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Abstract:   A new extension of the conventional adaptive fuzzy sliding mode control (AFSMC) scheme, for the case of under-actuated
and uncertain affine multiple-input multiple-output (MIMO) systems, is presented. In particular, the assumption for non-zero diagonal
entries of the input gain matrix of the plant is relaxed. In other words, the control effect of one actuator can propagate from a subgroup
of canonical state equations to the rest of equations in an indirect sense. The asymptotic stability of the proposed AFSM control method
is proved using a Lyapunov-based methodology. The effectiveness of the proposed method for the case of under-actuated systems is in-
vestigated in the presence of plant uncertainties and disturbances, through simulation studies.
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1   Introduction

Many of the existing methods for control of nonlinear

systems need a rather accurate model of the plant. In re-

cent decades,  many control  methods for less-known non-

linear  systems  have  been  developed[1, 2].  The  well-known,

sliding mode control (SMC) which is based on the theory

of  variable  structure  systems  is  a  powerful  method  for

control of uncertain nonlinear systems[3, 4]. In order to pre-

serve the  closed-loop stability  of  uncertain  systems,  con-

ventional  SMC methodology  may potentially  suffer  from

chattering in  the  control  input  signal,  when  the  estim-

ated  bound  of  uncertainty  is  not  small  enough.  Such  a

high-frequency chattering may damage the actuators and

also  excite  the  un-modeled  high-frequency  dynamics  of

the  system  which  degrades  the  control  performance  and

may even lead to instability[5].

Fuzzy  logic  control  (FLC)  methodology  has  been

widely  considered  as  another  alternative  for  coping  with

nonlinearities and  unknown  dynamics  and  external  dis-

turbances[6, 7].  Conventional  FLC  methods  suffer  from

lack  of  systematic  methods  for  incorporation  of  human

knowledge into the rule base of a fuzzy inference system,

for guaranteeing the closed-loop stability[8, 9].

In  order  to  exploit  the  best  of  the  SMC  and  FLC

methods,  different  combinations  of  those  methods  have

been proposed in the literature[10, 11]. The objective of this

new class of methods is to cope with uncertainty and ex-

ternal  disturbances,  and  at  the  same  time  prevent  the

chattering phenomena, as much as possible.

One such hybrid control approach is the so called, ad-

aptive fuzzy sliding mode control  (AFSMC).  AFSMC is,

in  particular,  suitable  for  systems  with  a  rather  large

bound  of  uncertainty[12, 13]. In  this  approach,  fuzzy  con-

trol  rules  can  be  determined  systematically  and  the

asymptotic  stability  of  the  closed  loop  system  can  be

guaranteed under certain conditions[14].

In  [15],  an  indirect  AFSM  control  is  proposed  to

strengthen  the  tracking  control  performance  of  a  certain

class of  multiple-input  multiple-output  (MIMO)  nonlin-

ear uncertain systems. This indirect approach requires the

so  called  multiple  estimation  algorithms.  In  [16],  a  new

AFSM controller with a model predictor is proposed for a

class of  uncertain  nonlinear  systems  with  unknown  con-

stant input time delay. In [17], an adaptive type-2 fuzzy

sliding mode  control  to  tolerate  actuator  faults  of  un-

known nonlinear systems is proposed while two adaptive

type-2  fuzzy  logic  systems  are  used  to  approximate  the

unknown functions. They also considered that the G mat-

rix  is  always  non-zero.  In  [18],  a  stable  adaptive  fuzzy

sliding mode controller is investigated for a class of uncer-

tain underactuated nonlinear dynamic systems, where the

underactuated  system is  decoupled  into  two  subsystems.

AFSM algorithm has also been applied in various practic-

al nonlinear control systems such as in the control of Mi-

croElectroMechanical Systems (MEMS) resonators[19], and

some other applications[20–22].

The AFSMC technique presented in this paper can be

considered as an important extension of  the direct  AFS-
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MC method of [13] and [23], which were applicable to the

affine form of unknown chaotic systems. In those papers,

the closed-loop asymptotic  stability was guaranteed only

if the MIMO plant had a diagonal input matrix with non-

zero entries. There are, however, many well-known under-

actuated  systems,  such  as  robotic  systems,  mass-spring-

damper systems, and electrical machines, to name a few.

In this paper, the original AFSMC method is extended to

the case of nonlinear affine systems in which some of the

diagonal entries of the gain matrix could be zero.

As a case study, the control of the well-known remote

environmental  monitoring  units  (REMUS)  which  is

autonomous  underwater  vehicle  (AUV)  of  [24] is  con-

sidered. REMUS is  a  low-cost,  modular  vehicle  with  ap-

plications in autonomous docking and long-range oceano-

graphic survey. A 6-DOF dynamic model is used for the

simulation of the motions. The results of this case study

reveal  the effectiveness of  the new AFSMC methodology

for  both  diving  and  steering  modes  control,  despite  the

existence of under-actuation structure in the plant model.

The remainder of this paper is organized as follows: In

Section 2, the most relevant features of the conventional

SMC are  introduced.  The  extensions  of  SMC  and  AFS-

MC  methods  to  the  case  of  under-actuated  systems  are

elaborated in Section 3, respectively.  In order to demon-

strate the effectiveness of the proposed control scheme, an

extensive  case  study  on  the  control  of  REMUS  AUV  is

presented in Section 4 and the simulation results are de-

picted in Section 5.  Finally,  conclusions are presented in

Section 6.

