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Abstract: This paper presents the design of sliding mode controller for the output regulation of single input single output (SISO)

nonlinear systems. The sliding surfaces are designed to force the error dynamics to follow proportional (P), proportional integral

(PI) and proportional integral derivative (PID) dynamics. The controller parameters are obtained using probabilistic particle swarm

optimization technique. A judicious selection of various sliding surfaces based on the relative degree of the systems is also elaborated.

A detailed comparison of the output regulation for various systems with different relative degree is presented. Numerical simulation

shows the effectiveness of the proposed method and robustness of the sliding mode controller.
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1 Introduction

Most of the control systems generally exhibit nonlinear

behavior in the presence of uncertainties/disturbances. It

is a challenging task to control such a system for getting

the desired system output under excessive disturbances and

nonlinearities. This led to the intense research in the ad-

vancement of robust control methods. Numerous robust

control methods are available in the literature[1, 2]. Among

these, sliding mode control (SMC) is one of the effectual

method used for robust control of the nonlinear system[3−5].

SMC has several important characteristics such as insensi-

tivity to matched uncertainties, simple design and order

reduction[6]. SMC uses a discontinuous control input to

make the system trajectory to attain and stay on a specific

manifold namely, the sliding manifold[7, 8]. SMC consists of

two phases, reaching phase and sliding phase. The system

state trajectory moves towards the sliding manifold in the

reaching phase, whereas it moves along the sliding mani-

fold in the sliding phase[9−13]. In sliding phase, the sys-

tem performance is completely determined by the sliding

manifold design which is insensitive to matched uncertain-

ties and sensitive to unmatched uncertainties. Whereas,

in reaching phase, the system is sensitive to disturbances

and uncertainties, i.e., robustness cannot be assured in the

entire response of the system[14].

The high-frequency switching in SMC makes the sys-

tem trajectories oscillate quickly about the sliding manifold.

This results in chattering. Therefore, the performance de-

teriorates and causes instability. Moreover, in the conven-
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tional SMC design, sliding manifold is chosen in such a way

that it has the relative degree of one with respect to the

control input, i.e., control input appears in the time deriva-

tive of the sliding manifold[5−18] . Preserving the core assets

of the conventional SMC, a methodology named higher or-

der SMC (HOSMC) has been used in order to eliminate

chattering and restriction on relative degree[19−22]. The

HOSMC is the generalization of the conventional SMC in

which the control input acts on the higher time deriva-

tives of the sliding manifold[23−25] . The HOSMC is effec-

tive in extending the ethical assets of conventional SMC

to systems with higher relative degree. It also provides

asymptotic convergence of the sliding manifold s and its

(r − 1)-th time derivatives to zero. The asymptotic con-

vergence of the sliding manifold and its time derivatives

make the analysis of the overall system difficult. So, the

finite time convergence of SMC with any order single input

single output (SISO) systems are explained theoretically in

[26]. A finite time convergent HOSMC controllers are built

based on the homogeneity approach in [23]. The r-th or-

der SMC entails only the information of relative degree r of

the system[21, 23]. The discontinuous control developed as

a function of sliding manifold s and its consecutive deriva-

tives ṡ, s̈, · · · , sr−1 results in transient chattering. In order

to evade this, a quasi-continuous r-th order SMC developed

as function of s, ṡ, s̈, · · · , sr−1 is continuous except at the

manifold s = ṡ = s̈ = · · · = sr−1 = 0 of r-th order SMC[27].

If suitably designed, second-order SMC (SOSMC)[28, 29] and

HOSMC will provide smooth control with less chattering,

better performance and convergence accuracy for a non-

linear system with relative degree higher than one. If the

relative degree of a system with respect to the input is one,

then Ackerman and Utkin′s formula are used to solve the

problem[30]. If relative degree equal to the dimension of

the plant and the system is in canonical form, then the
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state with the highest relative degree is selected as the slid-

ing variable. However, there is no systematic method for

structuring sliding variable in-between the relative degrees

as in [30]. The necessary conditions for the existence of

sliding manifold is explained in [31]. The design of sliding

manifold of any order for a single-input nonlinear system is

also described in [31]. At present, there is no general design

method for selecting a sliding manifold for a SISO nonlinear

systems with specified relative degree and specified sliding-

mode dynamics. Also, the control parameters of the SMC

have significant impact on control inputs and output reg-

ulation performance. Methods like Ziegler-Nichols can be

utilized to fine tune the parameters of SMC controller, but

they frequently need manual tuning. In order to avoid this

manual tuning, various classical optimization methods are

available[32−34] . Among these, particle swarm optimization

(PSO)[35, 36] is one of the powerful optimization methods

that can be easily implemented due to its computational

simplicity. The PSO algorithm begins with randomly gen-

erating an initial population, which is composed of a num-

ber of candidate solutions called particles. In the PSO al-

gorithm, the velocity of a particle is updated based on its

own experience and the other particle′s experience[37]. A

modified particle swarm optimization (MPSO) based con-

ventional sliding mode control is described in [38]. In [39],

a probabilistic PSO (PPSO) is explained. In this paper, a

probabilistic particle swarm optimized sliding mode control

for output regulation of a SISO nonlinear system with ar-

bitrary relative degree using different sliding manifolds is

designed. Also the variation of relative degree with system

order and control methodologies for choosing different slid-

ing manifolds are described. The organization of the paper

is as follows. Section 2 states the output regulation prob-

lem of a SISO nonlinear system. Then, PPSO optimized

sliding mode control is explained in Section 3. The con-

troller designs for a nonlinear system with different sliding

surfaces using SMC/HOSMC technique are explained with

simulation in Section 4. Finally, in Section 5 elaborates the

result and analysis, followed by conclusions in Section 6.

