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Abstract:   The study and application of methods for incorporating nonuniform and delayed information in state estimation tech-
niques are important topics to advance in soft sensor development. Therefore, this paper presents a review of these methods and pro-
poses a taxonomy that allows a faster selection of state estimator in this type of applications. The classification is performed according to
the type of estimator, method, and used tool. Finally, using the proposed taxonomy, some applications reported in the literature are de-
scribed.
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1   Introduction

In  almost  all  industrial  processes,  there  is  a  need  to

carry  out  control,  diagnostics,  fault  detection,  identifica-

tion,  and  monitoring[1, 2].  In  modern  industries,  many

variables  need  to  be  measured  to  achieve  optimal  auto-

mation and computing. However, in some cases, this is an

arduous  and  expensive  task  due  to  the  unavailability  of

reliable  devices,  time  delays,  errors  in  the  measurement

system,  high  cost  of  devices,  and  a  hostile  environment

for  primary  measuring[3].  In  order  to  overcome  many  of

the above issues, state estimators are used to make estim-

ates  through  measurements  of  other  variables  related  to

the  hard-to-measure  variables.  In  industrial  applications,

state estimators are implemented as software routines in

dedicated hardware, usually known as soft or virtual sensors.

In  this  respect,  continuous  research  of  state  estima-

tion techniques allows applications in areas such as elec-

trical  and  electromechanical  systems,  aeronautical  and

navigation  systems,  robotics,  and  recently  in  chemical

and biotechnological processes. A recent paper proposed a

classification of observers applied in chemical processes[4].

This classification is composed of six classes based on the

review  of  current  applications  in  specific  chemical  pro-

cess systems. The classes are: Luenberger-based observers,

finite-dimensional  system observers,  Bayesian estimators,

disturbance and fault detection observers, artificial intelli-

gence (AI)-based observers and hybrid observers. Anoth-

er  recent  research paper  presents  a  tutorial  on the main

Gaussian filters and estimation[5]. In that paper, the main

Gaussian filters are explained in detail, considering linear

optimal  filtering,  nonlinear  filtering,  adaptive  filtering,

and  robust  filtering.  In  addition,  the  authors  describe  a

200-year history of the main classical contributions to es-

timation  theory.  Finally,  the  authors  highlight  some

trends  such  as  the  adaptive  Kalman  filter,  the  adaptive

filter with parameter tuning, the adaptive filter with joint

estimation of states and parameters, multiple models ad-

aptive  filtering  and  variable  structure  filtering  and  its

variants.  However,  both  classifications  do  not  consider

problems  such  as  delay  and  multi-rate  associated  with

available  information  from  sensors  or  off-line  analysis

equipment. This kind of information is available in sever-

al processes but it is not commonly used despite allowing

for an improvement in the quality of the estimation. Ad-

ditionally, a recent review of multi-sensor distributed fu-

sion estimation (DFE) taking into account data quantiza-

tion,  random  transmission  delays,  packet  dropouts  and

fading  measurements  is  described  in  [6].  The  proposed

classification  was  based  on  some  DFE algorithms  in  the

literature and in the analysis of the phenomena of sensor

networks.  However,  in  this  classification,  the  algorithms

are  only  limited  to  the  Kalman  filter  and  its  modifica-

tions. In addition, the phenomena of sensors network are

not taken into account within the different applications of

the estimation techniques. Therefore, a taxonomic classi-

fication  that  considers  the  phenomenon  of  acquisition,

storage  and  use  of  non-uniform and  delayed  information

of real applications is necessary. In addition, a classifica-

tion  that  relates  stochastic  and  deterministic  estimation

techniques is important.
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Nonuniform and delayed information  produces  collat-

eral  problems  in  state  estimation  techniques:  multi-

sampling, asynchronism, data loss,  and variability in the

degree of reliability of the information (precision or accur-

acy).  For  the  handling  of  such  information,  specialized

methods are  required.  In this  regard,  some authors  have

developed  different  methods  based  on  stochastic  estima-

tion techniques[7–12]. These methods are arranged into two

types:  measurement  fusion  and  augmented  state  space

methods. Methods based on measurement fusion are only

suitable for discrete-time systems. Those methods are de-

signed for the Kalman filter and its variants. In contrast,

the methods based on augmented state retain the original

state-space representation of the process, making it more

promising to facilitate their extension to different types of

estimators.  Furthermore,  the  conservation  of  the  state

space representation allows for the subsequent analysis of

convergence, observability, and robustness of the estimator.

Some  authors  present  deterministic  estimation  tech-

niques with asynchronous and delayed measurements for

hybrid  systems,  with  a  continuous-time  model  for  the

process and a discrete-time model for the effects of sensor

and  sampling.  Such  observers  are  arranged  into  four

types: piece-wise observers[13], cascade observers[14, 15], dis-

tributed  observers[16],  and  partial  state  observers[17–20].

These deterministic estimation techniques allow the solu-

tion  of  problems  presented  in  the  state  estimation  inde-

pendently or in stages, i.e., the adaptation of a hybrid es-

timator according to the needs of the system. Some par-

tial  stages  may  be  signal  processing,  data  prediction  or

estimation of unknown parameters.

Although  state  estimation  with  asynchronous  and

delayed  information  is  a  subject  of  current  research,  to

the best of our knowledge, there is no review paper sum-

marizing  and  collecting  the  whole  spectrum  of  different

estimation techniques,  its  limitations,  tools,  and applica-

tions. Some papers work on applied specific problems and

a  few  show  state  estimation  in  bioprocess  with  delay

measurement[21–23].  Moreover,  there  is  no  unified  concep-

tual framework and taxonomy tools that enable research-

ers  in this  field to use and identify appropriate tools  for

their particular problems.

Therefore,  in  this  paper,  a  review of  the  main  meth-

ods  and  concepts  for  processes  with  non-uniform  and

delayed  information  is  described.  Additionally,  a  taxo-

nomic organization of  the  reported methods is  proposed.

This taxonomic organization allows for faster selection of

a  state  estimator  incorporating non-uniform and delayed

information. Finally, a comprehensive list of applications

of state estimators in different processes is shown.

The  paper  is  organized  as  follows.  In  Section  2,  a

framework to address the use of non-uniform and delayed

information on estimation and control  tasks is  proposed.

Section  3  presents  the  main  methods  for  using  non-uni-

form  and  delayed  information  on  state  estimation  tech-

niques  and  explains  the  proposed  taxonomy  for  these

methods. In Section 4, some applications reported in the

literature  are  presented  and  analyzed.  Finally,  conclu-

sions are summarized.

2   Nonuniform and delayed information
in industrial processes

2.1   Basic definitions

In industrial processes, a large amount of information

is  stored  in  a  supervisory  control  and  data  acquisition

(SCADA) system. To handle the gathered information for

state estimation and process control tasks, it is necessary

to  characterize  and  identify  their  sources  and  associated

problems.  For  the  taxonomy  presented  in  current  work,

Definitions 1–4 are required:

Definition 1. Information is all symbolic representa-

tion of an event. This representation has meaning to who-

ever  receives  those  symbols  and  helps  him  to  interpret

the world and to reduce the uncertainty.

Definition 2. A source of information is any origin of

information as previously defined.

Definition  3. Delay  is  the  time  lapse  that  a  signal

takes from its source in a process until its reception at a

storage or processing place.

