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Abstract: A robust approach to elaborately reconstruct the indoor scene with a consumer depth camera is proposed in this paper. In

order to ensure the accuracy and completeness of 3D scene model reconstructed from a freely moving camera, this paper proposes new

3D reconstruction methods, as follows: 1) Depth images are processed with a depth adaptive bilateral filter to effectively improve the

image quality; 2) A local-to-global registration with the content-based segmentation is performed, which is more reliable and robust to

reduce the visual odometry drifts and registration errors; 3) An adaptive weighted volumetric method is used to fuse the registered data

into a global model with sufficient geometrical details. Experimental results demonstrate that our approach increases the robustness

and accuracy of the geometric models which were reconstructed from a consumer-grade depth camera.
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integration.

1 Introduction

Reconstructing the real world scenes is known as a partic-

ularly challenging problem in computer vision field. Many

tools have been applied to perceive accurate 3D world, in-

cluding stereo cameras, laser range finders, monocular cam-

eras, and depth cameras.

The emergence of consumer depth cameras, in particular

the Microsoft Kinect, provides an opportunity to develop

reconstruction systems conveniently. Izadi et al.[1, 2] intro-

duced the Kinect-fusion algorithm which used a volumetric

representation of the scene, known as the truncated signed

distance function (TSDF)[3], in conjunction with fast itera-

tive closest point (ICP)[4] pose estimation to provide a real-

time fused dense model of the scene. Kinect-fusion works

according to fixed grid spaces and the algorithm has no loop

closure detection or global optimization. Therefore, it has

good effectiveness only for local small scenes.

When we reconstruct complete and high-quality real

world scenes with consumer-grade depth cameras, the prin-

cipal problems are serious sensor noise and accumulated

visual odometry errors which may result in distortions in

the reconstructed 3D models. For the past few years, re-

searchers have explored a number of approaches to address

these issues.

Some systems achieved high accuracy localization by

combining the depth data with red green blue (RGB)

images[5−7] or an inertial measurement unit (IMU)[8−10].
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But most depth cameras are not accompanied by color cam-

eras. Even if the color camera is present, their view points

are different and their shutter may not be perfectly syn-

chronized. Besides, a consumer-grade IMU also suffers from

sensor noise and is subject to large drifts over time.

Other systems tried to detect loop closures more explic-

itly and distributed the accumulated error across the pose

graphs[11−13]. Choi et al.[11] have demonstrated impres-

sive globally optimized 3D surface models, which extended

the frame-to-model incremental tracking and reconstruction

technique utilized in Kinect-fusion. The key idea of Choi′s
algorithm is to combine geometric registration of scene frag-

ments with a robust global optimization based on line pro-

cesses. However, this algorithm also suffers from failure in

geometric registration in part derived from a uniform seg-

mentation strategy.

In this paper, we present an elaborate and robust scene

reconstruction method, which can be applied to real-world

scenes and has high reconstruction quality. The main con-

tributions of our work contain three aspects: First, in order

to increase the accuracy of 3D model, we smooth the depth

images by a depth adaptive bilateral filter according to the

depth camera′s noise model. Second, to reduce the visual

odometry drift and improve the geometric registration accu-

racy, we propose a content-based segmentation to partition

the depth image sequence into fragments, and perform geo-

metric registration from local to global. Third, we fuse the

data with an adaptive weighting TSDF by which the details

of areas with high accuracy and regions of interest (ROI)

can be preserved.

This paper is structured as follows. Section 2 discusses

the related work of indoor scene 3D reconstruction while
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Section 3 describes the pipeline of our 3D reconstruction

system. The details of the proposed method are presented

in Section 4. Section 5 presents experiment results and dis-

cussions while Section 6 presents some concluding remarks.

2 Related work

Many algorithms are designed for depth image augmenta-

tion, complete scene processing, and volumetric integration.

Now we briefly discuss the related work and further state

the detailed motivations of our methods.

The raw depth images obtained from commercially avail-

able depth cameras are easy to use, but are affected

by significant amounts of noise. Researchers have made

lots of analysis for the accuracy and resolution of depth

data[14−18]. A commonly used modification is the bilateral

filter[19] which modifies the weighting to account for varia-

tion of intensity thereby effectively carrying out a robust

smoothing operation. But the bilateral filter applied to

depth images implicitly assumes that depth values have uni-

form uncertainty. Xiao et al.[20] improved the depth map by

using TSDF to voxelize the space, accumulating the depth

map from nearby frames using the camera poses, and then

using ray casting to get a reliable depth map for each frame.

