Fuzzy Neural Network Based Dynamic Data Allocation Model on Heterogeneous Multi-GPUs for · · · 185

Fig. 2 The overall framework of the proposed data based DLB model

node is different, and it is determined by the real-time feed-

back (e.g., real-time computational performance and states

of each GPU node) of a single GPU node. Thus, the pur-

pose of data-oriented DLB model is to minimize the overall

processing time by dynamically adjusting the number of

data units in a group for each GPU node at runtime ac-

cording to real-time state feedback of each GPU node.

3.2 Model and workflow

To describe the relationship between the real-time state

feedback parameters and the number of data units assigned

in a group to be “pushed” to a node, this model defines the

relative computational ability CP n
i to represent the n-th

predication of real-time computational performance of i-th

GPU node, and the scheduler and CP n
i is defined as:

CP n
i = f(

Dunit

T unit
i

), CP n
i ∈ [0, 1], n = 0, 1, 2, · · · (5)

where Dunit is a data unit, T unit
i is a feedback parameter

denoting the actual processing time of Dunit by the i-th

GPU node, and f(x) is a normalization method.

In the ideal load balancing situation, all GPU nodes in

a multi-GPU system would finish their respective work at

the same time, this idea is the same as Boyer′s model (see

(3)), and it satisfies the following equation:

T1=T2= · · ·=Tm

⇒ T unit
1 × W1 = T unit

2 × W2 = · · ·=T unit
m × Wm (6)

where Ti is the total processing time of i-th GPU node in

a parallel computational task and Wi is the count of cur-

rent workload (i.e., the current number of data units) for

i-th GPU node. According to (5) and (6), the number of

data units can be calculated. Taking two GPU nodes as an

example, T1 = T2, then:

T unit
1 × W1 = T unit

2 × W2

⇒ W1 =
T unit

2 × W2

T unit
1

⇒ W1 =
CP2

n × W2

CP1
n . (7)

The same calculation method can be extended to multiple

GPU nodes by using (7). Based on (5)–(7), the complete

procedure for dynamically calculating the number of data

units for every GPU node in any multi-GPU platform dur-

ing runtime can be defined as: 1) This DLB model conducts

the initial prediction to get CP 0
i for every GPU node by us-

ing the FNN structure after acquiring the original data set

(see Figs. 2 and 3); 2) The scheduler calculates the num-

ber of data units for each data group according to CP 0
i

by using (7); 3) The multi-GPU platform begins the tar-

get parallel computational task when every GPU node gets

the corresponding data group organized by the scheduler,

and the FNN collects state feedback dynamically to prepare

the next predication under certain state; 4) Once a GPU

node has finished its data processing while others have not,

the model estimates the remaining time (T r
i ) for each GPU

node by using (8):

T r
i = T unit

i × (
Wi−Wi

′) (8)

where W ′
i is the finished workload of the i-th GPU node;

5) The data group reorganization is required when remain-

ing time of any GPU node exceeds the threshold preset by

this model, such that the next predication is required to

get CP 1
i ; 6) The scheduler reorganizes the remaining data

groups for all GPU nodes respectively according to CP 1
i ;

7) The steps 2)–6) maintain a complete iteration that will

be repeated until that all GPU nodes finish their workloads

at the same time or the remaining time for every GPU is

under the threshold (i.e., satisfying (6)).

According to (7), it is convenient to divide data units

and organize data groups for each GPU node when CP n
i

or T unit
i are given. Unfortunately, CP n

i or T unit
i can be

given only when the whole data processing task is finished.

Therefore, precise prediction of CP n
i is the key factor of the

devised model.

3.3 A FNN-driven mechanism

To predict CP n
i for each GPU node, this research has

explored in depth the fundamentals of fuzzy theory and de-

fined a 5-state feedback (the fuzzy sets) parameters namely:

the floating-point operations performance (F ), global mem-

ory size (M), parallel ability (P ), the occupancy rate of

computing resources of a GPU (UF ) and the occupancy



186 International Journal of Automation and Computing 15(2), April 2018

rate of global memory of a GPU (UM). Each fuzzy set

defines the “high” and “low” fuzzy subsets. Likewise, the

n-th relative computational ability CP n
i is also fuzzified as

“high” and “low”. All fuzzy sets and subsets are listed in

Table 1.