2   Conventional SMC

Consider the class of MIMO affine nonlinear systems
y
(r1)
1

...

y
(rm)
m

=

f1(X)

...

fm(X)

+

g11 0 0

0
. . . 0

0 0 gmm



u1

...

um

 . (1)

Using a more compact notation, (1) can be written as

Y (R) = F (X) +GU (2)

X = [y1, ẏ1, · · · , y(r1−1)
1 , · · · , ym, ẏm, · · · , y(rm−1)

m ]T

U = [u1, · · · , um]T

F (x) = [f1(X), · · · , fm(X)]T

R = [r1, · · · , rm]T

r1 + · · ·+ rm = n

where 

is  the  vector  of  states  which  are  assumed  to  be

measurable. Furthermore,  is the vector

of control inputs, and  is the

vector  of  smooth functions  of X.  Also, 

is  the  vector  of  relative  degrees  for  the m subsystems,

where  and n is  the  overall  system

order. Furthermore, it is assumed that the entries of the

input gain matrix, G, are not known exactly. In presence

of  uncertainties,  the  description  of  system  1  can  be

modified as

Y (R) = F (X) +GU +D (3)

D = [d1, · · · , dm]T

|di| < δi i = 1, · · · ,m

in  which  is  the  vector  of  lumped

uncertainties which are assumed to be of bounded norms,

i.e., , .

Y = [y1, · · · , ym]T

Yd = [y1d,

· · · , ymd]
T

The vector of outputs is defined as .

Let  us  consider  the  desired  trajectory  vector 

. The tracking error is then defined as

Ỹ = Yd − Y = [ỹ1, · · · , ỹm]T. (4)

ỹiThe objective is to design a control law so that  con-

verges to zero asymptotically.

2.1   Control method

gii, i = 1, · · · ,m

s(x)

For  now,  it  is  assumed  that  all  the  entries

 in (1) are non-zero. This assumption will

be  later  on  relaxed  in  Section  3.  The  design  of  sliding

mode control includes two steps: Step one is to design a

sliding surface, , to  represent  the  desired system dy-

namics,  which  is  of  a  lower  order  than  the  given  plant.

The second step is to design a variable structure control

u such  that  any  state  outside  the  switching  surface  is

driven to reach the surface in finite time. On the sliding

surface, the  sliding  mode  takes  place,  following  the  de-

sired system dynamics.  In  this  way,  the  stability  of  tra-

jectory on s is guaranteed[3].

The m-dimensional  vector  of  sliding  surfaces  are

defined as

S = [s1, · · · , sm]T = [β1, · · · , βm]


Ỹ1

...

Ỹm

 (5)

βi = [βi1, · · · , βi(ri−1), 1]

Ỹi = [ỹi, · · · , ỹ(ri−1)
i ]T

where  is  vector  of  a  Hurwitz

polynomial  coefficients  and  is  the

states tracking error of the i-th subsystem.

By time differentiation of the sliding surface, one gets

ṡi = βi
˙̃Y i =

ri−1∑
j=1

βij ỹ
j
i + ỹ

(ri)
i =

ri−1∑
j=1

βij ỹ
j
i + y

(ri)
di − y

(ri)
i =

Eβi + y
(ri)
di − y

(ri)
i =

Eβi + y
(ri)
di − fi(x)− giiui − di (6)

in which

Eβi =

ri−1∑
j=1

βij ỹ
j
i .

The sliding mode control law is defined as[13]

ui = ueq
i + urb

i (7)
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ueq
i

ṡi = 0

where  the  equivalent  control  law  can  be  obtained

using the condition , i.e.,

ṡi =Eβi + y
(ri)
di − fi(x)− giiu

eq
i = 0 ⇒

ueq
i

(
1

gii

)(
Eβi + y

(ri)
di − fi(x)

)
. (8)

urb
iThe  robust  controller  is  used  to  overcome  the

uncertainties of the plant, ensuring a finite time reaching

towards the sliding surface, where

urb
i =

(
1

gii

)
νi. (9)

νiThe control term  is selected as

νi = δisgn(si) ⇒ ν = [∆sgn(S)]T (10)

sgn(S) = [sgn(s1), · · ·, sgn(sm)]T sgn(·)
∆ = [δ1, · · ·, δm]T

where  and  is  the

sign  function.  Also, .  Substituting  (7)

into (6), and using (8) and (9) lead to

ṡi =Eβi + y
(ri)
di − fi(x)− giiui − di =

Eβi + y
(ri)
di − fi(x)− gii

(
ueq
i + urb

i

)
− di =

Eβi + y
(ri)
di − fi(x)−

(
Eβi + y

(ri)
di − fi(x) + νi

)
− di =

−di − νi = −di − δisgn(si).
(11)

Now,  the  following  Lyapunov  candidate  function  is

defined as

Li =
1

2
s2i . (12)

The time derivative of (12) together with (11) yields

L̇i =siṡi = −sidi − |si| δi ≤ |si| |di| − |si| δi =
− |si| (δi − |di|) ≤ 0. (13)

Therefore, the sliding mode control (7) can guarantee

the stability of the MIMO system of (1) in the Lyapunov

sense.

3   AFSMC for under-actuated systems

gii

The  sliding  mode  controller  outlined  in  the  previous

section is  only  applicable  to  systems where  all  in  (1)

are non-zero,  i.e.,  every  subsystem  of  (1)  is  directly  af-

fected by a specific control input channel. In this section,

the sliding mode control is extended to the case of under-

actuated  systems  and  is  combined  with  the  adaptive

fuzzy concept to drastically increase the robustness of the

system in the presence of un-modeled dynamics.