Chen and Koltun[21] developed a global high-resolution me-

dia resource function (MRF) optimization approach to im-

prove the accuracy of depth images. The algorithm per-

formed block coordinate descent by optimally updating a

horizontal or vertical line in each step. The idea of joint

bilateral upsampling[22] is to apply a spatial filter to the

low resolution image, while a range filter is jointly applied

on another full resolution image. It is used to augment the

quality of image with the help of a high resolution color

image. In contrast to these, we smooth the depth image

by a depth adaptive bilateral filter which is derived from

the noise model of a structured-light stereo based depth

camera, and can be used easily.

A complete scene is reconstructed from views acquired

along the camera trajectory, and each view exposes only a

small part of the environment. Whelan et al.[12, 23] permit-

ted the area mapped by the TSDF to move over time, which

allows to continuously augment the reconstructed surface in

an incremental fashion as the camera translates and rotates

in the real world. An inherent problem is dealing with the

tracking drift due to accumulated pose estimation errors.

Zeng et al.[24] introduced 3DMatch to robustly match lo-

cal geometry, which is a data-driven local feature learner

that jointly learns a geometric feature representation and

an associated metric function from a large collection of real

world scanning data. Halber and Funkhouser[25] introduced

a fine-to-coarse algorithm that detects planar structures

spanning multiple RGB-D frames and establishes geometric

constraints between them as they become aligned. Detec-

tion and enforcement of these structural constraints in the

inner loop of a global registration algorithm guides the solu-

tion towards more accurate global registrations, even with-

out detecting loop closures. Choi et al.[11, 13] dealt with

the accumulated pose estimation errors by reconstructing

locally smooth scene fragments and deforming these frag-

ments in order to align to each other. However, it is not very

effective for the reconstruction of real world scenes with a

hand-held camera. Therefore, we extend this method and

design a content-based segmenting strategy to increase the

accuracy of local fusion and global registration.

In volumetric integration, TSDF is discretized into a

voxel grid to represent a physical volume of space. Each

voxel vvv contains a signed distance d indicating the distance

from the cell to a surface and a weight w representing con-

fidence in the accuracy of the distance. The actual world

surfaces are encoded as the zero crossings of the distance

field and can be extracted by ray casting[26] or marching

cubes[27]. The weight w trivially assumes a constant for

all voxels, i.e., w = 1. It is suitable for distance sensors

that can deeply penetrate objects, such as radar. Curless

and Levoy[3] assigned a constant weight to all voxels up

to a certain penetration depth, after which the weight lin-

early decreases to zero at a penetration depth. Newcombe

et al.[2] proposed an exponential weighting function moti-

vated by a Gaussian noise model of depth measurements.

Zollhöfer et al.[28] obtained fine-scale detail through volu-

metric shading-based refinement (VSBR) of a distance field

to solve the problem of over-smoothing. However, this al-

gorithm is effective only in the controlled light source re-

construction. Zhou and Koltun[29] detected points of inter-

est in the scene based on their distance from the principal

axis and preserved detailed geometry around them with a

global optimization. Inspired by these methods, we propose

an adaptive weighting function whose value varies with the

position of the points, and give higher weights to the points

with high accuracies and interests.

3 Pipeline for scene reconstruction

An overview of our scene reconstruction framework is

shown in Fig. 1. The scene reconstruction pipeline consists

of three main stages and each stage is briefly described as

follows.

Image capture and processing. The raw depth im-

ages are captured with a depth camera based on structured-

light stereo, such as Microsoft Kinect for Windows and Asus

Xtion Pro Live. Before the scene reconstruction, we im-

prove the quality of depth images by the proposed depth

adaptive bilateral filter algorithm, which can effectively re-

move the noises from these depth cameras.