Table 1 Defined fuzzy sets and subsets

Sets Descriptions Fuzzy Descriptions of

subsets fuzzy subsets

F
The floating-point

operations

performance

FL Low

FH High

M Memory size
ML Low

MH High

P
Parallel ability (a

positive correlation

with the count of

processor cores of a

GPU node)

PL Low

PH High

UF
The occupancy rate

of computing

resources

UFL Low

UFH High

UM
The occupancy rate

of global memory

UML Low

UMH High

CP
The relative

computational

ability

CPL Low

CPH High

After defining the fuzzy subsets, this research has de-

signed a network structure of FNN that combines theories

of the fuzzy mathematics and the back propagation mech-

anism from ANN to predict CP n
i of each GPU node before

activating the scheduler to organize the data groups, see

Fig. 3. The first layer of the design is an input layer while

the second layer, third layer and fourth layer are considered

to be the fuzzy input layer, hidden layer and output layer

respectively in the classic structure of back propagation net-

works. This FNN structure has ten fuzzy truth values as

inputs and two fuzzy truth result values as outputs. The

final layer (i.e., fifth layer) decodes the fuzzy truth values

to the correct value which is the actual CP n
i of i-th GPU′s

and n-th predication. The devised FNN uses Ij
i to denote

the input of the i-th artificial neuron in the j-th level layer,

Oj
i to denote the output of the i-th artificial neuron in the

j-th level layer, wi to denote weights of connections between

the second and third layer, w′
i to denote weights of connec-

tions between the third and fourth layers, and w′′
i to denote

weights of connections between the fourth and fifth layers

(see Fig. 3). The workflows of the corresponding inputs and

outputs are illustrated in Fig. 3.

Input layer. The input layer collects real-time states of

a GPU node and generates values of the five state feedback

parameters (see Table 1) as inputs when a predication of

CP n
i is required. The input layer merely imports real-time

state feedback parameters into the FNN, and the input-

output formula shows as the following:

O1
i = I1

i = xi (9)

Fig. 3. The structure of FNN in the proposed data-oriented DLB model



C. L. Zhang et al. / A Fuzzy Neural Network Based Dynamic Data Allocation Model on Heterogeneous Multi-GPUs for · · · 187

where xi is corresponding to the values of F , M , P , UF

and UM in Table 1, respectively.

Fuzzy layer. The fuzzy layer transforms the correct val-

ues into fuzzy truth values by using a membership function.

The input and output formulas are illustrated as

I2
i = O1

i

O2
i = uA

(
I2

i

)
, O2

i ⊂ [0, 1] (10)

where uA(x) is the membership function[31]. There are a

lot of membership functions available, but this research

chose the sigmoid function because its “S” shaped curve

can gracefully reflect the fluctuations of computational per-

formance of GPU nodes[36]. The equation of sigmoid mem-

bership function is defined as

f(x) =
1

1 + e−a(x−c)
(11)

where a and c are constants having different values for dif-

ferent fuzzy subsets. Taking the occupancy rate of com-

puting resources of a GPU node (UF , and UF ∈ [0, 1]) as

an example, this model takes a = −15 and c = 0.5, and

a = 15 and c = 0.5 to transform a correct value of UF into

its fuzzy truth values of UFL and UFH respectively, so the

membership functions of UFL and UFH can be defined as

⎧
⎪⎨

⎪⎩

UFL : uUF L (UF ) =
1

1 + e15×(UF−0.5)

UFH : uUF H(UF ) =
1

1 + e−15×(UF−0.5)
.

(12)

According to (12), for instance, when a GPU′s UF = 0.6,

the membership value of UFL is 0.18, and the membership

value of UFH is 0.82, see Fig. 4.

Fig. 4. Membership Functions of UFL and UFH

Hidden layer. In principle, the more the hidden lay-

ers, the more complex functions can be fitted. However, it

also may cause the disadvantages of a mass of computation

and overfitting. Generally speaking, a single hidden layer

can meet majority requirements for prediction purposes[36].

Thus, this load balancing model has only one hidden layer.

The input and output formulas are defined as

I3
i =

n∑

j=1

wiO
2
j − θi

O3
i = ϕ(I3

i ) (13)

where O2
j (n=10) denotes outputs of 10 artificial neurons

on the 2nd level layer, and θi is a threshold value while

ϕ(x) is the activation function used by the artificial neu-

rons. This research has chosen a sigmoid function as the

activation function:

ϕ(x) =
1

1 + e−ax
. (14)

Output layer. The output layer generates fuzzy truth

values of the “high” and “low” fuzzy subsets of CP n
i . The

input and output formulas are defined as

I4
i =

m∑

j=1

wj
′O3

j − θ′
i

O4
i = ϕ

(
I4

i

)
(15)

where m is the number of artificial neurons on the hidden

layer (i.e., the 3rd level layer), θ′
i is a threshold value while

the definition of ϕ(x) is the same as (14).

Decode layer. The decode layer is added in this net-

work to transform the fuzzy truth values of the CPL and

CPH into the correct value of CP n
i by using the fuzzy

weighted average method. The input and output formulas

are defined as

I5=
2∑

i

wi

′′
O4

i

CPi = O5 =
I5

2∑
i=1

O4
i

. (16)

Based on the FNN structure illustrated in Fig. 3, the pro-

posed load balancing model can be learned by training data

using the back propagation algorithm that are collected

from historical data of real-time state feedback (e.g., data

processing time and a GPU states at some point). After

the model is trained, it can be used to predict CP n
i , and

then the scheduler can organize the data groups dynami-

cally according to (7).