3.1   Problem definition

Consider  an  under-actuated  system  with m outputs

and m–1 inputs, in the form of



z
(rz)
1

x
(rx)
1

y
(r3)
3

...

yrmm


=



f1 + g1x1

f2(Z1, X1) + dx

f3(X)

...

fm(X)


+



0

g22

g33

. . .

gmm




u2

...

um

 (14)

f1 g1 z1 x1

g11 = 0 z1 x1

z1

x1

Z1 = [z1, · · ·, z(rz−1)
1 ]T X1 = [x1, · · ·, x(rx−1)

1 ]T X = [Z1,

X1, y3, ẏ3, · · · , y(r3−1)
3 , · · ·, ym, ẏm, · · ·, y(rm−1)

m

]T
Y = [z1, x1, y3, · · ·, ym]T

dx

|dx| < δ2

where  and  are smooth functions of , and  can be

considered  as  the  input  of  this  subsystem.  This  is  a

modification  of  (1),  in  which  and  and  are

the  first  and  second outputs  of  the  system,  respectively.

Consider  the  first  subsystem  of  (4),  where  and  its

derivatives are not directly affected by the control input,

and  instead  are  indirectly  controlled  through  the  second

output, ,  justifying  the  name  under-actuated.  Here,

, , 

 and  the

output vector is defined as . Also,

 is  the  lumped  uncertainties  of  the  second  subsystem,

which is assumed to be of bounded norms, i.e., .

3.2   SMC control

The sliding surface for under-actuated system must be

defined first. For this purpose, the output error is defined as

z̃1 = z1d − z1 (15)

z1d z̃1 z1where  and  are  the  desired  values  for  and  its

tracking error, respectively.

The primary sliding surface is constructed for the first

part of state variables as

sz = λzZ̃1 (16)

λz =
[
λz1, · · ·, λz(rz−1), 1

]
Z̃1 = [z̃1, · · ·, z̃(rz−1)

1 ]T

Z1d = [z1d, · · ·, z(rz−1)
1d ]T

Z1

where  is  a  vector  of  Hurwitz

polynomial  coefficients  and  is  the

vector  of  states  tracking  errors.  Define,

 as  the  desired  trajectory  vector

for . Suppose the first subsystem of (14) can be written

in the following form:

z
(rz)
1 = f∗

1 + g1x̃1 (17)

f∗
1 z1 x̃1where  is  smooth  function  of ,  and  can  be

considered  as  the  input  of  this  subsystem.  Suppose  the
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x̃1 = φ1(Z1) φ1(Z1d) = 0

system  of  (17)  can  be  stabilized  by  a  smooth  state

feedback control law , with , i.e.,

the origin of

z
(rz)
1 = f∗

1 + g1φ1(Z1) (18)

V1(Z1)

is asymptotically stable. Suppose that we know a smooth

and  positive  definite  Lyapunov  function  that

satisfies the inequality.

∂V1

∂z1
[f(z1) + g(z1)ϕ(z1)] ≤ −W (z1). (19)

g1φ1(Z1)

Inspired by the well-known back-stepping technique, (18)

is  re-written  in  the  tracking  error  form.  By  adding  and

subtracting  on the right-hand side  of  (17),  one

can obtain the equivalent representation

z
(rz)
1 = f∗

1 + g1φ1(Z1) + g1(x̃1 − φ1(Z1)). (20)

To backstep, the following change of variables

e1 = x̃1 − φ1(Z1) (21)

results in the system of

z
(rz)
1 = f∗

1 + g1φ1(Z1) + g1e1. (22)

e1

e1

In (22),  can be viewed as the input of system and

the output has an asymptotically  stable  origin when the

input is zero. The derivative of  can be written as

ė1 = x̃
(1)
1 − φ̇1(Z1). (23)

x̃
(1)
1

e1

In (23),  acts  as a virtual  input for  state variable

.

x̃
(1)
1 = φ2(Z1, X1)

φ2(Z1d, X1d) = 0

Suppose  the  system  of  (23)  can  be  stabilized  by  a

smooth state feedback control law , with

, i.e., the origin of

ė1 = φ2(Z1, X1)− φ̇1(Z1) (24)

X1d = [x1d, · · · , x(rx−1)
1d ]T

X1

φ2(Z1, X1)

Ve1 = V1 +
1
2
e21

is asymptotically stable. Also,  is

the desired trajectory vector for . In order to preserve

the closed-loop stability, the function  must be

selected  such  that  the  rate  of  change  of  the  following

Lyapunov  function  remains  negative.  Using

 as  a  Lyapanov  function  candidate,  we

obtain

Ve1 = V1 +
1

2
(e1)

2

V̇e1 = V̇1 + e1ė1 =

V̇1 + e1(x̃
(1)
1 − φ̇1(Z1)) =

∂V1

∂z1(rz−1)
(z1)

(rz) + e1(φ2)− e1φ̇1(Z1) =

∂V1

∂z1(rz−1)
(f∗

1 + g1φ1(z1) + g1e1) + e1(φ2)− e1φ̇1(Z1) ≤

−W (z1) +
∂V1

∂z1(rz−1)
(g1e1) + e1(φ2)− e1φ̇1(Z1).

(25)

∂V1

∂z1
(rz−1)

(g1) + (φ2)− φ̇1(Z1) = −K1e1By having , we

obtain

Ve1 ≤ −W (z1) +−K1(e1)
2 (26)

K1 φ2in  which  is  a  positive  constant.  By  choosing  as

follows,  the  rate  of  change  of  the  Lyapunov  function

remains negative.