2 Problem statement

Consider a SISO nonlinear system:

ẋ = f(x) + g(x)u

y = h(x) (1)

where x ∈ Rn is the state vector which is assumed to be

measurable, u ∈ R is the control vector and y ∈ R is the

output vector. f(x), g(x) and h(x) are the smooth vector

functions. The objective of the control system is to design

a SMC that solves the output regulation problem. The idea

behind SMC is to select a sliding manifold s, as a function

of the tracking error e such that the trajectory can reach

the manifold and stay on it. The tracking error e ∈ R is

given by

e = y − yd (2)

where e is the difference between actual output y and de-

sired values of output yd. Once the sliding manifold has

been defined, then the control law is designed in such a way

that it drives the output to the desired value and satisfy

(3):

sṡ ≤ 0. (3)

The aim of the SMC is to guarantee that the output always

follows the desired trajectory, i.e., error e and its derivative

ė must be zero. sliding surface plays an essential role in

describing the dynamics of the system.

2.1 Proportional sliding surface

To fulfil the control objective, the sliding surface is se-

lected in such a way that as surface s goes to zero, the error

e also goes to zero. Let the sliding manifold s be

s = kp(y − yd) (4)

where kp > 0 is the proportional gain constant and yd is the

desired output,which is taken as a constant value. Keeping

the system states on sliding manifold s ∈ R will effect the

error e to come close to zero. Therefore, s = 0 is a stable

sliding manifold, i.e., e → 0 as t → ∞. The derivative of the

sliding manifold (4) along the state trajectories of system

(1) gives

ṡ = kp
∂h

∂x

(
f(x) + g(x)u

)
= kp(Lfh(x) + Lgh(x)u)

(5)

where

Lfh(x) = ∂h
∂xf(x), Lgh(x) = ∂h

∂xg(x)

Lfh(x) denotes the Lie derivative of h(x) along a vector field

f and Lgh(x) is the Lie derivative of h(x) along a vector

field g. According to the sliding mode reaching control law:

ṡ = −ksgn(s) (6)

where k > 0. Combining (5) and (6), the control input u is

given as

u =
(

kpLgh(x)
)−1( −ksgn(s) − kpLfh(x)

)
. (7)

The control input u appears in the time derivative of s

only if kpLgh(x) is nonsingular, i.e., the relative degree of

the system is one. If system (1) is of relative degree one,

then the control input (7) acts on the time derivative of

the surface (4) to retain the state trajectories in the sliding

surface s = 0. The stability of system (1) is analysed by

Lyapunov function (8) and its derivative is represented in

(9):

V =
1

2
s2 (8)

V̇ = sṡ. (9)

Substituting (7) into (5) yields

V̇ = −η|s| (10)
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where η = k > 0 satisfies the inequality condition sṡ ≤ 0.

Then, the system is stable and SMC convergence is assured.

Substituting (7) in (1), the system dynamics on the sliding

manifold s = 0 is given by

ẋ =f(x) + g(x)
(

kpLgh(x)
)−1

(−ksgn(s)−
kpLfh(x)). (11)

The constraint s(x) = 0 decides the system performance

on the sliding manifold. Therefore, the movement on the

sliding manifold is controlled by the reduced order dynamics

n − 1.

If kpLgh(x) is singular, i.e., the system is of relative de-

gree r > 1, then the control input u does not act on the time

derivative of s. Hence, the conventional SMC is unable to

solve the output regulation problem. Therefore, second or-

der SMC (SOSMC) method is used.

2.1.1 Second order SMC

The SOSMC should satisfy the following condition:

s = ṡ = 0. (12)

If system (1) is of relative degree two, then the control

input u steers sliding manifold s and its derivative ṡ to zero

in finite time and control input u is performing discontin-

uously on the derivative of ṡ. The differentiation of ṡ with

respect to time along the trajectory of system (1) gives

s̈ =
d

dt

(
kpLfh(x) + kpLgh(x)u

)
=

kpL2
fh(x) + kpLgLfh(x)u. (13)

The sliding function s and ṡ can be made zero in finite time

using[31] quasi-continuous control law

s̈ = −k
ṡ + p|s| 12 sgn(s)

|ṡ| + p|s| 12
(14)

where k > 0 and p = 1, which is continuous everywhere

except the origin. It becomes zero on the parabola ṡ +

|s| 12 sgn(s), for an acceptable value of k. The control input

u is obtained by combining (13) and (14) as

u =
(

kpLgLfh(x)
)−1(

us − kpL2
fh(x)

)
(15)

where

us = −k
ṡ + |s| 12 sgn(s)

|ṡ| + |s| 12
. (16)

The control input u acts on the time derivative of ṡ only if

LgLfh(x) is nonsingular, i.e., if the system is of relative de-

gree two, then the output regulation problem for the system

is solved by using sliding surface (4).