4 A case study

This data-oriented DLB model supports a wide variety

of large scale data computations. This research explores

the LWT (lifting wavelet transform) computation for huge

metrological data sets of surface textures as a case study to

evaluate the validity and efficiency of the proposed model.

Rooted in DWT, which is one of the fundamental algo-

rithms for filtration widely used in surface metrology, sig-

nal and image processing, biomedicine visualization, and

machine vision, LWT aims to improve the computational

efficiency through a lifting scheme, also referred as the sec-

ond generation wavelet[37].



188 International Journal of Automation and Computing 15(2), April 2018

The 1D forward LWT contains four operation steps:

split, predict, update and scale[37] .

Split. This step splits the original signal into two sub-

sets of coefficients, i.e., even and odd, and the former one

is corresponding to the even index values while the latter is

corresponding to the odd index values. The split method

is expressed as (17), and it is also called the lazy wavelet

transform. {
even[i] = X[2i]

odd[i] = X[2i+1].
(17)

Predict. The odd coefficients can be predicted from the

even by using prediction operator P , and then the old odd

values are replaced by the prediction result as the next new

odd coefficients recursively. This step can be expressed as

(18).

odd = odd − P (even). (18)

Update. Likewise, even coefficients can be updated

from the update operator U , and then the old even values

are replaced by the updated result as the next new even

coefficients recursively. This step shows as (19).

even = even + U(odd). (19)

Scale. Normalize even and odd coefficients with factor

K respectively by using (20) to get the results of evenApp

and oddDet, which are the final approximation coefficients

and detail coefficients of forward LWT respectively.

{
evenApp = even × (1/K)

oddDet = odd × K
(20)

Table 2 The single-level forward LWT based on CDF 9/7

wavelet

Split

⎧
⎨

⎩
even[i] = X[2i]

odd[i] = X[2i + 1]

1st predict odd[i]− = −α × (even[i] + even[i + 1])

1st update even[i]− = −β × (odd[i] + odd[i − 1])

2nd predict odd[i]− = −γ × (even[i] + even[i + 1])

2nd update even[i]− = −δ × (odd[i] + odd[i − 1])

Scale

⎧
⎨

⎩
even = even × ε

odd = odd × (1/ε)

The inverse LWT with a lifting scheme is achieved by

inverting the complete sequence of operation steps of for-

ward LWT and switching the corresponding addition and

subtraction operators. With the lifting scheme, the com-

putational results of both forward and inverse LWT for

arbitrary wavelet can be obtained through applying sev-

eral steps of prediction and update operations and the final

normalization with factor K, where Pi and Ui represent

the i-th prediction and update coefficients respectively (see

Fig. 5). For a multi-level DWT, the computational process

is repeatedly applied to the approximation coefficients until

a desired number of decomposition levels are reached.

Fig. 5 Main computational procedure of single-level 1D forward

LWT

In the case of a 2D DWT, it simply needs to perform

the horizontal 1D LWT for each row of a 2D input data set

and the vertical 1D LWT for each corresponding column

in sequence separately because a 2D LWT can be realized

through the 1D wavelet transform along its x-axis and y-

axis, such that we can obtain the 2D LWT results: cA, cH ,

cV and cD; cA is approximation coefficients while cH , cV

and cD indicate detail coefficients along horizontal, vertical

and diagonal orientations respectively. Fig. 6 illustrates the

main computational procedure of a multi-level 2D forward

LWT.

Fig. 6 Main computational procedure of multi-level 2D forward

LWT

Lifting scheme supports variety types of wavelets, and in

this case, the research has adopted the CDF 9/7 (Cohen-

Daubechies-Feauveau 9/7) wavelet as an example. Table 2

illustrates equations for a single level forward LWT based

on the CDF 9/7 wavelet, and its scheduling software routine

on a GPU is illustrated in Algorithm 1. The basic idea is

that every step of the lifting scheme is performed by differ-

ent functions, and the CPU program schedules and launches

these functions with respect to all data dependencies.

In the context of CUDA and multi-GPU architectures,

the overall workflow of LWT computation by using the de-

vised DLB model conforms to Fig. 2, and the scheduler al-



C. L. Zhang et al. / A Fuzzy Neural Network Based Dynamic Data Allocation Model on Heterogeneous Multi-GPUs for · · · 189

locates initial data groups of a raw data set to each GPU

node, and then GPU nodes process the corresponding data

groups with the LWT functions listed in Algorithm 1.