Definition 4. Multi-sampling or asynchronism is the

effect  that  occurs  when  the  sampling  time  between  two

signals is not the same. In industrial processes, this effect

occurs by the difference in the time response and delay of

sensor technology.

2.2   Sources of information

Sources  of  information  can  be  classified  according  to

the  characteristics  of  acquisition  and  storage  in  two

types.  In  the  first  type,  called  on-line,  there  are  on-line

sensors  connected  to  the  SCADA  system  for  measuring

simple  and  common  variables  like  level,  temperature,

flow,  pressure,  etc.  In  the  second  type,  called  off-line,

more complex variables are obtained from samples taken

from the process which are processed in the laboratory or

by specialized equipment to obtain the variable value. A

common  example  of  off-line  variables  are  the  analysis

variables  like  concentration.  Values  of  off-line  variables

are stored in the SCADA system with a pre-stated time

interval.  Although  on-line  measurement  is  the  best  op-

tion, some off-line variables must be used due to cost or

unavailability  of  on-line  sensors  for  some  variables  re-

quired for process analysis and control.

u d

xa xb xc

A  representation  of  the  sources  of  information  is

shown in Fig. 1. From Fig. 1, it can be seen that the vari-

ables  of  a  process  may  be  inputs,  outputs  and  states.

Each  variable  may  be  known  (measured)  or  unknown

(unmeasured).  In  the  diagram,  the  measured  inputs  are

marked as ,  the unmeasured inputs as ,  the measured

states as  and , the unmeasured states as , and the
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measured outputs as  and . Such information may be

derived from two different sources: on-line measurements

 or off-line measurements . For on-line measurements,

the  state  vector  is  measured  by  sensors,  transformed

into  and immediately stored in the SCADA system. In

the  case  of  off-line  measurements,  a  sample  of  the  pro-

cess  is  taken  to  determine  the  state  vector ,  then  the

sample is analyzed in the laboratory or specialized equip-

ment to get the output . The laboratory or specialized

equipment  result  is  manually  stored  in  the  SCADA sys-

tem. For this reason, each information source is collected

and  stored  with  particular  characteristics,  including

sampling  time,  delay  and  degree  of  reliability  (accuracy

and precision), among others.

2.3   Acquisition and storage of information

In a SCADA system, all  information is stored at dis-

crete times, according to Assumptions 1–4[8, 14]:

Assumption 1. Sampling delays associated with on-

line measurements are considered negligible  compared to

the  sampling  delays  associated  with  off-line  measure-

ments.

k

Assumption  2. All  the  measurements  available  at

the time-instant  are dated. That is, the subset of meas-

urements  corresponding  to  the  uniform and  non-uniform

class of measurements is known exactly. In addition, the

value of delay is known for each measurement.

Assumption  3. The  information  obtained  from  the

uniform measurements is more susceptible to problems of

noise and precision than that obtained from laboratory or

specialized equipment analysis. The first one is subject to

the  characteristics  of  the  signal  conditioning  system  of

the sensors. In the second, strict adherence to high-qual-

ity standards is assumed, even if  measurements are non-

uniform.

Assumption 4. Off-line information is subject to hu-

man  error  while  storing  it  into  the  SCADA system.  Er-

rors can be represented as spurious or missing data.

A characterization of phenomena occurring in the ac-

quisition and storage of data from each source of informa-

tion is presented in Fig. 2. In Fig. 2, the lower horizontal

line represents the time instant at which the sampling is

performed.  Moreover,  the  upper  horizontal  line  repres-

ents  the  time  instant  at  which  measurements  are  ac-

quired  and  stored  in  the  SCADA  system.  The  straight-

T

dashed  vertical  lines  represent  the  on-line  measurements

obtained  by  the  sensors.  Note  that  these  measurements

are  sampled  with  a  fixed  sampling  period  and  their

measurement delays are considered negligible.

θ

N
N = δ + θ M

Off-line  measurements,  obtained  from  the  analysis  of

samples  in  laboratory  or  specialized  equipment,  are  rep-

resented  with  a  continuous  and  curved  line.  It  is  worth

mentioning  that  off-line  measurements  may  have  differ-

ent  measurement  delays .  This  means  that  the  elapsed

time since the sample is taken until the measurement ar-

rives  to  the  SCADA  system,  denoted  by ,  where

 can  be  a  time-varying  parameter.  repres-

ents  the  time  period  between  two  successive  off-line

samples. According to the characteristics of the sources of

information (on-line and off-line), the information can be

uniform, non-uniform or integral.

Definition  5. A  uniform  (synchronous  and  un-

delayed) measurement is a measurement that is available

at every constant period of time. See straight and dashed

line in Fig. 2.

Definition 6. A non-uniform measurement is a meas-

urement  that  is  not  necessarily  available  at  every  con-

stant  period of  time.  In  addition,  once  the  measurement

is  available,  the obtained information is  related with old

system  trajectories.  See  curved  and  continuous  lines  in

Fig. 2.

δ

Definition 7. An integral measure is an off-line meas-

urement characteristic in which a measurement value can

be effective or valid over a given time period .  The in-

tegral  measurements  define  that  “the  delayed  measure-

ments can also be a function of the integral of the states

over a certain past period of time”[8].

It must be clarified that the term nonuniform informa-

tion does not refer to the type of distribution or a statist-

ical characteristic of the data. In this regard, and accord-

ing  to  the  above  definitions,  the  process  information  is

considered  non-uniform  when  the  sampling  time  or  the

delay time is different between physical measurements.

 

Process

Unmeasured
inputs d

On-line

Off-line

Measured
inputs u

Unmeasured
states xc

Measured
outputs

Measured
states

SCADA

xa

xb

y

yθ

 
Fig. 1     Sources of information in an industrial process
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Fig. 2     Characterization  of  phenomena  occurring  in  the
acquisition and storage of information sources. Source: modified
from [8].
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On  the  other  hand,  the  information  storage  process

can have two instances: major and minor, defined as:

k

Definition  8. A  minor  instance  case  concerns  the

case where only uniform measurements are available at a

given time-instant .

k

Definition  9. A  major  instance  case  concerns  the

case  where  all  measurements  (uniform and  non-uniform)

are available at a given time-instant .

2.4   Mathematical preliminaries

An industrial  process  in  presence  of  non-uniform and

delayed information can be represented as a discrete-time

non-linear system of the form:

x(k + 1) = f(x(k), u(k), ε(k)) (1)

x ∈ Rn u ∈ Rm

ε f

y(k) ∈ Rr1 yθ(k) ∈ Rr2

where  is  the system state,  is  the system

input and  is the process noise. The function  represents

the non-linear dynamics of the system. Finally, it is assumed

that  both  uniform and  non-uniform measurements  exist,

denoted here by  and , respectively.

k

In practical applications, two cases concerning the sys-

tem outputs can be available at every time-instant :

Minor instance

y(k) = h1(x(k), v
1(k))

yθ(k) = [ ] (2)

Major instance

y(k) = h1(x(k), v
1(k))

yθ(k) = h2(x(k), v
2(k)) (3)

(·)θ
[ ]

(k − θ)

h1 h2

vi i = 1, 2

where the subscript  denotes non-uniform information,

the symbol  denotes an empty vector, and the discrete-

time  represents  a  known,  and  possibly  varying,

delayed time-instant.  and  are non-linear functions.