Substituting (15) in (1), the system dynamics on the slid-

ing manifold s = 0 is given by

ẋ =f(x) + g(x)
(

kpLgLfh(x)
)−1

(us − kpL2
fh(x)). (17)

The constraints s(x) = 0, ṡ(x) = 0 decide the system perfor-

mance on the sliding surface. As a result, sliding manifold

motion is controlled by the reduced order dynamics n − 2.

If kpLgLfh(x) is singular, i.e., the system is of relative

degree r > 2, then the control input u does not act on the

time derivative of ṡ. Thus, SOSMC is incapable of solving

the output regulation problem of system (1) with relative

degree r > 2. Hence, HOSMC method is used.

2.1.2 Higher order SMC

HOSMC is the generalisation of conventional SMC. The

conditions in HOSMC can be defined as the intersection of

the surfaces

s = ṡ = s̈ = · · · = sr−1 = 0 (18)

where r is the order of SMC.

∂sr

∂u
�= 0 (19)

and

KM ≥ ∂sr

∂u
≥ Km ≥ 0, C ≥ |sr|u=0| (20)

where KM , Km and C > 0. This condition (20) is satisfied

at least locally[31] . The goal of the HOSMC design is to

obtain the control law so that the system trajectory attains

the intersection of manifold (18) in finite time. If system

(1) is of relative degree r, then control input u drives s and

its (r − 1)-th time derivatives to zero in finite time. It is

performing discontinuously on the r-th time derivative of s.

The r-th time derivative of s is given as

sr = kpLr
fh(x) + kpLgLr−1

f h(x)u. (21)

The sliding function s, ṡ, · · · , sr−1 can be made zero in

finite time using[31] quasi-continuous control law:

sr = −kφr−1,r (s, ṡ, s̈, · · · , sr−1) (22)

where

φi,r =
θi,r

Ni,r
(23)

θi,r = si + piN
(r−i)

(r−i+1)
(i−1),r

(24)

Ni,r = |si| + piN
(r−i)

(r−i+1)
(i−1),r (25)

N0,r = |s|, θ0,r = s, φ0,r = sgn(s). (26)

Combining (21) and (22), the control input u is given by

u =
(

kpLgLr−1
f h(x)

)−1(
us1 − kpLr

fh(x)
)

(27)

where

us1 = −kφr−1,r (s, ṡ, s̈, · · · , sr−1). (28)

The control input u appears on sr only if kpLgLr−1
f h(x) is

nonsingular, i.e., the system is of relative degree r. Then,

output regulation problem for system (1) with relative de-

gree r is solved using r-th order SMC by choosing the sur-

face (4).

The system dynamics on the manifold s = 0 is obtained

by substituting (27) in (1).

ẋ =f(x) + g(x)
(

kpLgLr−1
f h(x)

)−1

(us1 − kpLr
fh(x)). (29)
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The constraint s(x), ṡ(x), · · · , sr−1 = 0 decides the sys-

tem performance on the sliding surface. As a result, the

sliding manifold motion is controlled by the reduced order

dynamics n − r.

Remark 1. If the system is of relative degree r, then

the order of the system is reduced to n− r by choosing the

sliding manifold (4).

2.2 Proportional integral sliding surface

For improving the robustness of the system, an integral

term is included in the sliding manifold (4) resulting in a

proportional integral (PI) sliding surface as

s = kp(y − yd) + ki

∫
y − yddt. (30)

The differentiation of the sliding manifold (30) along the

state trajectories of system (1) gives

ṡ =
∂h

∂x

(
kp(f(x) + g(x)u)

)
+kiy =

kpLfh(x) + kpLgh(x)u + kih(x). (31)

Combining (31) and (6), the control input u is given by

u =
(

kpLgh(x)
)−1

(−ksgn(s) − kpLfh(x)−
kih(x)). (32)

The control input u acts on the time derivative of s only

if kpLgh(x) is nonsingular, i.e., system (1) is of relative de-

gree one. Then, the control input (32) drives the system

response to the desired value. Therefore, the output reg-

ulation problem is solved by choosing the sliding manifold

(30).

Substituting (32) in (1), the system dynamics on the slid-

ing manifold s = 0 is given as

ẋ =f(x) + g(x)
(

kpLgh(x)
)−1

(−ksgn(s) − kpLfh(x) − kih(x)). (33)

The constraint s(x) = 0 decides the system performance

on the sliding manifold. Therefore, the movement on the

sliding manifold is controlled by the same order dynamics

n. Thus, the order of the system remains unchanged in PI

based SMC.

If kpLgh(x) is singular i.e., the system is of relative degree

r > 1, then the control input u does not act on the time

derivative of s. Hence, conventional SMC is unable to solve

the output regulation problem of system (1) with relative

degree r > 1 using the surface (30). Therefore, SOSMC

method is used.