Algorithm 1. The scheduling software routine on a

GPU node

void |wt(raw[][]){
// Allocating GPU memory

// Transfer data to the global memory of a GPU

cudaMemcpy(d raw, raw, size,

cudaMemcpyHostToDevice);

// Split data on GPU

gpu split(d even, d odd, d raw);

gpu lwt predict(d even, d odd, [−alpha, − alpha]);

//1st predict

gpu lwt update(d even, d odd, [−beta, − beta]);

//1st update

gpu lwt predict(d even, d odd, [−gamma, − gamma]);

//2ndpredict

gpu lwt update(d even, d odd, [−deta, − deta]);

//2nd update

gpu scale(d even, d odd, phi);

//Scale

// Transfer the LWT result from the global memory

of a GPU

// to CPU memory

cudaMemcpy(evenApp, deven, size, deviceToHost);

cudaMemcpy(oddDet, dodd, size, deviceToHost

);

}

5 Test and performance evaluation

5.1 Hardware and test environment

This section analyses the tests and evaluation results of

the developed data-oriented DLB model. Table 3 speci-

fies the computer system constructed for the tests which

contains two different types of GPU nodes – a middle-low

range GPU (NVIDIA GTX 750 Ti) and a high-end GPU

(NVIDIA GTX 1080). The proposed model and LWT are

realized by using CUDA C/C++ and CUDA Toolkit 8.

Table 3 The specifications of a computer system for the case

study

System Description

CPU Intel Core i7-4790 3.6GHZ

GPU1 GeForce GTX 750 Ti, 2G

GPU2 GeForce GTX 1080, 8G

OS Windows 10 64 bit

CUDA Version 8.0

5.2 FNN training

The FNN can be trained end-to-end by the back propa-

gation and the stochastic gradient descent (SGD) methods.

Since there are limited open benchmarks or datasets for

multi-GPUs based load balancing models, this study has

devised a customizable dataset containing 5-state feedback

parameters (see Table 1), the processing data size D and

the corresponding actual processing time T . The relative

computational ability CP can be given by (21):

CP = f(
D

T
). (21)

We randomly initialized the weights for all layers (four lay-

ers) from a zero-mean Gaussian distribution algorithm, and

trained the FNN in two steps to complete the supervised

pre-training and fine-tuning. The first step trained the FNN

on 300 data items with the SGD on a learning rate of 0.01.

The fine-tuning step then continued the SGD on the learn-

ing rate of 0.001 with 200 data items. With this two-step

training strategy, the FNN based DLB model has achieved

a reliable prediction performance. The comprehensive eval-

uation of the devised DLB model is further discussed in the

following subsections.

5.3 Computation without the DLB model

This section reports test results and evaluates the compu-

tational performance of multi-level 2D LWT without apply-

ing any DLB models on both single GPU and multi-GPU

platforms.

To begin with, this study tested and compared the pro-

cessing time of a 2D LWT between a single GPU (using

either GPU1 or GPU2 respectively) and two GPUs (using

both GPU1 and GPU2) environment without employing

any DLB models but the traditional division method to di-

vide the data set for each GPU (see Section 2.3). This test

performed 4 levels of forward 2D LWT with CDF (9, 7)

wavelet on three data sizes 10 240× 10 240, 11 264× 11 264,

to 12 288 × 12 288. The processing time of each test on

three different data sizes had been recorded in Fig. 7. It

can be seen from Fig. 7 that the GPU2 setting needs less

processing time than the GPU1 setting, and the main rea-

son for this is that the hardware performance of GPU2 is

higher than GPU1 – the GPU2 has 2 560 CUDA cores while

GPU1 contains only 640 CUDA cores, and the memory stor-

age of GPU2 is also larger than GPU1. According to Fig. 7,

the two GPUs (GPU1 & GPU2) setting merely gains lim-

ited speedup of about 1.6 times compared with GPU1, and

at around 1.3 times compared with GPU2. The detailed

processing times for different data sizes by using the two

GPUs setting are shown in Table 4 which also indicates the

processing time of GPU1 and GPU2 respectively. It can be

clearly seen from Table 4 that the overall processing time of

the two GPUs setting in the context of the unbalanced load

situation is equal to the GPU1-alone situation because the

overall computational performance of a multi-GPU plat-

form is ultimately determined by the GPU node with the

lowest performance, in this case, the GPU1.



190 International Journal of Automation and Computing 15(2), April 2018

Table 4 The processing times of two GPUs setting with

unbalanced implementations (ms)

Data size GPU1 GPU2 Overall

10 240 × 10 240 2 758 1 500 2 758

11 264 × 11 264 3 876 2 806 3 876

12 288 × 12 288 4 500 3 645 4 500

Fig. 7. The computational performance of three test settings

5.4 Computation with the DLB model

Then, this study has tested and compared the compu-

tational performance of the 2D LWT operation between

the unbalanced implementation (i.e., each GPU node pro-

cesses one half of a large data set without consideration

of its performance variations) and the data-oriented DLB

implementation by using the FNN structure in the target

multi-GPU system. The processing time of each implemen-

tation with different data sizes have been listed in Fig. 8.