φ2 = − ∂V1

∂z1(rz − 1)
(g1) + φ̇1(Z1)−K1e1. (27)

φ2Similarly,  by  adding  and  subtracting  on  the  right-

hand  side  of  (13),  one  can  obtain  the  equivalent

representation

ė1 = (x̃
(1)
1 − φ2) + φ2 − φ̇1(Z1). (28)

The change of variables

e2 = x̃
(1)
1 − φ2(Z1, X1) (29)

results in the system of

ė1 = e2 + φ2(Z1, X1)− φ̇1(Z1). (30)

e2

x
(j)
1 j = rx − 1

e(rx)

In (30),  can be viewed as the input of system and

the output has an asymptotically  stable  origin when the

input is zero. This procedure will  be continued for other

state  variable  up  to .  Eventually,  the  last

subsystem  change  of  variable,  will  actually  define

the sliding surface for the given subsystem, namely,

s1 = x̃
(rx−1)
1 − φ(rx)(Z1, X1). (31)

s1By differentiating , one gets

ṡ1 =x̃
(rx)
1 −

∂φ(rx)

∂X1
(Ẋ1)−

∂φ(rx)

∂Z1
(Ż1) =

x
(rx)
1d − x

(rx)
1 −

∂φ1(rx)

∂X1
(Ẋ1)−

∂φ1(rx)

∂Z1
(Ż1) =

x
(rx)
1d − x

(rx)
1 − Ex − Ez =

x
(rx)
1d − f2(Z1, X1)− g22u2 − dx − Ex − Ez (32)

Ex =
∂φ(rx)

∂X1
(Ẋ1) Ez =

∂φ(rx)

∂Z1
(Ż1)

ueq
2

ṡ1 = 0

where  and .  The

equivalent  control  law, ,  can  then  be  obtained  from

, as

ueq
2 = (g22)

−1
(
x
(rx)
1d − Ex − Ez − f2(Z1, X1)

)
. (33)

The sliding mode control law is defined as

u2 = ueq
2 + urb

2 . (34)

urb
2The robust controller  is used to overcome the un-

certainties of the plant, ensuring a finite time reaching to-

wards the sliding surface, where
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urb
2 = g−1

22 ν2. (35)

ν2The control term  is selected as

ν2 = δ2sgn(s1). (36)

This leads to

ṡ1 = −dx − ν2 = −dx − δ2sgn(s1). (37)

Now,  the  following  Lyapunov  candidate  function  is

defined:

L1 =
1

2
s21. (38)

The time derivative of (38) together with (37) yields

L̇1 = s1ṡ1 = −s1dx − |s1| δ2 ≤ |s1| |dx| − |s1| δ2 =

− |s1| (δ2 − |dx|) ≤ 0. (39)

Therefore, the  sliding  mode  control  (34)  can  guaran-

tee the stability of the first subsystem of (14) in the Lya-

punov sense.

S = [s1, · · · , sm]TIn  the  remainder  of  this  paper,  is

supposed to be the vector of sliding surface for system of

(14).

3.3   AFSMC control

By  combining  the  fuzzy  and  SMC  approaches,  the

control effort can be defined to be a nonlinear function of

the deviations from the sliding surface. The advantage is

that, unlike the conventional SMC approach, the control

input is not computed from the plant dynamic equations

directly.  The  fuzzy  sliding  mode  controller  is  actually  a

fuzzy logic  controller,  for  which the  inputs  are  the  devi-

ations from the sliding surface and its time derivative and

the output is the control command.

ufuz
i

For  this  purpose,  for  the i-th  subsystem  of  (14),  a

Takagi-Sugeno  (TS)  fuzzy  system  with  the  output 

and the fuzzy IF-THEN rules are considered, with,

si Ar
i ufuz

i = bri r = 1, · · · , nr

bri

Ar
i

Rule r:  If  is ,  then , ,

where  is the fuzzy singleton for the output of the r-th

rule,  and  is  a  fuzzy  set  characterized  by  a  Gaussian

membership function as

µAr
i
(si) = exp

[
−
(
si − cri
σr
i

)2
]
. (40)

cri σr
iHere,  and  are the center and width of the mem-

bership  functions,  respectively.  Using  singleton  fuzzifier,

product inference, and center average defuzzifier, the out-

put of the fuzzy system is obtained as

ufuz
i =

nr∑
r=1

briµAr
i
(si)

nr∑
r=1

µAr
i
(si)

. (41)

By defining the firing strength of the r-th rule as

wr
i =

µAr
i
(si)

nr∑
r=1

µAr
i
(si)

, r = 1, · · · , nr (42)

the output of fuzzy system can be written as

ufuz
i (si, bi) = bTi wi (43)

where

wi =
[
w1

i , · · · , wnr
i

]T
, bi =

[
b1i , · · ·, bnr

i

]T
.

S = [s1, · · ·, sm]T

ufuz
1 , · · ·, ufuz

m

For  nominal  case,  i.e.,  when  accurate  mathematical

model of the system is available, the output of fuzzy con-

troller for a system with m inputs  and

m outputs  is denoted as

ufuz∗ =
[
ufuz∗
1 (s1, b

∗
1), · · ·, ufuz∗

m (sm, b
∗
m)
]T
. (44)

The ideal controller is obtained as

u∗ = ufuz∗(S,B∗) + Ξ = diag(B∗TW ) + Ξ (45)

where

W = [w1, · · ·, wm]T, B∗T = [b∗1, · · ·, b∗m]T

Ξ = [ξ1, · · · , ξm]T

|ξi| < κi

B∗

and  is  the  approximation  error  or  the

uncertainty  which  is  assumed  to  be  bounded, .