2.2.1 Second order SMC

If system (1) is of relative degree two, then SOSMC is

used for solving the output tracking problem. In SOSMC,

the control input u drives sliding surface s and its derivative

ṡ to zero in finite time. It is acting discontinuously on the

derivative of ṡ. The differentiation of ṡ with respect to time

along the trajectory of system (1) yields

s̈ =
d

dt

(
kpLfh(x) + kpLgh(x)u + kih(x)

)
=

kpL2
fh(x) + kpLgLfh(x)u + kiLfh(x)+

kiLgh(x)u (34)

where

L2
fh(x) = LfLfh(x) =

∂(Lfh)

∂x
f(x)

LgLfh(x) =
∂(Lfh)

∂x
g(x). (35)

Combining (34) and (16), the control input u is obtained as

u =
(

kpLgLfh(x)
)−1

(us − kpL2
fh(x)−

kiLfh(x)). (36)

The control input u acts on the time derivative of ṡ only if

kpLgLfh(x) is nonsingular and kiLgh(x) is singular, i.e., if

system (1) is of relative degree two, then SOSMC is used

for the output regulation problem of system (1) choosing

the surface (30).

Substituting (36) in (1), the system dynamics on the slid-

ing manifold s = 0 is given as

ẋ =f(x) + g(x)
(

kpLgLfh(x)
)−1

(us − kpL2
fh(x) − kiLfh(x)). (37)

The constraint s(x) = 0, ṡ(x) = 0 decides the system per-

formance on the sliding manifold. Therefore, the movement

on the sliding manifold is controlled by the reduced order

dynamics n − 1. If kpLgLfh(x) is singular, i.e., the system

is of relative degree r > 2, then control input u does not act

on the time derivative of ṡ. Hence, SOSMC is unsuitable for

solving the output regulation problem of the system with

relative degree r > 2. Therefore, HOSMC method is used.

2.2.2 Higher order SMC

If system (1) is of relative degree r, then the r-th time

derivative of sliding surface s is

sr = kpLr
fh(x) + kpLgLr−1

f h(x)u + kiL
r−1
f h(x). (38)

The control input u drives sliding manifold s and its

(r − 1)-th time derivative to zero in finite time by acting

discontinuously on the r-th time derivative of sliding man-

ifold s. Combining (38) and (28), the control input u is

given as

u =
(

kpLgLr−1
f h(x)

)−1
(us1 − kpLr

fh(x)−
kiL

r−1
f h(x)). (39)

The control input u appears in the r-th time derivative of

sliding surface (sr) only if kpLgLr−1
f h(x) is nonsingular, i.e.,

system (1) is of relative degree r. Then, the r-th order SMC

is used for solving the output regulation problem of system

(1) with relative degree r by choosing the surface (30). The

system dynamics on the sliding manifold s = 0 is obtained

by substituting (39) in (1), i.e.,

ẋ =f(x) + g(x)
(

kpLgLfh(x)
)−1

(us − kpL2
fh(x) − kiLfh(x)). (40)
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The constraint s(x), ṡ(x), · · · , sr−1 = 0 decides the system

performance on the sliding manifold. As a result, the mo-

tion on the sliding manifold is controlled by the reduced

order dynamics n − (r − 1).

Remark 2. If system (1) is of relative degree r, then the

order of the system is reduced to n − (r − 1) by choosing

the sliding manifold (30).

2.3 Proportional integral derivative sur-
face

For improving the steady state error, a derivative term is

included in the PI based sliding manifold, resulting in a pro-

portional integral derivative (PID) based sliding manifold

given by

s = kp(y − yd) + ki

∫
(y − yd)dt + kd

d

dt
(y − yd). (41)

The differentiation of the manifold (41) along the state tra-

jectories of system (1) gives

ṡ = kpLf h(x) + kpLgh(x)u + kih(x) + kdL2
fh(x)+

kdLgLfh(x)u (42)

where kp > 0, ki > 0 and kd > 0.

The control u and its derivative u̇ appear in the time

derivative of s if kpLgh(x) and kdLgLfh(x) are nonsingular,

i.e., the system is of relative degree one. Then, the output

regulation problem is not solved by using the surface (41).

The control input u acts on the time derivative of s if

and only if LgLf h(x) is nonsingular and Lgh(x) is singular,

i.e., the system is of relative degree two. Then, the control

input u drives the system response to the desired value, i.e.,

output regulation problem is solved by choosing the sliding

manifold (41). Combining (42) and (6), the control input

is given by

u = (kdLgLfh(x)
)−1( −ksgn(s) − kpLfh(x)−

kih(x) − kdL2
fh(x)). (43)

The dynamics of the system on the sliding manifold s = 0

is obtained by substituting (43) in (1), i.e.,

ẋ =f(x) + g(x)(kdLgLfh(x))−1(−ksgn(s)−
kpLfh(x) − kih(x) − kdL2

fh(x)). (44)

The constraint s(x) = 0 decides the system performance

on the sliding manifold. Therefore, the movement on the

sliding manifold is controlled by the same order dynamics

n. Hence, the order of the system remains unchanged for

the system with relative degree two. If kdLgLfh(x) and

kpLgh(x) are singular, i.e., the system is of relative degree

r > 2, then the control input u does not appear in the time

derivative of s. Thus, the output regulation problem cannot

be solved using conventional SMC. Hence, SOSMC method

is used.

2.3.1 Second order SMC

If the system is of relative degree three, second order

SMC scheme is used for solving the output tracking prob-

lem, then control input u drives sliding manifold s and its

time derivative to zero in finite time.

