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Abstract: The Robogymnast is a triple link underactuated pendulum that mimics a human gymnast hanging from a horizontal bar.

In this paper, two multi-objective optimization methods are developed using invasive weed optimization (IWO). The first method is the

weighted criteria method IWO (WCMIWO) and the second method is the fuzzy logic IWO hybrid (FLIWOH). The two optimization

methods were used to investigate the optimum diagonal values for the Q matrix of the linear quadratic regulator (LQR) controller that

can balance the Robogymnast in an upright configuration. Two LQR controllers were first developed using the parameters obtained

from the two optimization methods. The same process was then repeated, but this time with disturbance applied to the Robogymnast

states to develop another set of two LQR controllers. The response of the controllers was then tested in different scenarios using

simulation and their performance evaluated. The results show that all four controllers are able to balance the Robogymnast with

varying accuracies. It has also been observed that the controllers trained with disturbance achieve faster settling time.
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1 Introduction

Underactuated mechanism is a system whose number of

control inputs is less than the dimension of the configu-

ration space. Control of underactuated mechanism is one

of the major research topics in control engineering and

robotics[1]. The ability to control underactuated mecha-

nism through the manipulation of its natural dynamics

will allow for the design of more energy efficient machines

with the ability to achieve smooth motion comparable to

that found in the natural world. The multilink pendulum

is a popular example of an underactuated mechanism. Its

simplicity and versatility makes it an attractive test bed for

underactuated mechanism control design[2]. Pendulums are

excellently suited to illustrate hybrid systems and control of

chaotic systems[3]. Numerous studies have been conducted

on stabilizing an inverted pendulum[4−7]. Multi-objective

optimization (MOO) has become an important part of

optimization activities. Many real-world optimization

problems are naturally posed as nonlinear programming

problems having multiple conflicting objectives. A multi-

objective optimization problem deals with more than one

objective function[8]. Li et al.[9] designed an approach of

weighting matrices for linear quadratic regulator (LQR)

based on multi-objective evolutionary algorithm. The algo-

rithm uses J function and pole placement as the objective

function. Simulation results show that shorter settling time
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and smaller amplitude value deviating from steady-state

are achieved using the proposed approach. An optimal

design of LQR weighting matrices based on intelligent

optimization methods such as genetic algorithm (GA),

particle swarm optimization (PSO), differential evolution

(DE) and imperialist competitive algorithm (ICA) to solve

optimization problem of LQR for a robot manipulator

was done in [10]. A comparison of all results was done by

combining criteria like speed of response, the close-loop

pole locations, and maximum level of control effort into

an objective function to find the best weighting matrices

in the LQR controller. An optimal trade-off design for

fractional order (FO)-PID controller is proposed with a

linear quadratic regulator (LQR) based technique using two

conflicting time domain objectives[11]. The research deals

with problems such as choosing optimal weights and time

delays in the LQR formulation. Reference [12] utilized the

multi-objective invasive weed optimization (MOIWO) to

design the impedance controller for a prosthesis test robot.

The criteria for this optimization problem are the required

amount of force and motion tracking. Simulation results

showed that the solutions that were designed for motion

tracking performed motion tracking perfectly but failed

to reproduce the desired forces. While the solution that

was designed for force tracking deviated from the desired

motion in order to produce the desired force. An improved

artificial bee colony (ABC) algorithm was developed by

[13]. The improved ABC was then used to optimize the

performance of the LQR controller for a circular-rail double

pendulum system by minimizing the value of the cost

function J . The improved ABC algorithm outperformed

the traditional ABC algorithm in optimizing the parame-
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ters of the LQR controller for inverted pendulum system.

In previous investigations[14], the author applied both the

cost function (J) and settling time (T ) as separate fitness

criteria. Settling time (T ) is the time taken for the Robo-

gymnast to achieve an upright stable postion. The investi-

gations show that using J as the fitness criterion leads to

the design of an upright balancing LQR controller that is

more efficient in terms of power but with slower reaction

time. Using T as the fitness criterion leads to the design

of a LQR controller that has faster reaction time but is

less efficient in terms of power. In this research a hybrid

J and T fitness criteria is proposed to get the best of both

controllers. To incorporate the two fitness criteria simul-

taneously, two novel MOO techniques are proposed in the

design of the LQR controller for upright balancing of triple

link pendulum.