The  vector  with  stands  for  noise  for  uniform

and nonuniform measurement respectively.

x x̂

e = x− x̂

The estimation problem concerns the use of model (1)

and the available measurements (2) and (3) to find an es-

timation of the system state , denoted , in such a way

that a norm of the estimation error  will be min-

imized. In a compact form, the problem is:

Problem 1. Given a system model (1): How to incor-

porate  non-uniform measurements  into  the  state  estima-

tion  process  under  Assumptions  1  to  4,  and  considering

both minor and major instances in a common framework?

In  this  section,  the  basic  concepts  were  defined  and

the phenomenon of  the acquisition and storage of  indus-

trial information sources was characterized. According to

the characteristics  of  the information sources  mentioned,

their  use  in  state  estimation  techniques  is  not  a  trivial

matter.  Collateral  problems  can  occur  such  as:  multi-

sampling  or  asynchrony,  missing  and  spurious  data  and

redundant  information,  among  others[8, 9].  Therefore,  in

the next section, a review of methods to use non-uniform

and delayed information in state estimation techniques is

presented.

3   Methods to use non-uniform and
delayed information in state
estimation techniques

From the literature, it is possible to identify different

tools  developed from the  information and control  theory

to  manage  and  incorporate  non-uniform and  delayed  in-

formation  in  state  estimation  techniques.  In  this  paper,

two types of systems will be discussed: stochastic and de-

terministic systems.

3.1   State estimation in stochastic systems
with delayed measurements

Several methods have been proposed for state estima-

tion  when  the  plant  is  modeled  by  a  discrete-time

stochastic model. In this case, the models consist of a de-

terministic  part  and  a  stochastic  component  character-

ized  by  the  mean  and  the  variance  in  the  measurement

noise and model noise. Fig. 3 shows the main methods re-

ported for state estimation techniques incorporating non-

uniform  and  delayed  information[7–12].  Below,  a  discus-

sion of each method is presented.

3.1.1   Methods based on measurement fusion

These  methods  are  developed  for  the  use  of  multis-

ensors or redundant measurements. For example, in [24],

the position of a wheelchair is estimated using the fusion

of  two  sources  of  information  to  improve  the  perform-

ance  of  the  estimator.  A  source  of  measurement  is  ob-

tained  from  a  compass  and  an  odometer,  and  the  other

from the same compass and an accelerometer.

(k −N)

In  the  literature,  three  variants  of  methods  based  on

measurement fusion are presented: filter recalculation, Al-

exander′s  method  and  parallel  filter.  These  methods  are

based  on  the  readjustment  of  the  estimate  in  the  major

instance.  In  filter  recalculation,  the  readjustment  of  the

current state is performed by recalculating the entire tra-

jectory  of  the  Kalman  filter.  The  recalculation  is  per-

formed from the sampling  to the major instance
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Fig. 3     Methods  to  incorporate  non-uniform  and  delayed
information in stochastic state estimation techniques
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(k) C Cθ K

yt
yt = [y yθ]

T

 (see Fig. 4). In Fig. 4, ,  and  are uniform out-

put  matrix,  non-uniform output  matrix  and the  Kalman

filter gain, respectively.  refers to the total output of the

system in the major instance, i.e., . In Alex-

ander′s  method,  each  type  of  measurement  (on-line  and

off-line)  is  treated  statistically  independently  and  separ-

ately[7]. Finally, the parallel filters are an extension of Al-

exander′s  method,  which  guarantees  the  optimization  at

all times of measurement fusion.

The  methods  based  on  measurement  fusion  only  ap-

ply to discrete-time systems. These are developed to work

with the Kalman filter and its variants[25, 26].
3.1.2   Methods based on state augmentation

G(·)
Ẑ(·)

The  methods  based  on  state  augmentation  are  based

on enlargement of the state space with information from

off-line  measurements  and  subsequently  an  extended

model is incorporated into the state estimation technique,

following the algorithm illustrated in Fig. 5. In Fig. 5, 

and  represent the non-linear dynamic function of the

estimated  augmented  state  space  and  the  augmented

state vector, respectively. In state augmentation methods,

the  model  dimension  is  augmented  conserving  the  state-

space representation. The methods of state augmentation

have three variants reported in the literature[7]:  fixed-lag

smoothing,  measurement  augmentation  and  sample-state

N

(k −N) (k)

r2 n

x(k −N)

augmentation  (see Fig. 3).  In  the  fixed-lag  smoothing

method,  the  past  states  are  smoothed  using  on-line

measurements  of  the  minor  instances.  Finally,  when  off-

line and delayed measurements are obtained, both meas-

urements (off-line and on-line) are used to smooth out the

state  between  and .  However,  the  problem

with the fixed-lag smoothing method is the computation-

al cost generated by the high-order of the increased state

space. To overcome this drawback, method variations like

measurement augmentation and sampled-state augmenta-

tion  have  been  developed.  The  measurement  augmenta-

tion method is used when the number of off-line measure-

ments  is  less  than  the  size  of  the  state .  The  other

variation (sampled-state augmentation) is justified by the

fact that the delayed information is a function of only the

state at the sampling time  and only this inform-

ation  must  be  retained  until  the  major  instance.  The

methods  based  on  augmentation  state  retain  the  state

space  representation,  allowing  its  extension  to  different

types  of  estimators[27, 28],  including  deterministic  estima-

tion techniques.

3.1.3   Mathematical description of a linear system

with augmented state
Due to the importance of augmented state methods, a

brief mathematical description of augmented state repres-

 

Start
Definition of

initial conditions
x (0) and x^ (0)

Reading on-line
measurements
u (k) and y (k)

Sampling off-line?

Save data over time (k−N)
u (k−N), yθ (k−N)

and x^ (k−N)

Is there new
off-line data?

Minor instance:
x^ (k+1) = f (u(k−N), x^ (k))+

            K (y(k) − Cx^ (k))

k = k + 1

Yes

No

No

Yes

End

Major instance:
x^ (k+1) = f (u (k−N), x^ (k))+

                        K  yt (k) − [CTCT
θ]T  x^ (k)(                              )

 
Fig. 4     Algorithm flowchart for measurement fusion methods
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             K (yθ(k)) − Cθ x^ (k)+
       K (y(k)) − Cx^ (k)

x^ (k+1) = Z^ (k+1)[I   0···0]T
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x^ (k+1) = f (u(k−N), x^ (k))+
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End

State augmentation
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state model Z
according to the selected

method

Yes

 
Fig. 5     Algorithm flowchart for state augmentation methods
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entation  for  a  linear  system  is  presented  based  on  [7].

System  (1)  can  be  represented  as  a  discrete-time  linear

system as

x(k + 1) = Ax(k) +Bu(k) + ε(k). (4)

And according to the minors (2) and (3) instances for

the discrete-time linear system (4), we have

Minor instance

y(k) = Cx(k) + v1(k)

yθ(k) = [ ]. (5)

Major instance

y(k) = Cx(k) + v1(k)

yθ(k) = Cθx(k −N) + v2(k −N) (6)

x(k) ∈ Rn u(k) ∈ Rm y(k) ∈ Rr1 yθ(k) ∈ Rr2

ε(k) vi(k)

A B C Cθ

where , ,  and 

are  states,  inputs,  uniform  outputs  and  non-uniform

outputs  of  the  system,  respectively.  and 

correspond to model uncertainty and measurement noises.

, ,  and  are  state,  input  and  output  matrices,

respectively.