The time derivative of ṡ along the trajectory of system

(1) yields

s̈ = kpL2
fh(x) + kpLgLfh(x)u + ki(Lfh(x)+

Lgh(x)u) + kd(L3
fh(x) + LgL2

fh(x)u). (45)

Control input u appears discontinuously in the time deriva-

tive of ṡ. By combining (45) and (16), the control input u

is given by

u =
(

kdLgL2
fh(x)

)−1
(us − kpL2

fh(x)−
kiLfh(x) − kdL3

fh(x)). (46)

The control input u acts on the time derivative of ṡ only if

kdLgL2
fh(x) is nonsingular, kpLgLfh(x) and kiLgh(x) are

singular, i.e., the system is of relative degree three. Then,

SOSMC method is used for solving the output regulation

problem of the system with relative degree three by choos-

ing the surface (41).

The system dynamics on the sliding manifold s = 0 is

obtained by substituting (46) in (1), i.e.,

ẋ =f(x) + g(x)
(

kdLgL2
fh(x)

)−1
(us−

kpL2
fh(x) − kiLfh(x) − kdL3

fh(x)). (47)

The constraints s(x) = 0, ṡ(x) = 0 decide the system per-

formance on the sliding manifold, therefore the movement

on the sliding manifold is controlled by the reduced order

dynamics n − 1.

If kdLgL2
f h(x) is singular, i.e., the relative degree of the

system r > 3, then control input u is not acting on the

time derivatives of ṡ. Thus, SOSMC method is incapable

of solving the output regulation problem of the system with

relative degree r > 3. Hence, HOSMC method is used.

2.3.2 Higher order SMC

The intention of the HOSMC method is to obtain the

control input so that the system trajectory attains the in-

tersection of surface (18) in finite time. If the system is

of relative degree r, then the control input u drives sliding

surface s and its (r− 2)-th time derivatives to zero in finite

time and it is acting discontinuously on the (r − 1)-th time

derivative of sliding surface. The (r − 1)-th time derivative

of sliding manifold s is given as

sr−1 = kpLr−1
f h(x) + kpLgLr−2

f h(x)u+

kiL
r−2
f h(x) + kiLgLr−3

f h(x)u+

kdLr
fh(x) + kdLgLr−1

f h(x)u. (48)

The control input u is obtained by combining (48) and (28),

i.e.,

u =
(

kdLgLr−1
f h(x)

)−1
(us1 − kpLr−1

f h(x)−
kiL

r−2
f h(x) − kdLr

fh(x)). (49)

The control input u appears in (r − 1)-th time derivative

of sliding surface (sr−1) only if kdLgLr−1
f h(x) is nonsin-

gular and kpLgLr−2
f h(x), kiLgLr−3

f h(x) are singular, i.e.,

the system is of relative degree r. Then, output regulation
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problem for a system with relative degree r is solved using

(r − 1)-th order SMC by choosing the surface (41).

The dynamics of the system on the sliding manifold s = 0

is obtained by substituting (49) in (1).

ẋ =f(x) + g(x)
(

kdLgLr−1
f h(x)

)−1
(us1−

kpLr−1
f h(x) − kiL

r−2
f h(x) − kdLr

fh(x)). (50)

The constraint s(x), ṡ(x), · · · , sr−2 = 0 decides the system

performance on the sliding manifold. Therefore, the move-

ment on the sliding manifold is controlled by the reduced

order dynamics n − (r − 2).

Remark 3. If the system is of relative degree r, then

the order of the system is reduced to n−(r−2) by choosing

the sliding surface (41).

3 PPSO optimized sliding mode con-

trol

Optimization of control parameters is always considered

as a challenge. In order to obtain a stable and efficient con-

trol system, these parameters are very crucial. Majority of

the control parameters are adjusted by conventional meth-

ods, which are difficult and time consuming. This paper

introduces a novel method which employs swarm intelli-

gence for optimizing the control parameters of SMC. Par-

ticle swarm optimization (PSO) was originally proposed by

Kennedy and Eberhart[35] in 1995 influenced by the social

behavior of birds or fish flocking. The probable solution in

a PSO algorithm acts as a particle and the swarm behav-

ior of the natural creatures is simulated to attain the opti-

mum solution. The migrations of the particles in the search

space are guided by its initial position and velocity vectors.

The velocity vectors are responsible for directing the trajec-

tory of the particle and the positions of these particles are

modified based on this velocity. The fitness value of each

particle is evaluated by its fitness function. Based on the

fitness value, the velocity and position of each particle are

updated. Individual particles are attracted towards their

previous best position and the swarm′s best position in the

search space, leads them towards the optimal position[36].

The fitness function used in this work is the integral square

error (ISE)=
∫

e2dt. This is reflected by the system time

constant, which decides the performance of any nonlinear

system.

In PSO, the introduction of a random function will lead

to limited probabilistic displacement since the velocity of

each particle is the resultant of Pbest and gbest. So, the

traditional PSO is sometimes incapable of searching a so-

lution space effectively and expeditiously. This leads to

a decrease in convergence rates and precision of PSO. To

overcome this, probabilistic particle swarm optimization

(PPSO) method[39] is proposed in which the velocity of

each particle is updated with respect to a probability ei-

ther towards particle best (Pbest) or global best (gbest). In

the PPSO approach, the particle direction of movement is

towards Pbest or gbest depending on the movement prob-

ability, which assists the particle to attain global or local

optima efficiently leading to a large branch out of solution.