The processing time of two single GPU settings (i.e., using

GPU1 only and GPU2 respectively) where also recorded

for comparison. It can be seen from Fig. 8 that the com-

putational performance of the unbalanced implementation

has no significant difference comparing with the two single

GPU settings. In contrast, the FNN based DLB implemen-

tation has gained improvement on computational perfor-

mances steadily, i.e., it processed a very large data set (e.g.,

16 384 × 16 384) in less than one second. Compared with

the unbalanced implementation, the peak performance gain

(speedup) can reach 12 times which is truly significant. The

experimental results show that the proposed data-oriented

DLB model can satisfy performance requirements for real-

time and large-scale data intensive applications.

5.5 Benchmarking

Lastly, this study carried out a benchmarking test. There

are several data oriented DLB models on multi-GPUs, and

the Boyer′s model mentioned in Section 2.3 is still consid-

ered as the most significant and mainstream strategy for

data based DLB according to the latest review papers[22, 38],

so the computational performance of the FNN based data-

oriented DLB model has been compared with the represen-

tative DLB model by Boyer et al.[18] In order to simulate the

node performance fluctuations, tasks were assigned to the

GPU nodes randomly. The experiment results are shown in

Fig. 9 where “stabilization” indicates the steady conditions

and “fluctuation” represents the fluctuating conditions. It

can be seen from Fig. 9 that both the devised model and

Boyer′s model can keep the load (i.e., data allocations) in

the balanced situations, and have consistent computational

performance when the hardware performance of a multi-

GPU platform can keep stable. However, once the hardware

performance is perturbed, Boyer′s model struggles to keep

up the performance and the processing time increases dra-

matically (e.g., 12 288 × 12 288 in Fig. 9). In contrast, the

FNN based DLB model can resolve the fluctuation prob-

lem readily and steadily due to its key feature of predict-

ing and adjusting the current computational performance

(CP n
i ) dynamically according to the real hardware condi-

tion and feedback.

Fig. 8 Comparison of processing times between unbalanced and

balancing implementations

6 Conclusions and future work

To fully utilize the parallel computational power of mod-

ern GPUs, this paper presents a novel data-oriented DLB

model for multi-GPU systems based on an innovative FNN

structure and the corresponding dataset division methods.

The research started with a comprehensive investigation

and analysis of the traditional load balancing models, and

concluded with the main drawbacks of them, e.g., the rigid-

ity when dealing with heterogeneous node specifications and

configurations. To alleviate the load balancing issues and

to effectively respond to the runtime fluctuation of clus-

ter performance, this research has proposed a novel data-

oriented DLB model for balancing and optimizing the over-

all parallel computational performance across multi-GPU

nodes. In this model, five state feedback parameters have

been identified, and the FNN structure has been imple-

mented to predict the relative computational performance

in an adaptive manner. An improved scheduler can then be

activated to automate the data allocation tasks according

to the relative computational performance across all nodes



C. L. Zhang et al. / A Fuzzy Neural Network Based Dynamic Data Allocation Model on Heterogeneous Multi-GPUs for · · · 191

in a cluster. Experiment results show that the proposed

model can achieve substantial computational performance

gain when compared with conventional techniques, and the

FNN based dynamic model can address the runtime fluctu-

ation issues effectively. The innovative model and its cor-

responding techniques have addressed the key challenges

from large scale computational applications that are often

featured by extremely large input volume and highly repet-

itive operational procedures. Further work will be focused

on bridging the flexible FNN idealism across the GPU and

CPU boundary, especially when facing the new computing

device paradigm of cell CPUs, so as to progressing towards

a truly hybrid and efficient task-data distribution scheme

for engineering applications.

Fig. 9 Comparison of processing time between FNN based DLB

model and the Boyer′s model

References

[1] D. B. Kirk, W. W. Hwu. Programming Massively Paral-
lel Processors: A Hands-on Approach, 3rd ed, New York,
USA: Morgan Kaufmann, 2016.

[2] R. Couturier. Designing Scientific Applications on GPUs,
Boca Raton, USA: CRC Press, 2013.

[3] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland,
D. Glasco. GPUs and the future of parallel comput-
ing. IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011. DOI:
10.1109/MM.2011.89.

[4] C. W. Lee, J. Ko, T. Y. Choe. Two-way partitioning of a
recursive Gaussian filter in CUDA. EURASIP Journal on
Image and Video Processing, vol. 2014, no. 1, Article num-
ber 33, 2014. DOI: 10.1186/1687-5281-2014-33.