Also  is the optimal parameter vector

B∗ ∆
= argmin

B

{∣∣∣diag(BTW )− u∗
∣∣∣} . (46)

b∗i
K = [κ1, · · · , κm]T

K̂

In practice, the entries of the optimal parameter vec-

tor  and the uncertainty or approximation error bounds

 may be unknown. Denoting the estim-

ation of this uncertainty bounds as , the estimation er-

ror is defined as

K̃(t) = K − K̂(t). (47)

The output of  fuzzy system to approximate the ideal

controller can be rewritten as

ûfuz
i (si, b̂i) = b̂Ti wi, k = 1, 2, · · ·, m (48)

b̂i b∗iHere,  is  the  estimation  of ,  thus  the  control  law

can be represented as

368 International Journal of Automation and Computing 15(3), June 2018

 



ui = ûfuz
i (si, b̂i) + urb

i (si), k = 1, 2, · · · ,m (49)
urb
iwhere  is  employed  to  compensate  the  difference

between  the  fuzzy  controller  and  the  ideal  one.  By

substituting the matrix form of (49) into (1), one gets

y(r) = F (x) +G
[
ûfuz + urb

]
. (50)

By defining the approximation errors as

ũfuz = u∗ − ûfuz, B̃ = B∗ − B̂ (51)

and by using (45), (48) and (51), one gets

ũfuz = diag(B̃TW ) + Ξ. (52)

giiMultiplying (8)  with ,  added to (50) and using (6),  it

turns out for the i-th subsystem that

ṡi = gii
(
u∗
i − ûfuz

i − ui
rb
)
→

Ṡ = G
[
ũfuz − urb

]
= G

(
diag(B̃TW ) + Ξ− urb

)
. (53)

g22

In the case of underactuated variable in first subsystem of

(14),  multiplying (33) with ,  added to (50) and using

(32), provide the same results as (53).

The closed-loop stability of the AFSM controlled sys-

tem is proved in the sequel.

Theorem 1. Consider  system of  (1)  and the  control

law given by (49), where

1) The fuzzy controller is tuned by the adaptive law

˙̂
B = − ˙̃B = α1W (S) (54)

2) The switching part of the control input is obtained

from

urb = diag(K̂)sgn(G)sgn(S(t)) (55)

3) The estimated value of uncertainty bound is adapt-

ively tuned according to

˙̂
K = − ˙̃K = α2sgn(G) |S(t)| . (56)

α1 α2 and  are  pre-selected  positive  values  for  adaption

rates.  Then,  the  tracking  error  converges  to  zero

asymptotically.

Proof. By choosing  the  following  Lyapunov  candid-

ate function

V =

m∑
i=1

Vi

Vi(si, b̃i, κ̃i) =
1

2
s2i +

1

2α1
giib̃

T
i b̃i +

1

2α2
gii(κ̃i)(κ̃i) (57)

and  by  differentiating  (57)  with  respect  to  time,  and

employing (53)–(56), it can be shown that

V̇i(si, b̃i, κ̃i) = siṡi +
1

α1
giib̃

T
i
˙̃
bi +

1

α2
gii(κ̃i)( ˙̃κi) =

sigii
(
b̃Ti wi + ξi − ui

rb
)
+

1

α1
giib̃

T
i
˙̃
bi+

1

α2
gii(κ̃i)( ˙̃κi) =

giib̃
T
i

(
siwi +

˙̃
bi
α1

)
+sigii

(
ξi − urb

i

)
+

1

α2
gii(κ̃i)( ˙̃κi)=

sigiiξi−sigiiκ̂isgn (gii) sgn (si)−
1

α2
|gii| (κ̃i)α2 |si| =

sigiiξi − |si| |gii| (κ̂i + κ̃i) = sigiiξi − |si| |gii| (κi) =

sigiiξi − |si| |gii| (κi) ≤ (|si| |gii| ξi − |si| |gii| (κi)) =

− (|si| |gii| (κi − |ξi|)) ≤ 0.
(58)

Let us define

Γ(t) =

m∑
i=1

(|si| |gii| (κi − |ξi|)) ≤ −V̇ . (59)

Integration of this equation leads to

∫ t

0

Γ(τ)dτ ≤ V (S(0), B̃, K̃)− V (S(t), B̃, K̃) (60)

V (S(0), B̃, K̃) V (S(t), B̃, K̃)where  is  bounded  and  is  at

least non-increasing. Therefore,

∫ t

0

Γ(τ)dτ ≤ ∞. (61)

V̇By  exploiting  the  semi-negativeness  of  from  (58)

and  by  considering  the  fact  that,  absolute  functions  are

uniformly  continuous,  one  concludes,  from  Barbalat

Lemma, that

lim
t→∞

Γ(t) = 0. (62)

t→ ∞ S(t) → 0As a result, when , the sliding surface 

uniformly, and hence  the  asymptotic  stability  is  guaran-

teed.

4   Case study (AUV)

In order  to  demonstrate  the  feasibility  of  the  pro-

posed approach in previous section, AFSMC is applied to

the  plant  of  an  autonomous  underwater  vehicle  (AUV).