Local-to-global registration. We introduce a local-

to-global registration strategy to reduce visual odometry

drift errors and achieve complete scene reconstruction. The

large scene is partitioned into fragments of various sizes

with the proposed content-based segmentation method. All

fragments are locally fused with ICP registration algorithm,
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Fig. 1 Pipeline of the proposed scene reconstruction system

and a global loop closure is detected for each pairs of frag-

ments with a geometric registration algorithm[11, 30]. The

benefit of this registration is that we can get more reliable

geometry information because information extracted from

content-based fragment is more complete than an individual

depth image. The pose of fragment i and the rigid transfor-

mation aligning fragment i to fragment i + 1 are computed

by Kintinuous framework[23]. The false positive loop clo-

sures are pruned by the pose graph optimization[11] with

the line process constraint using the g2o framework[31].

Weighted volumetric integration. The registered

fragments are fused into a global model through volumetric

integration. The proposed weighting function of TSDF is

based on the camera′s noise characteristics and the pro-

posed ROI model. Therefore, the details of areas with

high accuracies and regions of interest can be preserved.

The final mesh model is extracted with the marching cubes

algorithm[27].

4 The proposed method

The proposed new techniques specifically include three

aspects: depth adaptive bilateral filter, content-based seg-

mentation, and adaptive weighted TSDF (W-TSDF). The

following subsections describe the core methods in our sys-

tem.

4.1 Depth adaptive bilateral filter

The consumer depth camera based on structured-light

stereo can be treated as a pair of stereo cameras in a canon-

ical position[16]. The depth z of a point is proportional to

the disparity D i.e., z = fB
D

, where B is the baseline and

f is the focal length of the camera. The most significant

source of disparity errors is quantization noise which arises

when the disparity is estimated with a given finite precision.

We differentiate the depth z with respect to the disparity

D, and get a relationship as follows:

∂z

∂D
= − z2

fB
. (1)

The standard deviation (STD) of noise in depth measure-

ment is proportional to the square of the depth. Thus, we

propose a depth adaptive bilateral filtering method which

is more effective to smooth depth images than the bilateral

filtering[19].

Consider an observed depth image ZZZ(uuu) where uuu denotes

the location of a pixel. The depth estimation smoothed by

the depth adaptive bilateral filtering is

ẐZZ(uuu) =
1

W

∑

N(uuuk)

ws(uuu − uuuk)wc(ZZZ(uuu) −ZZZ(uuuk))ZZZ(uuu) (2)

where ws and wc are Gaussian functions for spatial and

range weighting with standard deviations of δs and δc , re-

spectively, N(uuuk) is the neighborhood of uuu, and W is an

overall normalizing factor to have a total sum of 1 over

N(uuuk).

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ws = exp

(
− (uuu − uuuk)2

2(δs)2

)

wc = exp

(
− (ZZZ(uuu) −ZZZ(uuuk))2

2(δc)2

)
. (3)

Unlike the bilateral filter, here the values of δc for the

depth image are not fixed but vary with the depths. It can

be approximated as

δc = KZZZ(uuu)2 (4)

where K is constant and its value depends on the camera

parameters. In our experiments, K is set to be 16 and δs is

4.5 (in pixels).

Fig. 2 gives an example of the results of a depth image by

the standard bilateral filter and the proposed depth adap-

tive bilateral filter. The color is for visualization only. We

can see from the point cloud and mesh models that depth

adaptive bilateral filter for the depth image is more effective

to remove the noise and protect the edges. Both the fore-

ground and background regions are appropriately smoothed

while preserving depth discontinuity features since the pro-

posed filter is adaptive to the variation of depth.
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Fig. 2 Results of filtering on the depth image. Raw data shows

the fusion image of a floor with the raw depth and color infor-

mation. (a)–(c): Results with the raw depth image, depth image

with bilateral filter, and depth image with the proposed adap-

tive bilateral filter, respectively. Top shows point clouds; Bottom

shows mesh models.

4.2 Content-based segmentation

The segmentation of a depth image sequence is the key

of the local-to-global registration. Segmentation based on

visual content can effectively reduce the odometry drift and

make the global loop closure more reliable.

The data obtained from a hand-held depth camera is usu-

ally related to the camera′s movement state and the com-

plexity of the objects. Important objects or objects with

lots of details are usually scanned fully and slowly, while

other objects with less information, such as floors, walls,

and some simple objects are scanned quickly. Besides, dif-

ferent people have different scanning habits. We assume

that the regions with closer content have good consistency.

By measuring the con-visibility information of depth images

between the i-th depth frame and the first depth frame dur-

ing the visual odometry estimation, we estimate the dissim-

ilarity of visual contents between them, and decide the seg-

mentation time. The relationship of con-visibility is shown

in Fig. 3.