[5] J. A. Belloch, A. Gonzalez, F. J. Mart́ınez-Zald́ıvar, A.
M. Vidal. Real-time massive convolution for audio appli-
cations on GPU. The Journal of Supercomputing, vol. 58,
no. 3, pp. 449–457, 2011. DOI: 10.1007/s11227-011-0610.

[6] F. Nasse, C. Thurau, G. A. Fink. Face detection using
GPU-based convolutional neural networks. In Proceedings
of the 13th International Conference on Computer Analy-
sis of Images and Patterns, Münster, Germany, pp. 83–90,
2009. DOI: 10.1007/978-3-642-03767-2 10.

[7] NVIDIA. CUDA C Programming Guide v8.0. [On-
line], Available: http://docs.nvidia.com cuda/cuda-c-
programming-guide/index.htm, 2017.

[8] A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classi-
fication with deep convolutional neural networks. Commu-
nications of the ACM, vol. 60, no. 6, pp. 84–90, 2017. DOI:
10.1145/3065386.

[9] C. Szegedy, W. Liu, Y. Q. Jia, P. Sermanet, S. Reed, D.
Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich. Going
deeper with convolutions. In Proceedings of IEEE Confer-
ence on Computer Vision and Pattern Recognition, IEEE,
Boston, USA, 2015. DOI: 10.1109/CVPR.2015.7298594.

[10] E. Guerra, J. De Lara, A. Malizia, P. Dı́az. Supporting
user-oriented analysis for multi-view domain-specific visual
languages. Information and Software Technology, vol. 51,
no. 4, pp. 769–784, 2009. DOI: 10.1016/j.infsof.2008.09.005.

[11] X. J. Jiang, D. J. Whitehouse. Technological shifts in sur-
face metrology. CIRP Annals, vol. 61, no. 2, pp. 815–836,
2012. DOI: 10.1016/j.cirp.2012.05.009.

[12] J. J. Wang, W. L. Lu, X. J. Liu, X. Q. Jiang. High-
speed parallel wavelet algorithm based on CUDA and its
application in three-dimensional surface texture analysis.
In Proceedings of International Conference on Electric In-
formation and Control Engineering, IEEE, Wuhan, China,
pp. 2249–2252, 2011. DOI: 10.1109/ICEICE.2011.5778225.

[13] S. Chen, X. M. Li. A hybrid GPU/CPU FFT library
for large FFT problems. In Proceedings of the 32nd
International Performance Computing and Communica-
tions Conference, IEEE, San Diego, USA, 2013. DOI:
10.1109/PCCC.2013.6742796.

[14] C. L. Zhang, Y. P. Xu, J. He, J. Lu, L. Lu, Z. J. Xu.
Multi-GPUs Gaussian filtering for real-time big data pro-
cessing. In Proceedings of the 10th International Con-
ference on Software, Knowledge, Information Manage-
ment & Applications, IEEE, Chengdu, China, 2016. DOI:
10.1109/SKIMA.2016.7916225.

[15] S. Schaetz, M. Uecker. A multi-GPU programming library
for real-time applications. In Proceedings of the 12th In-
ternational Conference on Algorithms and Architectures
for Parallel Processing, Fukuoka, Japan, pp. 231–236, 2012.
DOI: 10.1007/978-3-642-33078-0 9.

[16] J. A. Stuart, J. D. Owens. Multi-GPU MapReduce on GPU
clusters. In Proceedings of 2011 IEEE International Paral-
lel & Distributed Processing Symposium, IEEE, Anchorage,
USA, pp. 1068–1079, 2011. DOI: 10.1109/IPDPS.2011.102.

[17] M. Grossman, M. Breternitz, V. Sarkar. HadoopCL:
MapReduce on distributed heterogeneous platforms
through seamless integration of Hadoop and OpenCL.
In Proceedings of the 27th Parallel and Distributed
Processing Symposium Workshops & PhD Forum,
IEEE, Cambridge, MA, USA, pp. 1918–1927, 2013. DOI:
10.1109/IPDPSW.2013.246.

[18] M. Boyer, K. Skadron, S. Che, N. Jayasena. Load balanc-
ing in a changing world: Dealing with heterogeneity and
performance variability. In Proceedings of ACM Interna-
tional Conference on Computing Frontiers, Ischia, Italy,
2013. DOI: 10.1145/2482767.2482794.



192 International Journal of Automation and Computing 15(2), April 2018

[19] L. Chen, O. Villa, S. Krishnamoorthy, G. R. Gao. Dynamic
load balancing on single- and multi-GPU systems. In Pro-
ceedings of IEEE International Symposium on Parallel &
Distributed Processing, IEEE, Atlanta, USA, 2010. DOI:
10.1109/IPDPS.2010.5470413.