In this paper, the diagonal values of the LQR Q ma-

trix are selected using modified invasive weed optimization

(IWO) algorithms. The first technique is the weighted crite-

ria method IWO (WCMIWO) which combines the values of

cost function (J) and settling time (T ) into a single fitness

criterion with the help of weights. The second technique

is the fuzzy logic IWO hybrid (FLIWOH) which analyses

the values of J and T . These two values are then evaluated

and assigned a membership value which will then be used

as the fitness criterion. The performance of the two tech-

niques are then compared and analyzed. The performance

of the resulting controllers will also be analyzed with and

without disturbance applied to the system. The criteria

that will be used to evaluate the controllers are the set-

tling time, input voltages, the maximum angular deflection

it can recover from and ability to remain upright with dis-

turbance applied to the system. The paper is organized as

follows. First a description of the Robogymnast system is

explained. Next a brief introduction to LQR is given. In

the multi-objective optimization (MOO) section the vari-

ous types of MOO methods are briefly discussed. Next an

explanation on IWO is given and followed by its application

in LQR controller design. The following section describes

the WCMIWO and its results. This is followed by the de-

scription of the FLIWOH and its results. In Section 9, the

previous methods are repeated with disturbance applied to

the system. A discussion of the findings and results is pro-

vided in the next section. Finally, a summary of the paper

is provided.

2 System description

The triple link under-actuated mechanism (Robogym-

nast) is depicted in Fig. 1[15]. The frame of the Robogym-

nast is made from 50 mm diameter carbon fibre tubes weigh-

ing 0.213 kg/m. Aluminium components are attached to

the ends of each link to provide the structures for mounting

sensors and actuators. Physical parameters of the system

are designed according to the features of a human gymnast

swinging on a freely rotating high bar with his hands firmly

fixed to the bar. Each link represents a body part or a group

of body parts on a human. Link 1 represents the arms

(without elbows and wrists). Link 2 represents the head

and torso. Link 3 represents the legs (without knees and

ankles). Joint 1 (hands) consists of a steel shaft mounted

of ball bearings with a potentiometer mounted to measure

angle of rotation of Link 1. Joints 2 (shoulders) and 3 (hip)

are split into two sections. The first section is similar to

joint 1 with a potentiometer to measure the relative angle

of each link. The second section is the output shaft of the

drive unit (direct current (DC) motor/gearbox). The Robo-

gymnast is controlled by a PC equipped with appropriated

analog to digital (AD)/digital to analog (DA) converters.

C++ programmes are used to transmit the input/output

commands between the PC and Robogymnast[7].

Fig. 1 Robogymnast system diagram

3 Linear quadratic regulator

The LQR is a well-known design technique that provides

practical feedback gains. It is a multivariable controller as it

can control displacement of the angles of the triple inverted

at the same time[16]. Extensive research in the controls field

has shown on multiple occasions that LQR is well suited for

inverted pendulum stabilization[17] . The objective of LQR

is to find the minimum value of the following cost function:

J =

∫ ∞

0

[xT(t)Qx(t) + uT(t)Ru(t)]dt (1)

where u(t) is unconstrained, Q is required to be symmet-

ric, positive semi definite matrix and R is required to be a

symmetric positive definite matrix. For LQR the input will
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be as the following:

u(t) = −Kx(t) (2)

where K is the gain matrix required by the LQR. By apply-

ing (2) into the state space equation the following equation

will emerge:

ẋ = (A − BK)x. (3)

To obtain the value of K the following equation is then

applied:

K = R−1BTP. (4)

Using the Algebraic Riccati Equation below the value of

P can be obtained:

ATP + PA − PBR−1BTP + Q = 0. (5)

The value of K can then be obtained from (4). In order

to implement a LQR controller, one must select suitable

weighing matrices. For the Robogymnast, the value of Q

will penalize the states while the value of R will penalize

the inputs. For this reason, the elements of the Q matrix

were selected to be much larger than the elements of the R

matrix. In this paper, the settling time (T ) is also selected

as one of the fitness criteria along with cost function J . The

objective of the MOO is to find a set of solutions with the

minimum value of T and J .