Now, by the concept of state augmentation, the order

of the system can be increased such that the system con-

tains  the  information  of  non-uniform  and  delayed  meas-

urements, as shown in (7).

Z(k + 1) = ΦZ(k) + ΓU(k) + Ψε(k)

Y (k) = ΞZ(k) + v1(k) (7)

Φ Γ Ψ

Ξ A B Q C

Z

where the matrices of the augmented state space , , 

and  are  used  instead  of , ,  and ,  respectively.

According  to  the  augmented  state  method,  the

augmented  state  vector  and  augmented  matrices  are

defined in Table 1.

Note  the  high  order  of  the  augmented  system  pro-

duced by the augmentation methods of fixed-lag smooth-

ing and measurement. This can lead to high computation-

al  cost  when  the  estimation  uses  higher  order  and  com-

plex models[7].

Z

f h1 h2

Now, the above representation can be extended to the

non-linear system (1). For this, the augmented state vec-

tor  can be redefined using the Jacobian of the non-lin-

ear  functions ,  and  of  system  (1).  The  measure-

ment instances (2) and (3) in this case are as follows:

F =
∂f

∂x

∣∣∣∣
(x(k),u(k))

, Fu =
∂f

∂u

∣∣∣∣
(x(k),u(k))

H1 =
∂h1

∂x

∣∣∣∣
(x(k),u(k))

, H2 =
∂h2

∂x

∣∣∣∣
(x(k−N),u(k−N))

(8)

F Fu H1 H1where , ,  and  are  the  Jacobian  matrices  for

system  (1)  and  its  measurements  instances  (2)  and  (3).

Then using the fixed-lag smoothing method, the concept

of  state  augmentation  can  be  applied  to  redefine  the

matrix representation as follows:

Z(k) = [x(k)TxT(k − 1) · · ·xT(k −N)] (9)

Φ∗ =



F 0 · · · 0 0

I 0 · · · 0 0

0 I · · · 0 0

...
. . . . . . . . .

...

0 0 · · · I 0


,Γ =



Fu

0

0

...

0


Ξ∗ =

[
H1 0 · · · 0 0

0 0 · · · 0 H2

]
. (10)

 

Table 1    Characteristics of state augmentation methods

Method State dimension Augmented matrix transformation

Fixed-lag smoothing N × n+ n

Z(k) = [xT(k) xT(k − 1) · · · xT(k −N)]T

Φ =


A 0 · · · 0 0

I 0 · · · 0 0

0 I · · · 0 0
... . . . . . . . . . ...
0 0 · · · I 0

 ,Γ =


B

0

0
...
0

 ,Ψ =


I

0

0
...
0

 ,Ξ =

[
C 0 · · · 0 0

0 0 · · · 0 Cθ

]
.

, where

Measurement
augmentation

N × r2 + n

Z(k) = [ xT(k) y∗T(k) · · · y∗T(k −N) ]T,

Φ =


A 0 · · · 0 0

CθA 0 · · · 0 0

0 I · · · 0 0
... . . . . . . . . . ...
0 0 · · · I 0

 ,Γ =


B

CθB

0
...
0

 ,Ψ =


I

0

0
...
0

 ,Ξ =

[
C 0 · · · 0 0

0 0 · · · 0 I

]
.

 where

Sample-state
augmentation 2×N

Z(k) = [ xT(k) xT(k −N) ]T,

Φ =

[
A 0

0 I

]
,Γ =

[
B

0

]
,Ψ =

[
I

0

]
,Ξ =

[
C 0

0 Cθ

]
.

 where
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N

k −N k

This method smooths the past  states using the on-

line measurements at the minor time instance. When the

delayed  off-line  measurement  is  recorded,  both  off-line

and  on-line  measurements  are  used  to  obtain  smoothed

estimates from  to .

3.2   State estimation in deterministic sys-
tems with delayed measurements

In  this  section,  different  techniques  to  incorporate

non-uniform  and  delayed  measurements  in  deterministic

estimation  strategies  are  presented.  In  these  strategies,

the system is considered as a hybrid system, i.e., the pro-

cess  is  modeled  as  a  continuous-time system and the  ef-

fects of sensor and sampling are represented as a discrete-

time system (see Fig. 6).

According to Fig. 6, the process can be represented by

ẋ (t) = f (x (t) , u (t))

x (0) = xo

yi (t) = h (x (t)) (11)

yiwhere  are the actual outputs, which are conditioned by

the dynamics of each sensor. In this way, it is possible to

apply  systems  with  asynchronous  sensors.  The  dynamics

of the sensor is described by

zi (t) = yi (t− θ) . (12)

In  the  present  review,  such  techniques  have  been

grouped  into  four  types  of  methods  according  to  their

structure: piece-wise observer[13], cascade or chain observ-

er[14, 15],  distributed observer[16],  and partial state observ-

er[19, 20].  These  deterministic  techniques  solve  the  prob-

lems  of  state  estimation  independently  or  in  stages.  A

brief description of the main characteristics of each meth-

od of this family follows.

3.2.1   Piece-wise observers

This type of observers is based on the theory of piece-

wise  continuous-time hybrid  systems (PCHS),  a  particu-

lar  class  of  hybrid  systems characterized by autonomous

switchings  and  controlled  impulses[13].  In  [13],  a  scheme

composed  of  four  linear  piece-wise  continuous-time  hy-

brid  systems  (LPCHS),  one  reduced  order  discrete-time

luenberger  (RODL)  observer,  and  one  block  of  recon-

struction calculation were proposed as shown in Fig. 7.

x̂(t)

The inputs of the piece-wise continuous-time observer

(PCO) are the delayed measurement and the current pro-

cess  input  and  output  are  the  estimates  of  the  current

state . The operation of the observer is defined in five

stages described as follows:

zi (t) = yi (t− θ)

s(ti)

Ti

1) First stage. Delayed measurement 

is switched to obtain a square wave signal . This sig-

nal is the input of the four LPCHS. Then, LPCHS I and

LPCHS II are used to generate the delayed variable and

the sample period of [13].

u(t)

M ti
ti−1

=
∫ ti
ti−1

eA(ti−θ)Bu (θ)dθ

2) Second stage. LPCHS III and input  are used to

get .

x̂(t− θ)

y(t− θ) Ti M ti
ti−1

3) Third stage.  RODL observer is  used to obtain the

delayed estimated state  according to the delayed

measurement ,  and .

x̂i = Ad(Ti)x̂i−1 +M ti
ti−1

4) Fourth stage.  The reconstruction calculation block

is  used  to  get  the  discrete-time  undelayed  state

.

us(t) = u(t) vs(t) = x̂i

5) Fifth stage. Finally, using the LPCHS IV with the

inputs  of  and ,  it  is  possible  to re-

construct the continuous-time undelayed state.
3.2.2   Chain or cascade observers

This method has two stages,  one for state estimation

and  the  other  one  to  account  for  delay  effects.  Depend-

ing  on  the  nature  of  the  information,  multi-sampling  or

with unknown delay,  the stage of  information processing

may  be  previously  or  subsequently  implemented  at  the

estimation  stage,  as  shown  in Figs. 8 and 9.  In  this  re-

spect,  since  the  estimation  and  data  processing  are  per-

formed  by  separated  stages,  it  is  possible  to  use  either
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Fig. 6     Hybrid system scheme for deterministic estimates with
delayed measurements. Source: modified from [13, 14]
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Fig. 7     Piece-wise  continuous-time  observer  scheme.  Source:
modified from [13]
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Fig. 8     Observer-predictor scheme for delay feed-back

 

J. A. Isaza et al. / State Estimation Using Non-uniform and Delayed Information: A Review 131

 



stochastic  or  deterministic  state  estimation  techniques.