The  6  degree  of  freedom  (DOF)  dynamic  equations  of

motion of an AUV can be written as

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ. (63)

Here,

η = [x, y, z, ϕ, θ, ψ]T

ν = [u, v, w, p, q, r]T

τ = [X,Y, Z,K,M,N ]T

M =MRB +MA

C(ν) =CRB(ν) + CA(ν)

A. H. D. Markazi et al. / Adaptive Fuzzy Sliding Mode Control of Under-actuated Nonlinear Systems 369

 



η

ν

τ

τ

MRB

MA CRB(ν)

CA(ν)

D(ν)

g(η)

where  denotes  the  position  and  orientation  of  the

vehicle with respect to the inertial or earth-fixed reference

frame,  is  the  translational  and  rotational  velocities  of

the vehicle with respect to the body-fixed reference frame,

and  includes  the  total  forces  and  moments  acting  on

the vehicle with respect to the body-fixed reference frame.

 contains the propulsion forces and moments, which can

be  expressed  in  the  same  way  as  environmental  forces

acting on the vehicle. Also,  is the rigid body inertia

matrix and  is the added inertia matrix,  is the

rigid  body Coriolis  and centripetal  matrix,  also  is

added  hydrodynamic  Coriolis  and  centripetal  matrix,

 contains  all  the  hydrodynamic  damping  forces

acting  on  the  ocean  vehicle  throughout  its  mission  and

 illustrates  gravitational  and  buoyant  forces  and

moments.  In  hydrodynamics  terminology,  the

gravitational  and  buoyant  forces  are  called  restoring

forces. The position and orientation of the vehicle should

be described relative to inertial reference frame while the

linear  and  angular  velocities  of  the  vehicle  should  be

expressed in the body-fixed coordinate system[25].

By retaining the acceleration terms of (63) on the left-

hand side, one gets

Mν̇ = −C (ν) ν −D (ν) ν − g (η) + τ

ν̇ =M−1 [−C (ν) ν −D (ν) ν − g (η)] +M−1τ. (64)

τ

Based on the vehicle equations of motion presented in

Appendix 7,  the corresponding terms in  vector of  (64)

can be written as

τ =



Xprop

Yuuδru0
2δr

Zuuδsu0
2δs

Kprop

Muuδsu0
2δs

Nuuδru0
2δr


=



Xprop

0

0

Kprop

0

0


+



0 0

Yuuδru0
2 0

0 Zuuδsu0
2

0 0

0 Muuδsu0
2

Nuuδru0
2 0


×

 δr

δs



(65)

δr δs

u0

where  and  are control  actuators of  the vehicle and

 is  the  constant  surge  velocity.  In  compact  form,  (64)

can be written as

ν̇ = f +G

 δr

δs

 . (66)

The constant coefficient matrix of G and F are

G=M−1



0 0

Yuuδru0
2 0

0 Zuuδsu0
2

0 0

0 Muuδsu0
2

Nuuδru0
2 0


=



g11 g12

g21 g22

g31 g32

g41 g42

g51 g52

g61 g62


(67)

f =



f1

f2

f3

f4

f5

f6


=

M−1 (−C(ν)ν −D(ν)ν − g(η)) +M−1



Xprop

0

0

Kprop

0

0


.

(68)

4.1   Pitch mode

(ϕ) (ψ)

(θ)

Pitch mode is actually the diving motion of vehicle in

vertical plane. In a pure vertical motion, one could elim-

inate and nullify some unrelated state variables, i.e.,  roll

angle ,  yaw  angle ,  and  sway  velocity  (v). There-

fore,  depth  (z),  pitch  angle , and  pitch  angular  velo-

city  (q),  would  be  as  the  main  state  variables  for  this

mode. The equations of  diving motion can then be writ-

ten as

ż = (− sin θ)u0 + (cos θ)w

θ̇ = q[
ẇ

q̇

]
=

[
f3

f5

]
+

[
g32

g52

]
[δs] . (69)

In this subsystem, depth z, is the output.

4.2   Yaw mode

Yaw mode describes the motion of vehicle in the hori-

370 International Journal of Automation and Computing 15(3), June 2018

 



(θ)

(ψ)

zontal plane. Again, for the pure horizontal motion, some

of the state variables, such as depth (z), pitch angle ,

heave velocity (w) and pitch angular velocity (q), can be

ignored. The remaining states would then be, lateral ab-

solute position (y), yaw angle , sway velocity (v), and

yaw  angular  velocity  (r),  being  the  main  state  variables

for this mode. Based on these assumptions, the equation

of motion for yaw mode would be

ẏ = (sinψ)u0 + (cosψ) v

ψ̇ = r[
v̇

ṙ

]
=

[
f2

f6

]
+

[
g21

g61

]
[δr] . (70)

ψIn this subsystem, the yaw angle, , is the output.

θ

Both pitch and yaw mode subsystems can be further

simplified,  by  assuming  small  perturbations  in .  In  the

following  section,  AFSM  controllers  are  designed  for

diving and steering mode subsystems.

4.3   Pitch mode sliding surface

For  simplicity,  it  is  assumed  that  the  heave  velocity

(w) is small during the diving phase[26].