4 Multi-objective optimization

Multi-objective optimization is the process of optimiz-

ing systematically and simultaneously a collection of objec-

tive functions. It originally grew out of three areas: eco-

nomic equilibrium and welfare theories, game theory and

pure mathematics[18]. Formally, MOO refers to simultane-

ous optimization (i.e., maximization and/or minimization)

of two or more objective functions, which are often in con-

flict with one another. This optimization problem can be

stated as follows[19] :

Optimize(f1(x), f2, · · ·, fn). (6)

Subject to

gi(x)≤0, i = 1, 2, · · · , ni

hi(x) = 0, i = 1, 2, · · · , ne

x1 = x = xu (7)

where n is the number of objective functions to be simul-

taneously optimized, x is the vector of m decision variables

(continuous and/or discontinuous) with lower (xi) and up-

per (xu) bounds, ni and ne are the number of inequality

(g) and equality (h) constraints, respectively. The feasible

space, F is the set of vectors x that satisfy all the constraints

and bounds in (7). In contrast to the single-objective opti-

mization case, where the optimal solution is clearly defined,

in MOO problems there is a whole set of trade-offs giving

rise to numerous Pareto optimal solutions[20] .

4.1 Types of multi-objective optimization

The primary goal of MOO is to model a decision maker′s
preference thus MOO methods are categorized depending

on how the decision-maker articulates these preferences.

MOO can be divided into three major categories[16] :

1) Methods with a priori articulation of preferences- Al-

low the user to specify preferences which may be articulated

in terms of goals or relative importance of different objec-

tives. Examples of this methods are:

a) Weighted global criterion method

b) Weighted sum method

c) Lexicographic method

d) Weighted min-max method

e) Exponential weighted criterion

f) Weighted product method

g) Goal programming methods

h) Bounded objective function method

i) Physical programming.

2) Methods for posteriori articulation of preference- Pref-

erences are selected from a group of solutions through the

use of an algorithm that is used to determine the represen-

tation of the generated Pareto optimal set. Examples of

this methods are:

a) Physical programming

b) Normal boundary intersection (NBI) method

c) Normal constraint (NC) method.

3) Methods with no articulation of preferences- Do not

require any articulation of preferences. Examples of this

methods are:

a) Global criterion methods

b) Nash arbitration and objective product method

c) Raos method.

In this paper, two MOO methods with a priori articula-

tion of preferences are utilized to search for the optimized

parameters of the LQR controller for the Robogymnast.

The first method is a weighted sum method and the second

method is a combination of fuzzy logic and IWO.

5 Invasive weed optimization

Invasive weed optimization (IWO) was selected as the

basis for the MOO techniques due to its simplicity and

flexibility. IWO has some distinctive properties in com-

parison with traditional numerical search algorithm like re-

production, spatial dispersal and competitive exclusion[21].

A flowchart of IWO is shown in Fig. 2. Equation (8)[22]

illustrates the spatial distribution equation of the IWO.

σiter =
itermax − itern

itermax
n (σinitial − σfinal) + σfinal

σiter= standard deviation at present step

σinitial= initial standard deviation
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Fig. 2 Flowchart for invasive weed optimization algorithm[23]

σfinal= final standard deviation

itermax= maximum iteration

iter= current iteration

n= modulation index. (8)

6 Application of IWO in LQR con-

troller design

The IWO is applied to find the global optimal solution of

LQR controller in order to minimize the settling time and

voltage required for the Robogymnast to go from an unbal-

ance inverted configuration to a balanced upright configu-

ration. The Q and R are set as diagonal matrices.

Q =

⎡
⎢⎢⎢⎢⎣

Q1 0 0 0 0 0

0 Q2 0 0 0 0

0 0 Q3 0 0 0

0 0 0 Q4 0 0

0 0 0 0 Q5 0

0 0 0 0 0 Q6

⎤
⎥⎥⎥⎥⎦ R =

[
R1 0

0 R2

]
.

For the optimization process, parameters R1 and R2 of

LQR controller are set to be at 1 and the values of Q are to

be optimized. This is because for this application more im-

portance is put on the control of the states rather than the

inputs. In order to ensure that the Q matrix is a symmetric,

positive semi definite matrix, Q is set as

Q = Qseeds × QT
seeds (9)

where Qseeds is a diagonal matrix consisting of IWO seeds

(S1, S2, S3, S4, S5, S6) and QT
seeds is its transpose matrix.