[20] A. Acosta, R. Corujo, V. Blanco, F. Almeida. Dynamic load
balancing on heterogeneous multicore/multiGPU systems.
In Proceedings of International Conference on High Per-
formance Computing and Simulation, IEEE, Caen, France,
pp. 467–476, 2010. DOI: 10.1109/HPCS.2010.5547097.

[21] A. Acosta, V. Blanco, F. Almeida. Towards the dy-
namic load balancing on heterogeneous multi-GPU sys-
tems. In Proceedings of the 10th IEEE International Sym-
posium on Parallel and Distributed Processing with Ap-
plications, IEEE, Leganes, Spain, pp. 646–653, 2012. DOI:
10.1109/ISPA.2012.96.

[22] B. Pérez, E. Stafford, J. L. Bosque, R. Beivide. Energy
efficiency of load balancing for data-parallel applications
in heterogeneous systems. The Journal of Supercomputing,
vol. 73, no. 1, pp. 330–342, 2017. DOI: 10.1007/s11227-016-
1864-y.

[23] R. Kaleem, R. Barik, T. Shpeisman, C. L. Hu, B. T.
Lewis, K. Pingali. Adaptive heterogeneous scheduling for
integrated GPUs. In Proceedings of the 23rd International
Conference on Parallel Architecture and Compilation Tech-
niques, IEEE, Edmonton, Canada, pp. 151–162, 2014. DOI:
10.1145/2628071.2628088.

[24] C. L. Zhang, Y. P. Xu, J. L. Zhou, Z. J. Xu, L. Lu, J. Lu.
Dynamic load balancing on multi-GPUs system for big data
processing. In Proceedings of the 23rd International Confer-
ence on Automation and Computing, IEEE, Huddersfield,
UK, 2017. DOI: 10.23919/IConAC.2017.8082085.

[25] K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep resid-
ual learning for image recognition. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recogni-
tion, IEEE, Las Vegas, USA, pp. 770–778, 2016. DOI:
10.1109/CVPR.2016.90.

[26] H. Zermane, H. Mouss. Development of an internet and
fuzzy based control system of manufacturing process. In-
ternational Journal of Automation and Computing, vol. 14,
no. 6, pp. 706–718, 2017. DOI: 10.1007/s11633-016-1027-x.

[27] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, W. J. Lou. Fuzzy
keyword search over encrypted data in cloud computing. In
Proceedings of IEEE Conference on Computer Communi-
cations, IEEE, San Diego, CA, USA, pp. 1–5, 2010. DOI:
10.1109/INFCOM.2010.5462196.

[28] S. Krinidis, V. Chatzis. A robust fuzzy local information
C-means clustering algorithm. IEEE Transactions on Im-
age Processing, vol. 19, no. 5, pp. 1328–1337, 2010. DOI:
10.1109/TIP.2010.2040763.

[29] M. Algabri, H. Mathkour, H. Ramdane. Mobile robot nav-
igation and obstacle-avoidance using ANFIS in unknown
environment. International Journal of Computer Applica-
tions, vol. 91, no. 14, pp. 36–41, 2014. DOI: 10.5120/15952-
5400.

[30] R. J. Kuo, S. Y. Hong, Y. C. Huang. Integration of particle
swarm optimization-based fuzzy neural network and artifi-
cial neural network for supplier selection. Applied Math-
ematical Modelling, vol. 34, no. 12, pp. 3976–3990, 2010.
DOI: 10.1016/j.apm.2010.03.033.

[31] C. L. P. Chen, Y. J. Liu, G. X. Wen. Fuzzy neural
network-based adaptive control for a class of uncertain non-
linear stochastic systems. IEEE Transactions on Cyber-
netics, vol. 44, no. 5, pp. 583–593, 2014. DOI: 10.1109/T-
CYB.2013.2262935.

[32] A. Saffar, R. Hooshmand, A. Khodabakhshian. A new fuzzy
optimal reconfiguration of distribution systems for loss re-
duction and load balancing using ant colony search-based
algorithm. Applied Soft Computing, vol. 11, no. 5, pp. 4021–
4028, 2011. DOI: 10.1016/j.asoc.2011.03.003.

[33] N. Susila, S. Chandramathi, R. Kishore. A fuzzy-based
firefly algorithm for dynamic load balancing in cloud
computing environment. Journal of Emerging Technolo-
gies in Web Intelligence, vol. 6, no. 4, pp. 435–440, 2014.
DOI:10.4304/jetwi.6.4.435-440

[34] A. N. Toosi, R. Buyya. A fuzzy logic-based controller for
cost and energy efficient load balancing in geo-distributed
data centers. In Proceedings of the 8th IEEE/ACM In-
ternational Conference on Utility and Cloud Comput-
ing, IEEE, Limassol, Cyprus, pp. 186–194, 2015. DOI:
10.1109/UCC.2015.35.