The equations of diving mode then are reduced to

ż = −(θ)u0

θ̇ = q

q̇ = f5 + (g52) [δs] . (71)

θ

δs

It is noted that in the above equations, z is indirectly

controlled through the variable , which is directly actu-

ated by the input . The method proposed in Section 3

is used for  defining the sliding surfaces.  The relative de-

gree  of  this  subsystem  is  2  and  the  tracking  errors  are

defined as

z̃ = zd − z

θ̃ = θd − θ
q̃ = qd − q. (72)

zd
θd = 0 qd = 0

θ̃ = φ1(z)

In the case of  REMUS AUV example,  would be a

positive constant scalar,  and . Based on the

methodology described in Section 3.2,  is chosen

such that  the  time derivative  of  the  following Lyapunov

function would be negative definite

Vz =
1

2
s2z =

1

2
z̃2 (73)

i.e.,

V̇z = z̃ (żd − ż) = z̃(żd+u0θ) = z̃(żd+u0 (θd − φ1)). (74)

żd = 0 θd = 0 φ1(z) = k1z̃Since  and ,  by  defining ,

k1 > 0where ,  the  derivative  of  the  Lyapunov  function

would be negative. Consider the first dynamic error as

e1 = θ̃ − φ1(z). (75)

q̃ = φ2(z, θ)Again,  the  function  is  chosen  such  that

the  time  derivative  of  the  following  Lyapunov  function

would be negative definite

Ve1 =
1

2
e21 (76)

i.e.,

V̇e1 = e1(ė1) (77)

and

ė1 =
˙̃
θ − k1 ˙̃z = q̃ − k1 ˙̃z. (78)

φ2 (z, θ)

In order to make the Lyapunov function negative, the

function of  is determined as

φ2 (z, θ) = −k2e1 + k1 ˙̃z (79)

k2 > 0where .

The  final  dynamic  error  is  the  sliding  surface  of  the

underactuated variable  configuration  which  must  be  ad-

opted for control of diving mode:

sp =e2 = q̃ − φ2 (z, θ) =

q̃ + k2e1 − k1 ˙̃z =

q̃ + k2θ̃ − k2k1z̃ − k1 ˙̃z =

q̃ + k2θ̃ − k2k1z̃ − k1u0θ =

q̃ + k2θ̃ − k2k1z̃ + k1u0θ̃ =

q̃ + (k2 + k1u0) θ̃ − k2k1z̃ (80)

spwhere  is the sliding surface used in control of depth in

pitch mode.

4.4   Yaw mode sliding surface

ẏIn  this  mode,  it  can  be  assumed  that  during  the

steering motion  is  small.  Therefore,  the  steering  equa-

tions of motion of (70) can be written as
ψ̇ = r[
v̇

ṙ

]
=

[
f2

f6

]
+

[
g21

g61

]
[δr] . (81)

By combining these two equations, one gets[
v̇

ψ̈

]
=

[
f2

f6

]
+

[
g21

g61

]
[δr] . (82)

d0

If  the  distance  between  center  of  pressure  of  control

fin  and  the  vehicle′s  center  of  gravity  is  denoted  by ,

the relation between the sway and heading angle rate can
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be approximately written as

v = d0ψ̇ (83)

i.e., (82) can be re-written as

d0ψ̈ = f2 + (g21)δr

ψ̈ = f6 + (g61)δr. (84)

Therefore,

ψ̈ =
(f2 + f6)

(d0 + 1)
+

(g21 + g61)

(d0 + 1)
δr. (85)

sy

This  final  equation  is  a  single-input  single-output

equation, and the conventional sliding surface, , for this

mode is

sy =
[
λ 1

] [ ψ̃

˙̃
ψ

]
=
[
λ 1

] [ ψ̃

r̃

]
= λψ̃ + r̃. (86)

sywhere  is the sliding surface used in control of vehicle in

yaw mode.

5   Simulation studies

In this section, the effectiveness of the proposed AFS-

MC method is assessed in controlling the 6 DOF dynam-

ic model of the REMUS AUV. Technical details and per-

formance  testing  results  of  REMUS  are  introduced  in

[24]. The dynamic equations of REMUS are used to study

the  performance  of  the  proposed  AFSMC  algorithm  in

diving and steering modes of motion. In the first part of

this section, disturbances are not taken into account but

in  the  second  part,  they  are  considered  in  the  form  of

ocean currents. Furthermore, the effect of un-modeled dy-

namics  on  the  closed-loop  performance  of  the  system  is

studied.

In  order  to  demonstrate  the  statistic  and  accidental

characteristics of the ocean currents, a first order Gaussi-

an-Markov  process  is  considered,  which  could  appear  in

any direction. In particular, the following equation is con-

sidered:

V̇c(t) + µ0Vc(t) = ϖ(t) (87)

Vc

ϖ

where  is  the  earth-referenced  velocity  of  the  current

and  is  the  vector  of  a  white  noise  signal.  In  order  to

confine the magnitude of the ocean currents, a saturation

block is used, as in Fig. 1.

Ocean currents are defined in the earth-based coordin-

ate and could be transformed to the body fixed coordin-

ates. One example of the induced disturbance on the sys-

tem is shown in Fig. 2.

5.1   Nominal system performance

The initial conditions for roll and surge are taken as

ϕ0 = 5 deg

u0 = 1.54 m/s

and other initial conditions are considered to be zero. The

desired depth and heading angle are

zd = 10 m

ψd = 30 deg .

α1 = 10 α2 = 8

α1 = 9 α2 = 8

Adaptation rates for diving AFSM controller are selec-

ted as  and  and for steering controller  as

 and .

The initial  values  for  the  output  membership  func-

tions, for both controllers are arbitrarily selected as

B̂i = [−0.5;−0.25;−0.05; 0.05; 0.25; 0.5] , i = 1, · · ·, 7.

In Figs. 3 and 4, the performance of the vehicle in ver-

tical and horizontal modes is depicted.

The movements of control fins are shown in Figs. 5 and 6.