Qseeds =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1 0 0 0 0 0

0 S2 0 0 0 0

0 0 S3 0 0 0

0 0 0 S4 0 0

0 0 0 0 S5 0

0 0 0 0 0 S6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The optimization process is applied for an initial deflec-
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tion of absolute angles θ1 = 3◦, θ2 = 3◦, θ2 = 3◦. These are

the estimated maximum deflection angles the Robogymnast

can make before the system becomes incapable of bringing

it back to a balanced upright configuration. The objective

of the controller is to obtain a relative angle of q1≤ 0.001

rad, q2≤ 0.001 rad and q3≤ 0.001 rad, where

q =

⎡
⎢⎣

q1

q2

q3

⎤
⎥⎦ =

⎡
⎢⎣

θ1

θ2 − θ1

θ3 − θ2

⎤
⎥⎦ .

7 Weight criteria method invasive weed

optimization

The weight criteria method invasive weed optimization

(WCMIWO) technique uses both J and T in determining

the fitness of each set of seeds. The fitness criteria JT is

calculated as below

JT = (WJ × J) + (WT × T ) (11)

where WJ and WT are the multiplied weights of J and T

respectively whose values are selected through trial and er-

ror. The weights are necessary due to J being significantly

larger than T thus to ensure that J does not dominate the

resulting fitness criterion JT . The set seeds are arranged

in an ascending order with the smallest value of JT as the

fittest set seeds.

A set seed is a combination of six seeds that make up

S1, S2, S3, S4, S5 and S6. The number of maximum seed

sets is 500. This is to ensure that the number of seeds is

not too large so as not to slow down the search time. Max-

imum number of iterations is set as 10. Through trial and

error, it is found that any larger number of iterations would

not contribute to any improvement to the search process.

The target angle is set at 0.001 rad which is close enough to

be considered stable and inverted. To avoid local minima,

different random search ranges were tried, starting with a

search range [0 − 10 000] and moving on to smaller ranges.

Due to (9), if the value of the seeds is too large it will result

in exceedingly large Q matrix values. It was found that

the search range [0 − 1 000] gives the best result. The ini-

tial standard deviation is selected as 50 and used in (8),

as it is found to be suitable for initial spatial distribution

for the given range [0 − 1 000]. The final standard devia-

tion is selected as 0.5 to ensure that the final set of seeds is

not too widely dispersed from a potentially optimum set of

plants. Table 1 shows the WCMIWO parameters used in

the optimization process.

7.1 WCMIWO results

Table 2 shows the top ten best seed sets obtained from

a population of 500. The minimum J value obtained is

100.183 and the fastest time is 6.35 s.

7.2 Simulation results of LQR on robo-
gymnast

The fittest seeds, S1 =50.348, S2 =500.587, S3 =400.658,

S4 = 250.002, S5 = 150.174 and S6 = 100.002 are selected

for analysis. Using (7), the Q matrix obtained from the

seeds is

Q =

⎡
⎢⎢⎢⎢⎣

2.507 × 105 0 0 0 0 0

0 2.506 × 105 0 0 0 0

0 0 1.605 × 105 0 0 0

0 0 0 0.625 × 105 0 0

0 0 0 0 0.226 × 105 0

0 0 0 0 0 0.1 × 105

⎤
⎥⎥⎥⎥⎦

and the corresponding gain matrix is

K=

[
−0.508 × 103 −0.217 × 103 −0.027 × 103

−0.427 × 103 −0.192 × 103 0.007 × 103

0.093 × 103 0.049 × 103 0.006 × 103

0.079 × 103 0.041 × 103 0.005 × 103

]
.

Table 1 WCMIWO parameters

Variable Value Description

Number of initial plants 5 Number of randomly chosen values from the solution space

Minimum number of seeds 1 Minimum population of solutions

Maximum number of seeds 500 Maximum population of solutions

Initial value of standard deviation 50 Standard deviation used for spatial distribution of plants

Final value of standard deviation 0.5 Final standard deviation used for spatial distribution of plants

Maximum number of iterations 10 Number of iterations

Nonlinear Modulation Index 0.01 –

Weight of J 1E+6 Weightage of J

Weight of T 10 Weightage of T

q1≤ 0.001 rad
The angle where time is recorded

Target angle q2≤ 0.001 rad
and used as the fitness criterion

q3≤ 0.001 rad

Search range 0 − 1 000 Search range used based on trial and error
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Table 2 WCMIWO results

S1 S2 S3 S4 S5 S6
Time to reach the

J×105 JT
upright position (s)