Fig. 3 Con-visibility between two depth images

Consider the estimated pose PPP i for the camera of each

frame, the rigid transformation TTT ij aligns PPP i to PPP j . We ini-

tialize the pose of the first depth frame for each fragment

to be PPP 0, and define the rigid transformation TTT i aligns PPP i

to PPP 0. In other words, the pose of the first depth frame for

each fragment has the same value of the world coordinate

system. We construct the content-based segmentation as

follows:

First, we reconstruct the 3D point ppp(xp, yp, zp) of the i-th

depth frame corresponding to the pixel uuup using the inverse

of the projection function π as: ppp = π−1(uuup, z(uuup)), where

z(uuup) is the depth value of pixel uuup in the i-th depth frame.

Second, we transform the 3D point ppp from the i-th depth

frame coordinate system to the world coordinate system,

and obtain a 3D point qqq, i.e., qqq = TTT ippp. And then we recon-

struct a new depth image with the pixel uuuq by reprojecting

the 3D point qqq(xq, yq , zq) to 2D image plane:

uuuq =

(
fxxq

zq
+ cx,

fyyq

zq
+ cy

)T

(5)

where fx and fy are the focal lengths of depth camera.

Third, we compute the number of available pixels of the

new i-th depth frame and the first depth frame respectively,

and then obtain the ratio ρ of the con-visibility as: ρ = ni

n0 ,

here ni and n0 are the number of available pixels in the new

i-th depth frame and the first depth frame respectively. To

remove the invisible part, we perform a depth test for the

new i-th depth frame before computing its number. Once

the ratio ρ is less than the threshold, the pose of the camera

will be initialized, and a new scene fragment will begin. In

our experiments, the range of the ratio threshold is 0.7 – 0.9.

We also set the upper and lower thresholds for the number

of frames in each fragment, so that the fragment will not

be too small or too large.

Segmenting the input depth image sequence into frag-

ments with the same size is a simple method, but it is dif-

ficult to select an appropriate number of frames for each

fragment to reconstruct a good 3D scene model. We made

some reconstruction experiments on augmented ICL-NUIM

dataset by no segmentation, uniform segmentation (50-

frame) and content-based segmentation for depth image se-

quence. The odometry drifts estimated with Median error

and root mean square error (RMSE) are shown in Table 1.

It comes out that the proposed segmentation can effectively

reduce the odometry drift on average.

We also made some reconstruction experiments on real

world scenes by the methods of uniform segmentation and

the content-based segmentation for depth image sequence.

The comparison results can be seen from Figs.4 (a) and 5 (a)

to Figs. 4 (c) and 5 (c). The depth image sequences with the

method of Choi et al.[11] are partitioned into fragments of

50 frames. Compared with the uniform segmentation, the

content-based segmentation can automatically adjust the

size of the fragments according to different datasets and

data scanned by different operators. It can provide a good

initial value for pose-graph optimization to increase the ro-

bustness, since the number of frames in each fragment is

adaptive to the scanning process.
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Table 1 Comparison of odometry drift (Median and RMSE) on augmented ICL-NUIM sequences. Note that the camera trajectories

are estimated by Kinfu of point cloud library (PCL)

Sequence
No segmentation Uniform segmentation Content-based segmentation

Median RMSE Median RMSE Median RMSE

Living room 1 0.309 0.424 0.257 0.406 0.272 0.339

Living room 2 0.566 0.617 0.399 0.396 0.225 0.304

Office 1 0.124 0.280 0.212 0.251 0.204 0.229

Office 2 0.172 0.203 0.273 0.308 0.276 0.300

Average 0.293 0.381 0.285 0.340 0.244 0.293

Fig. 4 Reconstruction results of fr1/room scene from the RGB-D simultaneous localization and mapping (SLAM) Dataset. (a) Results

with the method of Choi et al.[11]. (b) Surfel model with Elasticfusion[32]. (c) Results with the proposed method.

Fig. 5 Reconstruction results of indoor scene which is scanned through a robot equipped with Microsoft Kinect for Windows.

(a) Results with the method of Choi et al.[11] (b) Surfel model with Elasticfusion[32]. (c) Results with the proposed method.