[35] H. Muhamedsalih, X. Jiang, F. Gao. Accelerated sur-
face measurement using wavelength scanning interferometer
with compensation of environmental noise. Procedia CIRP,
vol. 10, pp. 70–76, 2013. DOI: 10.1016/j.procir.2013.08.014.

[36] S. H. Lee, J. S. Lim. Forecasting KOSPI based on a neural
network with weighted fuzzy membership functions. Expert
Systems with Applications, vol. 38, no. 4, pp. 4259–4263,
2011. DOI: 10.1016/j.eswa.2010.09.093.

[37] W. Sweldens. The lifting scheme: A construction of
second generation wavelets. SIAM Journal on Mathe-
matical Analysis, vol. 29, no. 2, pp. 511–546, 1998. DOI:
10.1137/S0036141095289051.

[38] S. Mittal, J. S. Vetter. A survey of CPU-GPU het-
erogeneous computing techniques. ACM Computing Sur-
veys, vol. 47, no. 4, Article number 69, 2015. DOI:
10.1145/2788396.

Chao-Long Zhang received the B.Eng.
and M. Sc. degrees in software engineer-
ing from Chengdu University of Informa-
tion Technology, China in 2014 and 2017,
respectively. He is currently a Ph. D. de-
gree candidate with School of Computing
and Engineering, University of Hudders-
field, UK.

His research interests include high-
performance computing (HPC), computer vision, and deep learn-
ing network applications.

E-mail: chaolong.zhang@hud.ac.uk
ORCID iD: 0000-0003-4990-4636



C. L. Zhang et al. / A Fuzzy Neural Network Based Dynamic Data Allocation Model on Heterogeneous Multi-GPUs for · · · 193

Yuan-Ping Xu received the B.Eng. de-
gree in computer science and technology
from Southwest Jiaotong University, China
in 2003, and M. Sc. and Ph. D. degrees
in software engineering from University of
Huddersfield, UK in 2004 and 2009, respec-
tively. From February 2009 to November
2010, he worked as a research fellow in
the Centre of Precision Technologies, Uni-

versity of Huddersfield, UK. He is currently a professor with
School of Software Engineering, Chengdu University of Infor-
mation Technology, China.

His research interests include knowledge-based systems, ex-
pert systems, big data analysis and deep learning network appli-
cations.

E-mail: ypxu@cuit.edu.cn (Corresponding author)
ORCID iD: 0000-0002-4536-6220

Zhi-Jie Xu received the B.Eng. de-
gree in communication engineering from the
Xi′an University of Science and Technology,
China in 1991. After graduation, he first
started as an electronics engineer before
moving to the United Kingdom and worked
as a research scientist in the Robotics Lab
at the University of Derby. He received the
Ph.D. degree in 2000 from the University of

Derby based on his research work in virtual reality-based manu-
facturing simulation and robotics systems. He has been employed
as a full time academic member of staff since April 1999 serving
the roles of lecturer, senior lecturer, reader and professor respec-
tively at the University of Huddersfield in UK. He has published
over one hundred peer-reviewed journal and conference papers
as well as edited 5 books in the relevant fields. He has success-
fully supervised 8 Ph. D. students to completion while securing
substantial research and industrial grants. He is a member of the
IEEE, IET, BCS, and a fellow of HEA, and editors for multiple
prestigious academic journals and conferences. He is the current
President of the Chinese Automation and Computing Society in
the United Kingdom.

His research interests include visualization, HCI, vision sys-
tems, and machine learning.

E-mail: z.xu@hud.ac.uk

Jia He received B. Eng. and M. sc. de-
grees in computer science and technol-
ogy from Southwest Normal University of
China, China in 1989 and 1996, respec-
tively, and received Ph.D. degree in com-
puter science from University of Electronic
Science and Technology of China, China
in 2012. She is currently a professor and
the Dean with School of Computer Science,

Chengdu University of Information Technology, China.
Her research interests include computer vision, artificial intel-

ligence, and pattern recognition.
E-mail: hejia@cuit.edu.cn

Jing Wang received the Ph. D. degree
from University of Huddersfield, UK in
2012. He worked as a research fellow
and carried out independent research work
on image processing, analysing and under-
standing in University of Huddersfield, UK
before 2017. He is now working at Sheffield
Hallam University as a lecturer in software
engineering and computer science.

His research interest is real-world applications of computer
vision systems.

E-mail: jing.wang@shu.ac.uk

Jian-Hua Adu received B. Sc. degree in
applied physics from Minzu University of
China, China in 1999, received M. Sc. de-
gree in computer science from Shandong
University, China in 2006, and received
Ph. D. degree in computer science from
Sichuan University, China in 2012. He is
currently an associate professor with School
of Software Engineering, Chengdu Univer-

sity of Information Technology, China.
His research interests include image fusion and segmentation,

medical image processing and analysis, and pattern recognition.
E-mail: adujh@126.com