50.348 500.587 400.658 250.002 150.174 100.002 6.35 222.964 85.80

500.682 150.726 500.307 250.176 50.385 0.000 8.88 100.183 98.77

200.307 400.439 350.916 300.782 150.435 450.882 11.78 329.936 150.74

899.160 649.006 649.913 550.639 250.005 250.596 8.06 747.046 155.45

540.079 647.506 890.389 494.867 199.148 491.786 8.00 777.002 157.70

543.478 648.526 893.789 496.567 199.487 494.506 8.00 781.639 158.16

545.477 649.126 895.788 497.567 199.687 496.106 8.03 784.371 158.69

546.901 649.553 897.212 498.278 199.830 497.244 8.03 786.319 158.88

548.008 649.885 898.319 498.832 199.940 498.130 8.03 787.835 159.03

548.914 650.157 899.225 499.285 200.031 498.855 8.03 789.077 159.16

Fig. 3 Configurations of Robogymnast (a) θ1=−3◦, θ2=−3◦,

θ3=−3◦, (b) θ1=−3◦, θ2= 3◦, θ3=−3◦, (c) θ1=3◦, θ2=3◦,

θ3= 3◦

In order to verify the effectiveness of the WCMIWO al-

gorithm, the parameters obtained are applied to a Matlab

program created by the authors. The results are then com-

pared for three different configurations as shown in Fig. 3 to

ensure that the optimization can be implemented in various

configurations.

Fig. 4 shows the system response and reveals that the

voltages required to bring the Robogymnast to a stable

upright position with the initial absolute angular position

equal to [–3◦, –3◦, –3◦] are 12 V for both motor 1 and motor

2. It can be seen that the time (T ) taken to reach a stable

upright position is 6.35 s.

Fig. 5 depicts the reaction of the Robogymnast as it at-

tempts to stabilize itself from an initial absolute angular

configuration equal to [–3◦, 3◦, –3◦]. The maximum volt-

age (u1) required by motor 1 is 6.62 V and motor 2 (u2) is

1.55 V.

Fig. 6 shows the response of the system when the initial

absolute angular position is equal to [3◦, 3◦, 3◦]. The time

(T ) taken for the system to stabilize is 6.35 s. The maxi-

mum voltage for motor 1 (u1) and motor 2 (u2) is 12V.

7.3 Simulation results of LQR on Robo-
gymnast with disturbance

Fig. 4 Simulation of LQR with initial deflection of θ1 = −3◦, θ2 = −3◦, θ3 =−3◦
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Fig. 5 Simulation of LQR with initial deflection of θ1 = −3◦, θ2 = 3◦, θ3 = −3◦

Fig. 6 Simulation of LQR with initial deflection of θ1 = 3◦, θ2 = 3◦, θ3 = 3◦

A simulated external disturbance was applied to each of

the Robogymnast links one at a time and its reaction is

observed. The disturbance is applied approximately 2 s af-

ter the controller attempts to stabilize the system from an

initial absolute angular position equal to [1.5◦, 1.5◦, 1.5◦].
The objective of this test is to determine the robustness

of the LQR controller with the parameters obtained using

WCMIWO.

Fig. 7 illustrates that when a disturbance is applied to

the first link the controller reacts to counter the displace-

ment quickly. The figure reveals that the amount of work

done by both motors is more or less the same. From Fig. 8

it can be seen that the system experiences a significant dis-

placement when a disturbance is applied to the second link.

However, despite this the controller is still able to balance

the Robogymnast successfully.

Fig. 9 represents the reaction of the system when a dis-

turbance is applied to the third link. The displacement in

this figure is far less severe when compared to Figs. 7 and

8. It can also be seen that when the disturbance is applied

u1 is significantly larger than u2. This indicates that most

of the work is done by motor 1.
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Fig. 7 Disturbance to Link 1

Fig. 8 Disturbance to Link 2

Fig. 9 Disturbance to Link 3
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Fig. 10 Main flowchart of the FLIWOH algorithm

8 Fuzzy logic invasive weed optimiza-

tion hybrid

In this section, a multi-objective fuzzy logic invasive

weed optimization hybrid (FLIWOH) technique is pro-

posed. This technique uses a combination of the IWO and

fuzzy logic. IWO is used for search and new seeds gener-

ation. Fuzzy logic is used to determine the fitness of the

seeds by evaluating the fitness memberships of the JT cri-

teria. The flowchart of FLIWOH algorithm and fuzzy logic

algorithm are illustrated in Figs. 10 and 11, respectively.