4.3 Adaptive weighted TSDF

In this subsection, a TSDF with new adaptive weights

is proposed to merge the registered data into a complete

scene model, where different positions of points are consid-

ered. This can give sufficient details to the regions with

high accuracies and interests.

For a given voxel vvv in the fused scene model F , the corre-

sponding signed distance value F (vvv) can be computed with

respect to n input frames of a given depth image sequence:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F (vvv) =

n∑
i=1

fi(vvv)wi(vvv)

W (vvv)

W (vvv) =

n∑

i=1

wi(vvv) (6)

where the signed distance function fi(vvv) is the projective

distance (along the Z axis) between a voxel and the i-th

depth frame ZZZi, and is defined as

fi(vvv) = [KKK−1ZZZi(uuu)[uuuT, 1]T]z − [vvv]z (7)

where uuu = π(KvKvKv) is the pixel into which the voxel cen-

ter projects. We compute distance along the principal (Z)

axis of the camera frame using the z component denoted as

[·]z. KKK is the known 3 × 3 camera intrinsic matrix, and π

performs perspective projection.

The weighting function wi(vvv) represents the confidence in

the accuracy of the distance. We can see from (7) that the

value of signed distance function varies with the position of

points. Thus, to get an accurate volumetric integration, the

weighting function should take the position of points into

account. In the following, we derive a more accurate weight

function.

On one hand, as discussed in Section 4.1, the main noise

in depth measurements is quantization noise, and the depth

estimate zi has standard deviation proportional to z2
i . Con-
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sider the observation zi = μ + ni, where noise term ni

is Gaussian independently distributed, i.e., ni ∼ N(0, σ2
i ).

The maximum likelihood estimate (MLE) for μ is given as

μ̂ ∝ ∑
i

zi

σ2
i
. This means that each individual measurement

of zi is weighted by a factor inversely proportional to the

variance of the observation. Therefore, the weights should

be inversely proportional to the fourth power of depth, i.e.,

wi ∝ 1
z4

i
.

On the other hand, since the consumer depth camera has

a narrow field of view, when we scan around the objects in

a scene, we usually make the principal axis of the camera

directly aligned the regions in which we are interested be-

cause the errors increase with the distances from points to

the principal axis increasing. In order to emphasize the re-

gions of interest, we give high weights to the points based

on their distances from the principal axis.

Let pppi(xi, yi, zi) be a point in the three dimension spaces,

its squared-distance to Z-axis is d2
i = x2

i + y2
i . The circle

with a radius of di denotes the regions of interest (ROI),

which is shown in Fig. 6.

Thus, we propose an adaptive weighting function moti-

vated by the depth noise and ROI model, and the weighting

function is assigned as follows:

wi(vvv) =

⎧
⎪⎪⎨

⎪⎪⎩

exp(− d2
i

2δ2
r
)

z4
i

, 0 < zi < d

0, zi ≥ d (8)

where we use an Gaussian exponential model which uses

Gaussian lateral noise[16] as the exponent to indicate the

ROI model. δr is the STD of lateral noise in the depth im-

age, and its value is 815 × ZZZ(uuu)
f

. d is the radius threshold

of ROI. We set an accurate weight to the signed distance

function if the depth value is less than d, and set wi(vvv) = 0

if the depth value is greater than d. The choice of d mainly

depends on the size of the scene. In most of our experi-

ments, the value of d is set to be 2.8 m.

Fig. 6 Regions of interest model

Fig. 7 shows a comparison of volumetric integration by

the standard TSDF with w = 1 and the proposed adaptive

W-TSDF. It indicates that the adaptive W-TSDF not only

improves the details of reconstruction but also removes the

noise regions effectively.

5 Experiments

To illustrate the effectiveness of the proposed reconstruc-

tion method, we have carried out some experiments to eval-

uate the qualitative performance of the system.

Fig. 7 Comparison of volumetric integration with the standard TSDF and the proposed adaptive W-TSDF
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5.1 Hardware

For all experiments, we ran the proposed system on a

standard desktop PC with an Intel Core i7-4790 3.6 GHz

CPU, and an Nvidia GeForce GTX 750 Ti 2GB GPU.