In PPSO, the movements of Pbest and gbest are given in (51)

and (52) subjected to the constraints (53) and (54). Pbest

movement

vk+1
i = wvk

i + c1rand(xPbest − xk
i )

xk+1
i = xk

i + vk+1
i (51)

gbest movement

vk+1
i = wvk

i + c2rand(xgbest − xk
i )

xk+1
i = xk

i + vk+1
i . (52)

The constraints are

vk+1
i = vmax, if vk+1

i ≥ vmax

vk+1
i = vmin, if vk+1

i ≤ vmin (53)

xk+1
i = xmin, if xk+1

i < xmin

xk+1
i = xmax, if xk+1

i > xmax. (54)

The flowchart of the PPSO based SMC of the nonlinear

system is shown in Fig. 1.

In the diagram, Pi is the random number generated be-

tween 0 and 1 associated with each particle and this is ex-

amined with displacement probability Pmov. If Pmov ≤ Pi

then, perform Pbest movement. Otherwise, perform gbest

movement. In proportional surface based SMC, the major

task is to optimize the parameters kp in (4) and k in (7)

simultaneously by PPSO algorithm. Initially, these param-

eters are taken as random values, such that kp > 0 and

k > 0. After “n” number of iterations, optimized parame-

ter value (gbest value) for kp in (4) and k in (7) are obtained

from PPSO, when it satisfies the objective function. These

optimized parameters values, i.e., kp and k are given to P

based SMC controller.

In proportional integral (PI) surface based SMC, the ma-

jor task is to optimize the parameters kp and ki in (30) and k

in (32) simultaneously by PPSO algorithm. Initially, these

parameters are taken as random values, such that kp > 0,

ki > 0, kd > 0 and k > 0. After “n” number of iterations,

optimized parameters values (gbest value) for kp and ki in

(30) and k in (32) are obtained from PPSO, when it satisfies

the objective function. These optimized parameters values,

i.e., kp, ki and k are given to PI based SMC controller.

In PID surface based SMC, the major task is to optimize

the parameters kp, ki, kd in (41) and k in (43) simultane-

ously by PPSO algorithm. Initially, these parameters are

taken as random values, such that kp > 0, ki > 0, kd > 0

and k > 0. After “n” number of iterations, optimized pa-

rameters values (gbest value) for kp, ki and kd in (41) and

k in (43) are obtained from PPSO, when it satisfies the

objective function. The block diagram of PPSO optimized

SMC of an uncertain nonlinear system using PID surface is

shown in Fig. 2.
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Fig. 1. Flowchart of PPSO optimised SMC of SISO nonlinear

system

Fig. 2. Block diagram of PPSO optimized SMC of the nonlinear

system using PID surface

The objective of PPSO is to minimize the objective func-

tion/fitness function as the ISE. So, the error e as in (2) is

given to PPSO and SMC algorithm. The PID based SMC

controller produces the control signal by using these opti-

mized control parameters kp, ki and kd in (41) and k in (43)

and it is given to the nonlinear system to get the desired

output.

4 Numerical simulation

The goal is to design a SMC using PID based sliding sur-

face for regulating the output of a nonlinear system with an

arbitrary relative degree to the desired value. The desired

value is assumed to be zero. The simulation results are

compared with output tracking of nonlinear system with

arbitrary relative degree using SMC with P and PI based

sliding surfaces. Consider a 4th order nonlinear system as

ẋ1 = x2

ẋ2 = x3

ẋ3 = x4

ẋ4 = x2
2 + x2

1 + sin(x3) + u. (55)

4.1 Nonlinear system with relative degree
one

In the simulation of SMC of nonlinear system (55) with

relative degree one, the output y is taken as x4. The sliding

surface (4) and conventional SMC (7) for system (55) is of

relative degree one using P based sliding surface and are

given by

s = kpx4

u = k−1
p

( − ksgn(s) − kp(x2
2 + x2

1 + sin(x3))
)
.

(56)

The sliding surface (30) and conventional SMC (36) for sys-

tem (55) with relative degree one using PI based sliding

surface are given as

s = kpx4 + ki

∫
x4

u = k−1
p

( − ksgn(s) − kp(x2
2 + x2

1 + sin(x3)) − kix4

)
.

(57)

The system output response y, control input u, tracking

error e and sliding surface s for system (55) with relative

degree one using P and PI based sliding surfaces are shown

in Fig. 3.

4.2 Nonlinear system with relative degree
two

In the simulation of SMC of nonlinear system (55) with

relative degree two, the output y is taken as x3. The sliding

surface (4), its time derivative and SOSMC control (15) for

system (55) with relative degree two using P based sliding

surface are given as

s = kpx3, ṡ = kpx4

u = k−1
p

(
us − kp(x2

2 + x2
1 + sin(x3)

)
. (58)
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Fig. 3 Simulation of SMC of system (55) with relative degree one using P and PI based sliding surfaces(Color versions of figures in

this paper are available online.)