The fuzzy logic processor consists of two input variables

and one output variable. Each of the input variables, J and

T , has three membership functions (Low, AVG High) de-

fined in the range of [0, 1] through normalization (Fig. 12).

The boundaries of the three memberships have to be calcu-

lated at each iteration using (12)−(21) due to the changing

range of the seed variables at each iteration. The output

variable consists of three membership functions (NG, AVG,

G) within the range of [0, 5].

Two well-known fuzzy rule-based inference systems are

Mamdani fuzzy method and the Takagi-Sugeno (T-S) fuzzy

method[24]. The Mamdani method is selected as the fuzzy

inference engine due to its expressive power, making it easy

to formalize and interpret. Another advantage is that it can

be used for both multiple-input-single-output (MISO) and

multiple-input-multiple-output (MIMO) systems whereas

T-S method can only be used in MISO systems[25]. This al-

lows the Mamdani method to be used in future works when

MIMO systems are required. The fuzzy rules in Fig. 12 are

then applied and the output membership function gener-

ates the output membership value of quality (MVal). The

set seeds are then arranged in ascending order based on

their MVal values, where the smaller the value of MVal the

fitter the set of seeds. The set seeds then go through the

rest of the conventional IWO process. Table 3 display the

FLIWOH parameters used for this process.

Fig. 11 Flowchart of the fuzzy logic algorithm

Fig. 12 Fuzzy logic rule

where

MedJ = median(Jnorm) (12)

UAvgJ = MedJ + (0.25)(MedJ) (13)

LAvgJ = MedJ − (0.25)(MedJ) (14)



330 International Journal of Automation and Computing 14(3), June 2017

Table 3 FLIWOH parameters

Variable Value Description

Number of initial plants 5 Number of randomly chosen values from the solution space

Minimum number of seeds 1 Minimum population of solutions

Maximum number of seeds 500 Maximum population of solutions

Initial value of standard deviation 50 Standard deviation used for spatial distribution of plants

Final value of standard deviation 0.5 Final standard deviation used for spatial distribution of plants

Maximum number of iterations 10 Number of iterations

Nonlinear Modulation Index 0.01 –

q1≤ 0.001 rad The angle where time

Target angle q2≤ 0.001 rad is recorded and used

q3≤ 0.001 rad as the fitness criterion

Search range 0 – 1000 Search range used based on trial and error

Fig. 13 Fuzzy logic membership functions

PCJ1 = (0.25)(MedJ) (15)

PCJ2 = 1 − PCJ1 (16)

MedT = medianTnorm (17)

UAvgT = MedT + (0.25)(MedT ) (18)

LAvgT = MedT − (0.25)(MedT ) (19)

PCT1 = 0.25(MedT ) (20)

PCT2 = 1 − PCT1. (21)

Fig. 14 shows the fuzzy rules based on the membership

functions shown in Fig. 13:

Fig. 14 Fuzzy rules of the membership functions

8.1 Simulation results

Table 4 shows the fittest seeds obtained using FLIWOH.

S1 = 50.348, S2 = 500.587, S3 = 400.658, S4 = 250.002,

S5 = 150.174 and S6 = 100.002 are selected for analysis.

Using (7), the Q matrix obtained from the seeds is

Q=

⎡
⎢⎢⎢⎢⎣

0.119 × 103 0 0 0 0 0

0 10.192 × 103 0 0 0 0

0 0 6.478 × 103 0 0 0

0 0 0 2.580 × 103 0 0

0 0 0 0 0.957 × 103 0

0 0 0 0 0 0.427 × 103

⎤
⎥⎥⎥⎥⎦

and the corresponding gain matrix is

K=

[
−508.218 −217.220 −26.599 92.874 48.886 6.077

−390.619 −175.107 6.822 71.843 37.837 4.603

]
.

The parameters obtained are subjected to the same tests

as the WCMIWO parameters.

Fig. 15 illustrates the controlled system response and the

voltages when the Robogymnast is in the upright position

with the initial absolute angular position equal to [–3◦, –3◦,
–3◦]. The maximum voltage u1 is 12 V and while u2 is sig-

nificantly lower at 5.815 9V. It can be seen that the time

taken to reach a stable upright position is 6.375 s.