However,  in  the  literature,  only  deterministic  estimation

techniques are reported[14, 15, 22, 29].

Regarding  the  stage  of  information  processing,  differ-

ent  elements  to  reduce  the  effects  of  delay  are  used.

In  [29],  a  switching  element  is  proposed  to  incorporate

delayed  measurements.  Other  authors  propose  to  use  a

Smith predictor[30]. In the latter applications, the cascade

observer-predictor  is  extended  to  use  variable  delay  and

multi-sampling, which are useful for applications with un-

known delay. Due to the importance of cascade observer-

predictor,  in  the  present  work,  some  features  of  this

method are presented below.

x (t)

t y (t) = h (x (t− θ))

θ ≥ 0

The  Cascade  observer-predictor  scheme  (Fig. 8)  has

two stages. The first stage is called observation and nor-

mally  is  executed  employing  any  observer  structure.

However,  the problem considered in this  review is  to es-

timate the current state  when the measurements of

the  output  are  delayed,  such  that  the  output  measure-

ment at time  is  for some known con-

stant delay . In this sense, a prediction stage is pro-

posed to eliminate the delay effects on the measurement.

The  second  stage  is  called  prediction  because  a  Smith

predictor  compensates  the  delay[15].  The  Smith  predictor

is considered as

ẋp (t) = ˙̂xθ (t) + f (xp (t))− f (xp (t− θ)) (13)

xp ∈ Rn x̂θ x

θ

f (xp (t)) f (xp (t− θ))

where  the  prediction  of  the  current  state  is  denoted  by

 and  is the estimate  subject to delayed output

measurements (12). Moreover, with the system model (11)

and the known delay  for output measurements (12), it is

possible to know the dynamics of the predicted states with

and without delay  and , respectively.

The  stability  of  the  previously  mentioned  observer-

predictor  structure  is  such  that  the  estimated  state

asymptotically/exponentially converges to the system tra-

jectories  (11)  and  (12),  if  the  estimates  provided  by  the

observer  converge  in  an  asymptotic/exponential  way  to

the delayed system state[15].
3.2.3   Distributed observers

A recent development in the field of  state estimation

for large-scale process systems is distributed observers[31].

This  observer  uses  a  network  of  interconnected  estimat-

ors  for  each  subsystem.  This  network  consists  of  several

estimator  nodes.  At  each  node,  embedded  computation,

communication  and power  modules  are  included[16, 32].  A

node  acts  as  a  local  observer  by  computing  estimates

through its own model and available measurements. The

communication module allows a sensor node to share in-

formation with other nodes in the network within a spe-

cified communication topology. This scheme is presented

in Fig. 10.

In  [16, 32],  a  distributed  observer  was  proposed.

There, for each node of the estimator, a predictor and a

moving horizon state estimator (MHE) are embedded. In

that proposed approach, the predictor subsystem handles

communication  delays  and  data  losses  directly  while  the

local  MHEs  take  advantage  of  the  predictions  given  by

the  predictors.  Applications  of  this  distributed  estima-

tion scheme for systems with non-uniform and delayed in-

formation  are  focused  on  large-scale  systems,  where  the

system  can  be  modeled  as  several  sub-systems,  such  as

electrical power systems[16, 32, 33].
3.2.4   Partial state observers

Finally, in this method, the estimation structures that

use a reduced-order Luenberger observer with estimation

or extrapolation approximations of delayed or asynchron-

ous  measurements  are  grouped.  For  example,  in  [17],  a

polynomial  extrapolation is  used.  That is,  slow measure-

ments can be predicted for sample times where only fast

measurements  are  available.  Other  applications  are

presented in [18–20] and will be discussed in Section 4.

3.3   Proposed taxonomy

This section shows a taxonomic proposal for available

tools reported in the literature for incorporating non-uni-

form  and  delayed  information  in  state  estimation  tech-

niques. The proposed taxonomy has hierarchical levels as

shown in Fig. 11.

In Fig. 11,  the  first  hierarchical  level  is  classified  ac-

cording  to  the  type  of  estimator  used.  The  second  level

classifies  different  methods  to  incorporate  non-uniform
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Fig. 9     Predictor-observer scheme for feed-forward delay
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and delayed information. Each method has different uses

according to characteristics of information such as known

delay, variable delay, multiple system outputs and multi-

rate  sampling,  among  others,  as  presented  in  Section  3.

Finally,  in  the  third  level,  some of  the  tools  reported  in

the  literature  and their  respective  seminal  references  are

presented to give the works supporting the proposal.

δ

Table 2 presents a comparison of two of the most im-

portant structures reported in the literature for state es-

timation  of  systems  in  the  presence  of  non-uniform  and

delayed measurements: the extended Kalman filter (EKF)

with  the  state  augmentation  method  and  the  chain  ob-

server-predictor algorithm. Table 2 shows some character-

istics  of  the  two  families  of  state  estimation  approaches

(stochastic  and  deterministic)  for  systems  with  non-uni-

form and  delayed  measurements.  The  analysis  presented

in Table  2 is  supported  by  references[21, 22].  In  these  pa-

pers,  estimation  techniques  were  applied  to  estimating

biomass  in  the -endotoxins  produced  by Bacillus

thuringiensis (Bt) where the measurements were non-uni-

form and delayed.

4   Applications of state estimators
employing non-uniform and delayed
information

In this section, some applications of different state es-

timators employing non-uniform and delayed information

are presented in Table 3 as reported in the literature. The

tools  used  in  each  application  are  analyzed  according  to

the previously proposed taxonomy (see Fig. 11). Some ap-

plications  for  each  of  the  six  methods  presented  in  the

taxonomy  are  listed.  In  addition,  for  each  application,

some  characteristics  like  author/year,  estimator  type,

uses,  system  model,  tools,  and  others  are  reported.  The

first  column  shows  the  reference.  The  second  column  is

the  estimator  type,  indicating  the  estimator  structure.

The  next  column  shows  the  particular  applications  in

which  the  proposed  estimator  was  simulated  and  valid-

ated. The fourth column shows the type of required mod-

el for the proposed estimator structure. The fifth column

describes  the  tool  used  to  incorporate  the  non-uniform

and delayed information. Finally, in the other character-

istics  column,  some  particular  characteristics  of  the  ap-

plication are described. The applications are organized ac-

cording  to  the  method  and  chronological  order  of  their

publication.

In  general,  the  applications  in Table  3 show  the  fol-

lowing trends:

1)  The  asynchronous  and  delayed  measurements  are

presented  in  various  fields,  from  electromechanical  sys-

tems  to  bioprocesses  and  navigation  systems.  However,

there are still  many real applications that could use this

information, for example, large-scale systems. In addition,

many  of  the  published  papers  work  with  hypothetical

models or laboratory-scale models, but there are not a lot

of industrial applications.

2) There is a general trend to use stochastic estimat-
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Fig. 11     Tools taxonomy for incorporating non-uniform and delayed measurements in state estimation techniques
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Table 2    Characterization of different approaches of state estimation for systems with non-uniform and delayed information

Characteristic KF with augmentation state Chain observer-predictor

General
information

For the incorporation of non-uniform measurements, in this
estimation structure, the state space is increased according to the
number of delayed samples of off-line measurement relative to the
on-line measurement.