The sliding surface (30) and SOSMC control (36) for sys-

tem (55) with relative degree two using PI based sliding

surface are given by

s = kpx3 + ki

∫
x3, ṡ = kpx4 + kix3

u = k−1
p

(
us − kp(x2

2 + x2
1 + sin(x3)) − kix4

)
. (59)

The sliding surface (41) and conventional SMC control

(43) for system (55) with relative degree two using PID

based sliding surface are given as

s = kpx3 + ki

∫
x3 + kdẋ3

u = k−1
d

( − ksgn(s) − kpx4 − kix3−
kd(x2

2 + x2
1 + sin(x3))

)
. (60)

The system output y, the control input u, tracking error e,

sliding surface s, derivative of error (ė) versus error (e) and

derivative of surface (ṡ) versus surface (s) responses for sys-

tem (55) with relative degree two using P, PI based SOSMC

and PID based conventional SMC are shown in Fig. 4.

4.3 Nonlinear system with relative degree
three

In the simulation of SMC of system (55) with relative de-

gree three, the output y is taken as x2. The sliding surface

(4) and its derivatives for system (55) with relative degree

three using P based sliding surface are given as

s = kpx2, ṡ = kpx3, s̈ = kpx4. (61)

The HOSMC control (27) for system (55) with relative de-

gree three using P based sliding surface are given by

u = k−1
p

(
us1 − kp(x2

2 + x2
1 + sin(x3))

)
(62)

where us1 for relative degree three is

us1 = −k

(
s̈ + 2

(|ṡ| + |s| 23 )− 1
2 (ṡ + |s| 23 sin(s))

)

(
s̈ + 2(|ṡ| + |s| 23 )

1
2
) . (63)

The sliding surface (30) and HOSMC control (39) for sys-

tem (55) with relative degree three using PI based sliding

surface are given as

s = kpx2 + ki

∫
x2, ṡ = kpx3 + kix2

s̈ = kpx4 + kix3 (64)

u = k−1
p

(
us1 − kp(x2

2 + x2
1 + sin(x3)) − kix4

)
. (65)

The sliding surface (41), its time derivative and SOSMC

control (46) for system (55) with relative degree three us-
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Fig. 4 Simulation of P, PI based SOSMC and PID based conventional SMC of system (55) with relative degree two

ing PID based sliding surface are given by

s = kpx2 + ki

∫
x2 + kdẋ2

ṡ = kpx3 + kix2 + kdx4 (66)

u = k−1
d (us − kpx4 − kix3−

kd(x2
2 + x2

1 + sin(x3))). (67)

The system output y, error e, control input u, sliding sur-

face s, derivative of surface (ṡ) versus surface (s) and deriva-

tive of error (ė) versus error (e) responses for system (55)

with relative degree three using P, PI based HOSMC and

PID based SOSMC are shown in Fig. 5.

In all the simulations, PPSO method is used for optimiz-

ing the control parameters. The parameters used for PPSO

techniques in the simulation are listed in Table 1.

Table 1 Parameters used for PPSO techniques in the

simulation

Parameters
Relative P PI PID

degree surface surface surface

Particle number 1, 2, 3 6 6 6

wmax 1, 2, 3 0.9 0.9 0.9

wmin 1, 2, 3 0.4 0.4 0.4

c1max 1, 2, 3 2 2 2

c1min 1, 2, 3 0.1 0.1 0.1

c2max 1, 2, 3 2 2 2

c2min 1, 2, 3 0.1 0.1 0.1

Pmov 1, 2, 3 0.7 0.7 0.7

1 10 20 –

Iteration number 2 20 20 20

3 25 25 20
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Fig. 5 Simulation of P, PI based HOSMC and PID based SOSMC of system (55) with relative degree three

The SMC control parameters obtained from PPSO tech-

niques for the simulation is given in Table 2.

4.4 System uncertainties and disturbance

By considering system parameter uncertainties and dis-

turbance, system (55) has been modified as

ẋ1 = 2x2

ẋ2 = 3x3

ẋ3 = 4x4

ẋ4 = x2
2 + x2

1 + sin(x3) + u + d. (68)

5 Results and discussion

In this work, a comparative analysis of a nonlinear sys-

tem using different sliding surface is studied. The results of

mathematical analysis and simulation for a nonlinear sys-

tem with different relative degree using different sliding sur-

faces are explained as follows.

5.1 Mathematical analysis

The mathematical analysis of system (1) for P, PI and

PID based sliding surface is shown in Table 3. It is ob-

served that as the relative degree of the system increases

from 1 to r for P based sliding surface, the corresponding

order of the system changes from n− 1 to n− r. Then, the

control method changes from SMC to HOSMC respectively

as shown in Table 3.

Table 2 Optimized SMC parameters used for the simulation

Control

parameters

Relative

degree

P

surface

PI

surface

PID

surface

1 1.002 4 1.001 4 −
k 2 1.001 7 1.002 9 1.002 9

3 6.100 0 5.300 0 1.001 6

1 0.048 5 0.097 0 −
kp 2 0.859 9 1.499 2 1.614 1

3 3.947 4 1.165 1 0.752 6

1 − 0.028 7 −
ki 2 − 0.042 5 0.041 5

3 − 9.545 7 × 10−4 5.396 5 × 10−4

kd 2 − − 0.071 3

3 − − 0.135 3

In the case of PI based sliding surface, it is observed that

if the relative degree of the system increases from 1 to r,
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then the corresponding order of the system is reducing from

n to n− (r− 1) and the control method changes from SMC

to HOSMC respectively as shown in Table 3.