Fig. 16 shows the response of the system when the initial

absolute angular position is equal to [–3◦, 3◦, –3◦]. The

time (T ) taken for the system to stabilize is 4.05 s. The

maximum voltage u1 is 6.746 2 V and for u2 is 0.990 9V.
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Table 4 FLIWOH results

S1 S2 S3 S4 S5 S6 Time to reach the upright position (s) J×105 MVal

10.913 100.958 80.485 50.792 30.934 20.655 6.45 9.303 0.915 2

199.492 179.689 200.470 100.651 70.476 89.536 7.15 48.715 0.915 3

209.155 179.445 220.230 120.411 50.526 69.640 6.78 45.249 0.915 3

198.819 119.370 130.565 60.785 50.326 29.608 6.43 19.457 0.915 5

168.432 199.197 228.200 109.943 60.412 138.827 6.75 57.387 0.915 7

208.685 199.507 258.648 110.460 50.711 120.046 6.20 54.100 0.915 9

120.759 190.756 260.140 130.647 50.894 160.390 7.45 59.624 0.923 0

120.402 190.430 259.515 130.373 50.824 159.905 7.45 59.389 0.923 2

120.694 190.363 259.617 130.451 50.829 159.998 7.45 59.418 0.923 2

169.558 199.771 260.114 150.629 40.731 150.223 7.35 66.869 0.926 3

Fig. 15 Simulation of LQR with initial deflection of θ1 = −3◦, θ2 = −3◦, θ3 = −3◦

Fig. 16 Simulation of LQR with initial deflection of θ1 = −3◦, θ2 = 3◦, θ3 = −3◦
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Fig. 17 illustrates the controller′s ability to stabilize the

Robogymnast when it is in the upright position with the

initial absolute angular position equal to [3◦, 3◦, 3◦]. The

maximum voltage for the motor 1 (u1) is 12 volts and motor

2 (u2) 5.815 9 volts. It can be seen that the time taken to

reach a stable upright position is 6.37 s.

8.2 Simulation results of LQR on Robo-
gymnast with disturbance

A simulated external disturbance was applied to each of

the Robogymnast links one at a time and its reaction is

observed. The disturbance is applied 2 s after the controller

attempts to stabilize the system from an initial absolute

angular position equal to [1.5◦, 1.5◦, 1.5◦].
Fig. 18 shows the effect a disturbance has on the sys-

tem when applied to the first link. The system was able

to counter the disturbance and stabilize itself successfully.

Voltage u1 is more than double of voltage u2 thus showing

that most of the work is done by motor 1.

Fig. 19 depicts the controllers successful attempt to bal-

ance the Robogymnast when a disturbance is applied to

the second link. It can be seen that motor 1 requires signif-

icantly larger voltage compared to motor 2. The controller

is able to stabilize the robot in 7.375 s.

Fig. 17 Simulation of LQR with initial deflection of θ1 = 3◦, θ2 = 3◦, θ3 = 3◦

Fig. 18 Disturbance to Link 1
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Fig. 19 Disturbance to Link 2

Fig. 20 Disturbance to Link 3

Fig. 20 displays the reaction of the system when a distur-

bance is applied to the third link. The displacement caused

by the system is minor thus requiring very small voltages

for both motors.

9 Training with disturbance

In this section the optimization procedures in Sections

7 and 8 are repeated with minor disturbance applied to

the system model. The disturbance consists of random val-

ues between the range [0.01, 0.05] which were multiplied

with previous states and added to the present states. This

is to simulate the application of external disturbance on

the system. It is expected that the increased difficulty in

the optimization process would generate seeds that would

perform much better when applied to the system without

disturbance.

9.1 WCMIWO training with disturbance
results

Seeds S1 = 28.398, S2 = 26.475, S3 = 29.353, S4 =

11.210, S5 = 6.811 and S6 = 10.833 are selected for analy-

sis. Using (7), the matrix Q obtained from the seeds is
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Fig. 21 Simulation of LQR with initial deflection of θ1=–3◦, θ2= –3◦, θ3= –3◦

Fig. 22 Simulation of LQR with initial deflection of θ1= –3◦, θ2=3◦, θ3= –3◦

Q=

⎡
⎢⎢⎢⎢⎣

806.435 0 0 0 0 0

0 700.912 0 0 0 0

0 0 861.568 0 0 0

0 0 0 125.658 0 0

0 0 0 0 46.392 0

0 0 0 0 0 117.351

⎤
⎥⎥⎥⎥⎦

and the corresponding gain matrix is

K=

[
−551.762 −237.628 −27.863 100.860 53.093 6.594

−88.009 −39.687 12.589 16.188 8.531 1.005

]
.