5.2   Effects of disturbances and un-
modeled dynamics

To examine the effect of un-modeled dynamics, hydro-

dynamic  coefficients  of  control  fins  are  increased  by  50

percent.  The desired values  for  depth and heading angle

are set as before, i.e.,

zd = 10 m

ψd = 30 deg .
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Fig. 1     Implementation of Gaussian-Markov[26] to model ocean
currents
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Fig. 2     Typical ocean current velocity disturbance
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In Figs. 7 and 8, the performance of the vehicle under

AFSM  control  in  the  presence  of  un-modeled  dynamics

and  random  disturbances  described  by  (87)  is  depicted,

for vertical and horizontal modes, respectively.

The movements of  the control  fins under disturbance

and un-modeled dynamics are shown in Figs. 9 and 10, re-

spectively.

It is clearly seen that the vehicle has been tracking the

desired  output  variables  very  well. Figs. 7 and 8 show

that  there  is  no  significant  chattering  after  the  vehicle

reaches  to  the  neighborhood  of  the  desired  values.

However, Figs. 3 and 7 depict that  the  vehicle  experi-
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Fig. 3     AFSM control of depth–nominal case
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Fig. 4     AFSM control of heading angle–nominal case
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Fig. 5     Movements of top and bottom control fins–nominal
case        
 

 

δ 
st

er
n 

rig
ht

 (d
eg

)
δ 

st
er

n 
le

ft 
(d

eg
)

20
10
0

−10
−20

20
10
0

−10
−20

0 5 10 15 20 25 30 35 40
Time (s)

0 5 10 15 20 25 30 35 40
Time (s)

Control effort

 
Fig. 6     Movements of right and left control fins–nominal case
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Fig. 7     AFSM control of depth under disturbance and un-
modeled dynamics
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Fig. 8     AFSM control of heading angle with disturbances and
un-modeled dynamics
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ences  a  small  steady state  error  in  the  control  of  depth.

This phenomenon can be attributed to the cross-coupling

between yaw and pitch modes, which was ignored at the

design stage.

By observing Figs. 4 and 8, in the very initial seconds,

the adaptive control tries to recognize the system and de-

termine  sliding  control  bounds.  Hence  the  system is  not

completely stable and then after it becomes stable.

For  better  comprehension  of  the  vehicle  behavior,  a

3D graph of vehicle trajectory is depicted in Fig. 11.

6   Conclusions

The  AFSMC strategy  reduces  the  dependency  of  the

control approach to the plant model and is robust under

plant uncertainties and exogenous disturbances. Such ad-

vantages are obtained by using a central fuzzy controller,

which  is  continuously  tuned  by  observing  the  deviations

from the sliding surface, and also by continuously estim-

ating the  bound  of  uncertainties  by  an  adaptive  ap-

proach. The concept of AFSMC was extended to the case

of under-actuated systems, by successive application of a

particular back-stepping  approach.  As  a  challenging  ex-

ample,  a  highly  nonlinear,  under-actuated  and  multi-

mode control of  the REMUS AUV was considered. Con-

trol design was performed by decoupling the vertical and

horizontal motions.  Simulation  studies  revealed,  the  ex-

ceptional performance of the proposed AFSMC under the

effects of disturbance and un-modeled dynamics.

Two  separate  controllers  were  designed  for  vehicle′s
diving (pitch) and steering (yaw) modes of motion. It was

shown  that  by  decoupling  the  vertical  and  horizontal

equations,  only a  small  amount of  error  appeared in the

control of depth for both nominal and perturbed systems.

7   REMUS equations and parameters

The  REMUS  nonlinear  dynamic  equations  of  motion

in six degrees of freedom are as follows:

(m−Xu̇)u̇+mzg q̇ −myg ṙ =

XHS +Xu|u|u |u|+ (Xwq −m)wq+

(Xqq +mxg)q
2 + (Xvr +m)vr + (Xrr +mxg)r

2−
mygpq −mzgpr +Xprop

(88)

(m− Yv̇)v̇ −mzg ṗ+ (mxg − Yṙ)ṙ =

YHS + Yv|v|v |v|+ Yr|r|r |r|+mygr
2+

(Yur −m)ur + (Ywp +m)wp+

(Ypq −mxg)pq + Yuvuv +mygp
2+

mzgqr + Yuuδru
2δr (89)

(m− Zẇ)ẇ +myg ṗ− (mxg + Zq̇)q̇ =

ZHS + Zw|w|w |w|+ Zq|q|q |q|+ (Zuq +m)uq+

(Zvp −m)vp+ (Zrp −mxg)rp+ Zuwuw+

mzg(p
2 + q2)−mygqr + Zuuδsu

2δs (90)

−mzg v̇ +mygẇ + (Ixx −Kṗ)ṗ =

KHS +Kp|p|p |p| − (Izz − Iyy)qr +m(uq − vp)−

mzg(wp− ur) +Kprop (91)
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Fig. 9     Movements of top and bottom control fins with
disturbances and un-modeled dynamics
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Fig. 10     Movements of right and left control fins with
disturbances and un-modeled dynamics
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Fig. 11     Vehicle trajectory in 3D view
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mzgu̇− (mxg +Mẇ)ẇ + (Iyy −Mq̇)q̇ =

MHS +Mw|w|w |w|+Mq|q|q |q|+

(Muq −mxg)uq + (Mvp +mxg)vp+

[Mrp − (Ixx − Izz)]rp+mzg(vr − wq)+

Muwuw +Muuδsu
2δs (92)

−mygu̇+ (mxg −Nv̇)v̇ + (Izz −Nṙ)ṙ =

NHS +Nv|v|v |v|+Nr|r|r |r|+ (Nur −mxg)ur+

(Nwp +mxg)wp+ [Npq − (Iyy − Ixx)]pq−

myg(vr − wq) +Nuvuv +Nuuδru
2δr. (93)
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