5.2 Data

One part of the data used in our experiments is captured

by us with Microsoft Kinect for Windows. It streams VGA

resolution (640× 480) range and color images at 30 Hz. The

operator who scans the scenes had no special training and

no preview of the reconstruction. The consumer depth cam-

era moves freely in the real world scenes without interfer-

ence. Thus, the depth image sequences captured by us have

more noise than the public datasets. We also use three pub-

lic datasets:

RGB-D SLAM dataset. This dataset is provided by

Handa et al.[33] for the evaluation of visual odometry and

visual SLAM systems. Our experiments are conducted on

the fr1/room sequence which is a complete indoor scene

captured by the robot with Microsoft Kinect for Windows.

The data is recorded at full frame rate (30Hz) and sensor

resolution (640× 480).

3D scene Dataset. This dataset is provided by [30].

They used an Asus Xtion Pro Live camera, which streams

VGA resolution (640× 480) range and color images at

30Hz. This camera uses the same prime sense range sen-

sor as the Microsoft Kinect, but is somewhat smaller and

lighter. In our experiments, we use two data sequences:

Burghers and copy room.

Augmented ICL-NUIM dataset. The original ICL-

NUIM dataset is based on the synthetic environments pro-

vided by [33]. Choi et al.[11] have augmented it in a number

of ways to adapt it for evaluation of complete scene recon-

struction pipeline. The average trajectory length is 36 m

and the average surface area coverage is 88 %. Our exper-

iments are conducted on four input sequences that model

through hand-held imaging for the purpose of reconstruc-

tion: Living room 1, Living room 2, Office 1 and Office 2.

5.3 Real-world scenes

From the overall analysis of our experimental results, our

reconstruction system is more robust than the state-of-art

system proposed by Choi et al.[11] and Elasticfusion[32] , es-

pecially in real-world scenes scanned through the robot.

The precision of the reconstructed models with the data

captured by us and public datasets are both better than

the state-of-art offline reconstruction method.

Fig. 4 shows reconstruction results of fr1/room scene

from the RGB-D SLAM dataset. Fig. 5 shows the recon-

struction results of real-world indoor scene scanned by the

robot equipped with Microsoft Kinect for Windows. The

reconstruction results of the scene with Choi et al.[11] and

Elasticfusion[32] are shown in Figs. 4(a), 5(a), 4(b) and 5(b).

Both of the reconstructions are not good due to erroneous

alignments. Figs. 4(c) and 5(c) show the reconstruction re-

sults with the proposed method. The numbers of depth

frames used in Figs. 4 and 5 are 1 352 and 2 082, respec-

tively. Fig. 8 shows the reconstruction result of a dynamic

working area scanned by the robot equipped with Microsoft

Kinect for Windows. Although the data captured by the

robot have less surface information since the movements of

robot are less flexible, we still get the complete scene models

with good geometric structures since the proposed method

is more robust.

Fig. 9 shows the reconstruction result of a real-world

indoor scene manually scanned with Microsoft Kinect for

Windows. The left of Fig. 9 illustrates the complete scene

model reconstructed by the proposed reconstruction sys-

tem. The room is 4m wide and 5m long. The number

of depth frames is 6 000, and the total camera trajectory

length is about 68 m. The center region of the room is a

desk with a laptop on it. There are some dynamic dis-

turbances by the wire to have more noises. During the

scanning process, the data link of our Kinect is connected

Fig. 8 Reconstruction results of the dynamic working area (with 10 000 frames) scanned through a robot equipped with Microsoft

Kinect for Windows
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to the laptop and the power cord of it is plugged into a

power strip with long stumbled tail. However, we still get

a complete model of the scene. As shown in top right of

Fig. 9, the Venus and sofa in which we are interested are

reconstructed with high-fidelity. The bottom right of Fig. 9

shows the reconstruction results of the corresponding ob-

jects in the room with the state-of-art method. Both the

models of the desk and laptop have weak geometric details

due to the reflective laptop surface and disturbed wires.

We can obviously see from Fig. 9 that the 3D models re-

constructed with the proposed method are better since our

system is more robust to reconstruct real-world scenes with

a consumer depth camera.

Fig. 10 shows the reconstruction results of real-world

scene from 3D scene dataset, which is manually scanned

with Asus Xtion Pro Live camera. The reconstruction re-

sults of the scene with Choi et al.[11] and Elasticfusion[32]

are shown in Figs. 9(A) and 9(B). The corresponding details

of 3D models for the burghers and copy room are shown in

Figs. 7 and 11, respectively. The depth image sequences

of the burghers and copy room are reconstructed with the

method of Choi et al.[11] by segmenting the depth image se-

quence into fragments of 50 frames each and the proposed

method respectively. The statues of the burghers are 2 m

tall and the total camera trajectory length is about 184 m.