This structure is based in a cascade observer-predictor
algorithm. The prediction stage offsets the effect of the
delay in measurements.

Structure
type

Compact and switched. It is necessary to commute the entire
structure (model and estimator).

Cascaded in series and without feedback between stages.

Estimation
technique
allowed

The method for incorporating non-uniform and delayed
measurements is designed to be used with the Kalman filter (KF)
and its variants.

Different deterministic estimation techniques used with
this structure are reported. Among them: Luenberguer
observer (LO), sliding mode observer (SMO) and high gain
observer (HGO).

Allowed
information
type

Delayed measurement. Multi-sampling of on-line and off-line
measurements. The delay and sampling time of the off-line
measurement can be variable.

System with delayed input or output. The delay can be
variable.

Allowed
model type

It can be applied to linear and non-linear systems. However, its use
in non-linear systems is limited by the model linearization method.

The prediction stage accepts almost any type of model.
Therefore, the type of model is limited by the observer used
in the observation stage.

Observability
test

The pair (A, C) must be observable. That is, if observability of the
system with on-line measurements is guaranteed, observability of
the system with non-uniform measurements will be as well.

For linear time-invariant (LTI) systems, the delayed
system is observable if the observability matrix has full
rank. For time-varying systems and non-linear systems,
tools are still limited.

Estimation
error
convergence

The estimation error convergence in each instance (major and
minor) is guaranteed. However, the analysis of the commutation of
each instance is a current research problem.

The structure of cascade in series allows the separate
analysis of the convergence of each stage. In the prediction
stage, convergence is guaranteed by the Smith predictor. In
the observation stage, the convergence depends on the
observer used.

Advantages
The required model transformation preserves the representation of
the state space. This feature allows the extension of the method to
other estimation techniques.

The structure of cascade in series allows the use of different
deterministic estimation techniques.

Disadvantag-
es

The transformation of the model is based on the linearized model at
each sampling time. The size of the augmented state space is
variable due to the delay variation. The covariance matrix P must
be returned for each commutation of the instances (major and
minor).

It does not allow multi-sampling of the measurement.

 

 

Table 3    Applications of state estimation for systems with nonuniform and delayed information

References Estimator type Use System model Tools Other characteristics

Stochastic methods based on measurement fusion

[34]

Multi-rate extended
Kalman filter

Applied to styrene
polymerization
process.

Non-linear chemical
process

Parallel filters method for
multi-rate extended
Kalman filter (EFK) is
used.

The proposed estimator is used
for non-linear model predictive
control.

[39]

Asynchronous
Kalman filter

Application to a
continuously stirred
tank reactor
(CSTR).

Non-linear system with
asynchronous
communication delay
and different sampling
rate

Filter recalculation method
for handling asynchronous
communication delay is
used. Decentralized data
fusion for handling different
sampling rate is used.

For a CSTR, the following are
simulated: an extended Kalman
filter, an unscented Kalman filter
and an asynchronous Kalman
filter. The performance is
evaluated with the root mean
square error criteria.

[40]

Multi-rate moving
horizon estimation

Two simulation
examples. First, the
estimation of
molecular weight
distributions in a
styrene
polymerization
process. Second,
simultaneous
parameter and state
estimation in a large
scale binary
distillation column.

Non-linear system with
multi-rate
measurements,
unknown disturbances
and measurement noise.

A variable structure of
MHE is applied setting the
MHE horizon large enough
to cover both the sampling
time and the arrival time of
slow measurements. This
proposal uses the filter
recalculation method.

A strategy for updating the
smoothed covariance matrix of
the arrival cost based on non-
linear programming (NLP)
sensitivity is proposed.

to be continued
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Continued from Table 3

References Estimator type Use System model Tools Other characteristics

[41]

Intermediate step
Kalman filter
(ISKF)

Application for
system navigation
and tracking

Linear discrete-time
system with
asynchronous multi-
rate sensor

State fusion based on
parallel filters is the process
to make combination of
information coming from
different sources of state
estimates.

The estimate is computed
recursively using a time-varying
Kalman filter to handle missing
measurements. The proposed
estimator is compared with a
conventional Kalman filter.

[42]

Modified Sigma-
point Kalman filter

Numerical
simulation example

A type of non-linear
multirate multisensor
asynchronous sampling
dynamic system.

Parallel filters are used. The
fused state estimate is
generated using multiscale
system theory and the
modified Sigma-point
Kalman filter.

This paper presents an extension
to non-linear systems of their
previous work[43].

[9]

Kalman filter with
data fusion

Two application
cases are presented:
a distillation column
linear model
(simulation) and the
separation of
bitumen from sand
in oil.

Linear system with two
types of measurements.
The first is fast,
regular, and provides
delay-free
measurements. The
second one is infrequent
and irregular with time-
varying delays.

Data fusion method to
incorporate delayed
infrequent and irregular
measurements.
Performance indicators:
average root mean square
error (ARMSE) and average
maximum computational
time (AMCT).

Convergence and observability
tests are not performed.

[44]

Moving horizon
estimation delayed
laboratory
measurements

Application to a
large-scale non-
linear
polymerization
process.

Discrete-time model.
Large-scale non-linear
systems with multi-rate
sampling
measurements.

Filter recalculation method
for handling multi-rate
sampling measurements.
Reference [40] results are
extended.

It is investigated when laboratory
measurements help to identify the
plant model mismatch and to
estimate convergence to the true
state.

Stochastic methods based on state augmentation

[8]

Variable dimension
unscented Kalman
filter (VD-UKF)

Application in
simulation for state
estimation in a
bioreactor.

Non-linear system state
estimation
incorporating
infrequent, delayed and
integral measurements.

Sample-state augmentation
method. Stability
conditions for VD-UKF are
proposed. The covariance
matrix of a priori estimation
error is related to the
observability of the system.

A concept that allows greater
weight to laboratory
measurements, called integral
measurements, is included. The
assumption of invertibility of
Jacobian matrices in the existing
methods is no longer valid for VD-
UKF. Therefore, a relaxation of
the stability condition for VD-
UKF is proposed.

[45]

Multirate Kalman
filter

Applied to a
numerical case

Non-linear system with
multi-rate
measurements

Sample-state augmentation
method to incorporate
multi-rate measurements.

Low frequency measurements are
incorporated in the estimation as
proposed to calibrate the Kalman
filter, but a mismatched filter to
model is included.

[46]

Kalman filter with
single/multiple
measurement
packets

Applied to a linear
numerical case

Discrete-time LTI
system

A modification of the
sample-state augmentation
method. The state is
updated only at each
sampling processing instant
of the major instance and all
previous estimates (of the
minor instance) are left
unchanged.

A non-probabilistic approach by
time-stamping the measurement
packets is proposed.

[11]

Kalman filter with
irregular sampling
and time-varying
delays

Applied to a linear
numerical case

Discrete-time LTI
system

Sample-state augmentation
method is used. This
method is similar to that
proposed in [46], but it is
modified to reduce the
computational cost of the
algorithm.

The proposal to incorporate
asynchronous measurements is
compared by simulation with the
augmented state method[7] and
the algorithm in [46].