In PID based sliding surface, it is observed that if

the relative degree of the system increases from 1 to r,

then corresponding order of the system reduces from n

to n − (r − 2) and the control method changes from

SMC to HOSMC respectively as shown in Table 3. It

is also observed that the order of the system remains the

same for PI based sliding surface with relative degree one

and PID based sliding surface with relative degree two.

Table 3 Relative degree, system order and control method for

choosing different sliding surfaces

Surface
Relative

degree

Control

method

System.

order

1 SMC n − 1

P-surface
2 SOSMC n − 2

.

.

.
.
.
.

.

.

.

r HOSMC n − r

1 SMC n

PI-surface
2 SOSMC n − 1

.

.

.
.
.
.

.

.

.

r HOSMC n − (r − 1)

2 SMC n

PID-surface
3 SOSMC n − 1

.

.

.
.
.
.

.

.

.

r HOSMC n − (r − 2)

5.2 Simulation analysis

If system (55) is of relative degree one, then P and PI

based SMC is used for regulating the output of the sys-

tem as shown in Fig. 3. It is observed from Figs. 3 (a), 3 (c)

and 3 (d) that, P based SMC output, surface and error re-

sponses converge to zero in 0.005 s whereas, in the case of PI

based SMC, they converge to zero in 0.01 s. From Fig. 3 (b),

it is observed that control input in P based SMC showed

chattering between +20 and −20 while, in PI based SMC,

the chattering is between +10 and −10 with reduced con-

trol gain k as shown in Table 2. From this analysis, PI

based sliding surface design is preferred when the system

is of relative degree one, since the control input has less

chattering with reduced control gain k. If system (55) is

of relative degree two, then P, PI based SOSMC and PID

based conventional SMC are used for regulating the out-

put of the system as shown in Fig. 4. It is noticed from

Fig. 4 (a) and 4 (c) that P based SOSMC output and er-

ror responses converge to zero in 1.4 s with an overshoot of

−0.02. In the case of PI based SOSMC, the output and

error responses converge to zero in 1.3 s with an overshoot

of −0.01, and for PID based SMC, they converge to zero

in 0.4 s without any overshoot. PID based SMC surface

converges to zero faster than P and PI based SOSMC as

given in Fig. 4 (b). It is also noticed from Fig. 4 (d) that

PID based SMC control input is chattering between −12

and +12, whereas P and PI based SOSMC produces con-

tinuous control input with less chattering. The ė versus e

and ṡ versus s responses are shown in Figs. 4 (e) and 4 (f)

respectively. It is observed that PI based SOSMC reaching

phase is reduced much greater than P based SOSMC and

PID based SMC. By considering the simulation results of

system (55), it is concluded that PI based sliding surface

design is preferred when the relative degree of the system

is two, since the control input is continuous with reduced

reaching phase. If system (55) is of relative degree three,

then P, PI based HOSMC and PID based SOSMC are used

for regulating the output of the system as shown in Fig. 5.

It is noticed from Figs. 5 (a) and 5 (c) that the output and

the error responses of P and PI based HOSMC converge to

zero in 6 s and 5.8 s respectively. However, in PID based

SOSMC, the output and the error responses converge to

zero in 1 s with reduced control parameters (Table 2). It is

observed that in PID based SOSMC, sliding surface s and

ṡ versus s converges faster than P and PI based HOSMC

as shown in Figs. 5 (b) and 5 (f). It is also observed from

Fig. 5 (d) that PID based SOSMC control input is continu-

ous whereas, P based HOSMC control input is continuous

up to 8 s and PI based HOSMC is continuous up to 7.8 s.

The ė versus e and ṡ versus s response is shown in Figs. 5 (e)

and 5 (f) respectively. It is noticed from Figs. 5 (e) and 5 (f)

that in PID based SOSMC, reaching phase is reduced much

greater than P and PI based HOSMC. From this analysis,

it is concluded that PID based sliding surface design is ef-

fective for higher relative degree since the control input is

continuous with reduced reaching phase.

From Fig. 6, it is noted that system (68) is robust to

parameter uncertainties and disturbance. It also shows

the regulation of output with time varying desired output.

From Figs. 6 (a) to 6 (d), it is revealed that for the system

with relative degree two, PID based sliding surface is more

robust to disturbance and uncertainties compared with P

and PI surface.

6 Conclusions

This paper explains the design of sliding mode control

for SISO system with different sliding surfaces such as P,

PI and PID. These sliding surfaces are designed based on

the relative degree of the system to be controlled. The

controller parameters are tuned based on an optimization

technique called probabilistic particle swarm optimization.

It is shown that the reduced order dynamics of the system

on the sliding manifold is more for PID based sliding sur-

face compared to P and PI. However, the performance of

the PID based sliding surface design is better for a system

with higher relative degree. A detailed comparison is pre-

sented with the help of numerical simulations. Different

optimization techniques for various sliding surfaces can be

considered as a future work.
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Fig. 6 Simulation of P, PI based SOSMC and PID based conventional SMC of system (68) with relative degree two
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