The size of the copy room is 14 m2 and the trajectory length

is about 69 m. As can be seen from Figs. 7 and 11, the pro-

posed method has an obvious advantage in retaining the

geometric details. The models reconstructed with the pro-

posed method are more accurate and perfect, and the de-

tails of regions marked with rectangles are preserved better

than the state-of-art method.

Fig. 9 Reconstruction results of indoor scene, which is manually scanned with Microsoft Kinect for Windows. The left shows the

complete scene model and the camera trajectory information with the proposed method. The right shows the enlarged views of A, B

and C in the room. Top of right shows the results with the proposed method. The bottom of right shows the results with the method

of Choi et al.[11]

Fig. 10 Reconstruction results of real-world scene from 3D scene dataset, which is manually scanned with Asus Xtion Pro Live. The

top shows the burghers. The bottom shows the copy room. (a) Results with the method of Choi et al.[11]. (b) Surfel model with

Elasticfusion[32]. (c) Results with the proposed method.
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5.4 Synthetic scenes

To evaluate the accuracy of camera trajectory and 3D

model surfaces, we use four depth image sequences of aug-

mented ICL-NUIM scenes. The accuracies are estimated

by Kintinuous[23], DVO SLAM[34], SUN3D SfM[20], Choi et

al.[11], Elasticfusion[32] and the proposed method. Note that

the results of Choi et al.[11], Elasticfusion[32] were run by

ourselves. And the results of DVO SLAM[34] and SUN3D

SfM[20] are included in the paper of Choi et al.[11]

Camera trajectory evaluation. Table 2 reports the

accuracy of the camera trajectories using the root mean

square error (RMSE) metric described by Handa et al.[33]

The RMSE of trajectory errors are in meters. As can be

seen from Table 2, the average accuracy of trajectories with

the proposed method is higher since it can reduce the ac-

cumulated odometry errors.

Assessing quality of 3D reconstruction. We use the

open-source tool called CloudCompare to evaluate the sur-

face reconstruction quality. The reconstruction surfaces of

Augmented ICL-NUIM scenes can be compared against the

ground-truth 3D model surfaces. The median distance of

each reconstructed model to the ground-truth surface are

reported in Table 3. It indicates that our method can ef-

fectively reduce the average error.

6 Conclusions

We presented a robust approach to elaborate scene re-

construction from a consumer depth camera. The main

contribution of our research is using the local-to-global reg-

istration to obtain complete scene reconstruction and then

the accuracy of 3D scene models is improved in the process

of depth images filtering and weighted volumetric integra-

tion. The experimental results demonstrated that the pro-

posed approach improves the robustness of reconstruction

and enhances the fidelity of the 3D models produced from

a consumer depth camera.

Fig. 11 Reconstruction details of the copy room from 3D scene dataset

Table 2 Accuracy of estimated camera trajectories (RMSE in meters) on augmented ICL-NUIM sequences

Sequence Kintinuous[23] DVO SLAM[34] SUN3D SfM[20] Choi et al.[11] Elasticfusion[32] The proposed

Living room 1 0.27 1.02 0.21 0.10 0.62 0.09

Living room 2 0.28 0.14 0.23 0.13 0.37 0.11

Office 1 0.19 0.11 0.24 0.13 0.13 0.08

Office 2 0.26 0.11 0.12 0.09 0.13 0.10

Average 0.250 0.345 0.200 0.113 0.313 0.095

Table 3 Surface reconstruction accuracy (median distance in meters) on augmented ICL-NUIM sequences

Sequence Kintinuous[23] DVO SLAM[34] SUN3D SfM[20] Choi et al.[11] Elasticfusion[32] The proposed

Living room 1 0.17 0.16 0.08 0.03 0.39 0.03

Living room 2 0.10 0.05 0.06 0.05 0.28 0.03

Office 1 0.09 0.08 0.11 0.02 0.03 0.02

Office 2 0.09 0.07 0.06 0.03 0.05 0.02

Average 0.113 0.090 0.078 0.033 0.188 0.025
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