[23]

Cubature Kalman
filter with delayed
measurements

Applied to the state
estimation for
penicillin and
industrial yeast
fermentation
processes

Non-linear discrete-
time system

Sample-state augmentation
method to incorporate
multi-rate measurements.

The results show the application
of the estimator with real data.

to be continued
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ors when considering real plants. In this case, models are assumed discrete and linear time invariant,  probably be-

 

Continued from Table 3

References Estimator type Use System model Tools Other characteristics

[47]

Finite-dimensional
sub-optimal filter

A new Kalman-Bucy
filter

LTI continuous-time
systems with known
and bounded
measurement delays.

Infinite dimensional state
space representation is used
to manage delay systems,
this method is based on
augmented state.

The proposed approach allows a
precise characterization of the
relationship between
measurement delay and
estimation error covariance.

[21]

Extended Kalman
filter with delayed
measurements δ

Applied to biomass
concentration
estimation in the -
endotoxins
production of
Bacillus
thurringiensis.

Non-linear systems
with delayed and multi-
rate measurements

Fixed lag smoothing
method to incorporate
delayed measurements.

A methodology for incorporating
delayed and multisampling
measurements in non-linear state
estimation techniques is proposed
based on [7].

Deterministic methods based on piece-wise observers

[13]

Piece-wise
continuous observer
(PCO)

Electromechanical
processes. Real
application for a
conveyor belt with
artificial vision
system.

Linear system with
variable sampling time
and delayed
measurements.

The process is modeled as a
piece-wise continuous-time
hybrid system and reduced-
order discrete-time
Luenberger observer is used
to obtain the delayed
estimated state.

Assumes that the linear system is
observable.

[48]

Two types:
Luenberger-type
observer and
observer based on
particle filtering
algorithms.

Application in
simulation for two
generic bi-modal
piece-wise affine
systems.

Discrete-time LTI
system with continuous
and discrete signals
(hybrid).

In the deterministic case:
Lyapunov functions,
Luenberger observers, linear
matrix inequalities; In the
discrete case: particle
filtering, Monte Carlo
methods.

In deterministic case: globally
asymptotically stable error,
computationally easy to
implement. In stochastic case:
stability if the number of particles
goes to infinity; however more
stability tests are required.

Deterministic methods based on chain observers

[49]

Chain observer for
delayed non-linear
systems

Numerical example
for a continuous-
time non-linear
system

Continuous-time non-
linear systems with
delay

The proposed algorithm is
composed of m observers in
a chained form, each one
estimating the state at a
given fraction of the output
delay. The last observer
estimates the current state.

Exponential convergence of the
estimate is ensured if the integer
m is sufficiently large.

[50]

Observer for
discrete-time
Lipschitz non-linear
systems with
delayed output

Numerical example
for a discrete-time
non-linear system

Discrete-time Lipschitz
non-linear systems with
delayed output

This observer consists of a
chain structure that
estimates the system state
at different delayed time
instants. Using the discrete
Gronwall inequality, the
exponential stability of the
estimation error is
guaranteed.

The proposed observer is an
extension of [49] in discrete-time
systems.

[29]

Reset observers Numerical example Linear time-varying
delay systems

The reset element is used in
a Luenberger observer for a
linear system to incorporate
delayed measurements.

It is assumed that the system is
observable. Stability conditions
are developed based on the
Lyapunov-Krasovskii function
and linear matrix inequalities
(LMIs).

[51]

Chain observer for
MIMO non-linear
systems

Applied to a problem
of hyperchaos
synchronization
when the
measurements are
stored in data
packets before the
arrival to the
processing unit
Bacillus
thurringiensis.

Multi-input and
multiple-output non-
linear systems with
time-varying
measurement delays

The Lyapunov-Razumikhin
approach was used to prove
the asymptotical
convergence to zero of the
observation error.

This observer has two
characteristics: a single step and
uniform structure. These features
allow to treat vector
measurements (MIMO) and
achieve the decomposition of the
prescribed exponential error, and
to deal with the case where the
prescribed exponential
convergence can not be reached
by a single-pass observer.

to be continued
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cause most of the tools have been developed for this type of  models.  However,  linear models  do not always repres-

 

Continued from Table 3

References Estimator type Use System model Tools Other characteristics

[14]

Cascade
combination of an
output predictor and
an attitude observer
or filter

Attitude estimation
problem when
sampled and delayed
vector
measurements are
available.

The observer is
proposed for the exact
continuous-time non-
linear attitude
kinematics model with
3-dimensional rotation,
often donated SO3. In
addition, the sampling
and delays in the sensor
are modeled as a zero
order hold (ZOH).

Cascade combination of a
predictor with an attitude
observer or filter in which
the predictor compensates
for the effect of sampling as
well as delays in vector
measurements and the filter
or observer processes the
predicted outputs and
estimates the attitude.

The predictor compensates for the
effect of sampling and delays in
vector measurements and
provides continuous-time
predictions of outputs. These
predictions are then used in an
observer or filter to estimate the
current attitude.

[15]

State estimation for
non-linear systems
with delayed output
measurements.

Numerical example
for continuous-time
non-linear system.

Continuous-time non-
linear system with
delayed measurements.

Rigorous stability analysis
for globally Lipschitz
systems to demonstrate the
current estimation state
convergence
(asymptotically/exponentia
lly) to the delayed system
state.

The observer takes the delayed
outputs and estimates the delayed
states of the system. Then a
predictor takes the delayed
estimates from the observer and
fuses them with the current input
measurements of the system to
compensate for the delay.

[22]

Observer plus
predictor in cascade.

Applied to biomass
concentration
estimation in the δ-
endotoxins
production of
Bacillus
thurringiensis.

Non-linear systems
with delayed
measurements.

Chain observer composed of
two stages. First, an
estimation stage based in a
class of second order sliding
mode algorithms and then a
prediction stage that
compensates for the delay
effect on the measurements.

Convergence proof and numerical
simulations showed the feasibility
of the proposed cascade observer-
predictor.

Deterministic methods based on distributed observers

[33]

Reduced-order
distributed
functional observers

Distributed
functional observers
design technique for
a class of
interconnected
systems with delays.
Applied to a
numerical example.

Interconnected linear
systems with the
presence of time delays
in the interconnections.

The fundamental concept of
the observer is that by
having measurement
information transferred
from other subsystems, the
highly restricted existence
conditions as in the case of a
totally decentralized
observer implying an
unknown input observer
(UIO) design scheme can be
relaxed.

The scheme does not require the
exchange of information among
the local observers.

[32]

An observer-
enhanced moving
horizon state
estimator (MHE)

A class of non-linear
systems composed of
several
interconnected
subsystems and
subject to time-
varying
communication
delays.

Application in
simulation to the
reactor-separator
process composed of
two connected
continuous-time stirred
tank reactors (CSTR)
and one flash tank
separator.

In each node of the
distributed estimator, a
predictor and a moving
horizon state estimator are
embedded. In the proposed
approach, the predictor′s
subsystem handles
communication delays and
data losses directly while
the local MHEs take
advantage of the predictions
given by the predictors.

Applications of this distributed
estimation scheme for systems
with non-uniform and delayed
information are focused on large-
scale systems.

[16]

Distributed moving
horizon estimator
(DMHE)

Chemical processes.
Real application for
a sequence of two
reactors and one
spray tower.

Non-linear system
subject to data loss and
communication delays.

Distributed structure
formed by a deterministic
auxiliary observer and local
MHEs. The auxiliary
observer determines the
trust region of the actual
states and local MHEs
optimize the estimated
states within the region.
Data loss is determined with
a permissible constraint
time.

Stability is guaranteed with the
Lyapunov-based model predictive
control[52]

to be continued
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ent the actual behavior of the processes, since they can be

removed from the linearization conditions or undergo sig-

nificant changes in their inputs. Therefore, developments

that focus on non-linear models are required.

3)  Regarding  the  stochastic  tools,  there  is  a  very

marked use  of  Kalman filter  and its  modifications.  That

is, there is a lot of credibility in this algorithm due to its

ability  to  handle  noise  and  modeling  uncertainty.  But

Kalman  filtering  assumes  a  model  with  linear  dynamics

and it supposes noise with a Gaussian probability distri-

bution  function.  Additionally,  the  Kalman  filter  al-

gorithm needs initial values for the estimate state and for

the  covariance  matrix,  but  such  values  are  not  easy  to

find, and therefore they are assumed by the designer.

4)  The  methods  based  on  “state  augmentation”

present more recent applications than the methods based

on  “fusion  measurement”.  In  this  regard,  some  authors

defend  the  greater  favorability  for  the  use  of  methods

based on “state augmentation”, due to its possible exten-

sion  to  deterministic  estimation  techniques[7].  However,

these  methods  present  similar  problems  to  those  de-

scribed in the previous item with the use  of  Kalman fil-

ter. Moreover, the extension of these methods to determ-

inistic  estimation  techniques  is  not  a  trivial  matter  be-

cause the strong switching required at each measurement

instance  (major  and  minor)  causes  problems  with  the

convergence of the estimator.

5)  Regarding  the  deterministic  estimators,  there  is  a

strong tendency to use them to validate the results in nu-

merical  cases.  These  estimators  use  non-linear  models.

Most of the deterministic structures use the observer-pre-

dictor combination to produce a well-performing estimate.

However,  there is  a lack of  application of  these methods

in  real  cases  that  consider  not  only  the  management  of

measurement  and  delayed  input  but  also  the  multi-

sampling. In addition, a greater diffusion of the results is

necessary.

6)  On the other  hand,  the deterministic  tools  for  the

incorporation of non-uniform and delayed information ba-

sically consist of distributed observers due to the great in-

fluence  that  this  area  has  recently  had  in  the  control

field.  These  tools,  in  many  cases,  designed  in  blocks  or

with  hybrid  structures,  allow  a  greater  flexibility  of  ex-

pansion of the system to be observed and its application

in large scale systems. But in turn, this flexibility causes

problems  of  standardization  and  generalization  of  the

tools or methods, so they are developed for specific prob-

lems.

7) To achieve the technological transfer of state estim-

ators using non-uniform and delayed information, it is ne-

cessary to validate the methods in different real applica-

tions.  For  example,  in  large industries  such as  oil,  sugar

or textile, it would be useful to promote the use of all in-

formation  obtained  by  sensors  and  results  of  laboratory

tests  for  estimation  and  control  of  these  processes.  It  is

even  possible  to  extend  the  use  of  non-uniformed  and

delayed information in large-scale systems such as hydro-

meteorological  networks,  interconnected  electrical  sys-

tems, water systems or the integrated mass transport sys-

tem.

8) Some recent works, which were not included in Ta-

ble  3  because  they  were  applied  to  control  systems  and

identification, propose novel techniques and tools for sys-

tems  with  non-uniform  and  delayed  information.  These

 

Continued from Table 3

References Estimator type Use System model Tools Other characteristics

Deterministic methods based on partial state observers

[17]

Multirate reduced-
order Luenberger
state observer

Non-linear chemical
process with
multirate
measurements.
Application to a
polymerization
reactor.

Continuous-time
reduced order non-
linear observers are
used for state
estimation in
polymerization
reactors.

Using polynomial
extrapolation, the slow
measurements can be
predicted for sample times
where only fast
measurements are available.

The authors also describe a
method for tuning the observer
gains ensuring that the estimation
error asymptotically decays to
zero.

[18]

Non-linear observer
design in the
presence of delayed
output
measurements

Biological reactor
example.

Designing a state-
dependent gain for a
particular class of non-
linear systems.

Non-linear observer with a
state-dependent gain which
is computed from the
solution of a system of first-
order singular PDEs.

Convergence of the estimation
error to zero is defined under a set
of conditions.

[19]

Observer with
interval time-
varying delay

Numerical example
for a continuous-
time non-linear
system

Non-linear systems
with time-delay and
uncertain non-linearity.
Luenberger observer.

Using the mean-value
theorem and constructing
the Lyapunov-Krasovskii
functional, the convergence
conditions for the non-linear
observer are established.

The process model must be
adjusted to a predefined
structure, in which the delay is
included in a part of the dynamics
of the state space.

[20]

Partial state
estimation for linear
systems with output
and input time
delays

Numerical examples
for linear systems
with output delay
and instantaneous
input.

Linear continuous-time
systems that are
subject to different time
delays in both the
measured output and
control input.

The proposed observer
estimates system state
functionals in the case of
different time delays
present in both the output
and input of the system.

To guarantee system stability, a
proposal to augment a quadratic
term of the chosen Lyapunov-
Krasovskii functional with three
delay range-decomposed integral
terms is presented.
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novel  techniques  and  tools  could  be  extrapolated  to  the

problem  of  state  estimation.  For  example  in  [53],  a  re-

cursive Bayesian identification algorithm with covariance

resetting  is  proposed  to  identify  systems  with  non-uni-

formly  sampled  input  data.  In  [54],  a  robust  finite-time

 control for delayed time-varying system is proposed.

Based  on  these  works,  tools  such  as:  recursive  least

squares, receding horizon estimation,  control and lin-

ear  matrix  inequalities  could  be  used  as  a  new  proposal

for the estimation of state in the presence of non-uniform

measurements.

5   Conclusions

In  this  paper,  a  set  of  useful  definitions  acting  as  a

framework for research in state estimation with non-uni-

form and delayed information were reviewed and informa-

tion sources found from industrial processes were charac-

terized.  Also,  different  methods  to  incorporate  non-uni-

form and delayed measurements in state estimation tech-

niques were presented in general terms. After that, a tax-

onomy to collect and classify different methods and tools

reported  for  estimation  was  proposed.  This  classification

was  performed  according  to  the  type  of  estimator  and

model used in each technique. In addition, the taxonomic

classification  considers  the  phenomenon  of  acquisition,

storage  and  use  of  non-uniform and  delayed  information

from  real  applications  and  also  incorporates  both

stochastic  and  deterministic  estimation  techniques.  Fi-

nally, through proposed taxonomy, different reported ap-

plications  in  the  literature  were  summarized  in  a  table

and  then  analyzed  and  criticized.  A  critical  analysis  of

the references showed that it is still necessary to investig-

ate  modeling  uncertainty,  to  reformulate  the  state  aug-

mentation  method  for  incorporating  non  uniform  and

delayed  information  in  deterministic  estimators,  to  ex-

pand deterministic methods to other phenomena of sensor

networks such as multi-sampling, to improve the perform-

ance  of  these  types  of  estimators  in  the  case  of  variable

parameters,  and  finally,  to  apply  the  techniques  de-

veloped  in  real  processes,  particularly  in  large-scale  sys-

tems.
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