Figs. 21–23 represents the behavior of the system when

the LQR controller trained using WCMIWO with distur-

bance is applied.

9.2 FLIWOH with disturbance results

Fittest seeds S1 = 25.065 9, S2 = 16.982 1, S3 = 24.798 8,

S4 = 8.711 9, S5 = 3.821 2 and S6 = 9.928 0 are selected for

analysis. Using (7), the matrix Q obtained from the seeds

is

Q=

⎡
⎢⎢⎢⎢⎣

628.298 0 0 0 0 0

0 288.392 0 0 0 0

0 0 614.982 0 0 0

0 0 0 75.898 0 0

0 0 0 0 14.602 0

0 0 0 0 0 98.566

⎤
⎥⎥⎥⎥⎦
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Fig. 23 Simulation of LQR with initial deflection of θ1 = −3◦, θ2 = 3◦, θ3 = 3◦

Fig. 24 Simulation of LQR with initial deflection of θ1 = −3◦, θ2 = −3◦, θ3 = −3◦
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Fig. 25 Simulation of LQR with initial deflection of θ1 = −3◦, θ2 = 3◦, θ3 = −3◦

Fig. 26 Simulation of LQR with initial deflection of θ1 = −3◦, θ2 = 3◦, θ3 = 3◦

and the corresponding gain matrix is

K=

[
−550.753 −236.967 −27.567 100.860 52.969 6.578

−49.551 −22.202 12.866 9.132 4.814 0.550

]

Figs. 20–26 represents the behavior of the system when

the LQR controller trained using FLIWOH with distur-

bance is applied.

10 Discussion

The simulation results proved that the designed LQR

controller using parameters obtained by both methods can

successfully bring the Robogymnast to an inverted and sta-

ble configuration. WCMIWO and FLIWOH produced LQR

controllers that have similar reaction times to each other

but are slower compared to the LQR controllers trained

with disturbance. The WCMIWO LQR controller uses

slightly less voltage for motor 1 (u1) compared to the other

methods. However, it requires higher voltage for motor 2

(u2) when compared to the other methods with FLIWOH

with disturbance requiring the least amount of voltage (u2)

for motor 2 in almost all configurations. This result is con-

sistent throughout the three configurations. In order to

further analyze the performance of the controllers, more

tests had to be done. Tables 5 – 14 show the performance

comparison of both controllers in different initial angular

configurations.

Tables 5–14 show that all the controllers trained with

disturbance achieved faster settling time compared to their

counter-parts that were not trained with disturbance. At

small angles voltage u1 is lower for WCMIWO but at large

angles the difference cease to exist. Voltage u2 is lower for

FLIWOH trained with disturbance in almost all configura-

tions. Both controllers that were trained with disturbance

were unable to recover the Robogymnast when the initial

Table 5 Comparison of performance for deflection angle of

θ1 = 1◦, θ2 = 1◦, θ3 = 1◦

Method Jsum Tmax (s) u1 max (V) u2 max (V)

WCMIWO 1313 100 4.775 8.866 7.457

FLIWOH 1649 4.600 9.272 1.939

WCMIWO with 3 449 4.075 9.630 1.536

disturbance

FLIWOH with 1 745 4.250 9.613 0.865

disturbance

Table 6 Comparison of performance for deflection angle of

θ1 = 1◦, θ2 = −1◦, θ3 = 1◦

Method Jsum Tmax (s) u1 max (V) u2max (V)

WCMIWO 72 391 3.175 2.221 0.517

FLIWOH 94 3.125 2.249 0.330

WCMIWO with 196 2.850 2.308 0.366

disturbance

FLIWOH with 109 3.050 2.30 30.374

disturbance

Table 7 Comparison of performance for deflection angle of

θ1 = 3◦, θ2 = 3◦, θ3 = 3◦

Method Jsum Tmax (s) u1 max (V) u2 max (V)

WCMIWO 22 296 000 6.35 12.000 12.000

FLIWOH 34 779 6.375 12.000 5.816

WCMIWO with 81 669 5.700 12.000 4.608

disturbance

FLIWOH with 44 946 6.025 12.000 2.595

disturbance
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absolute angular position is equal to [5.45◦, 0◦, 0◦]. Further

test shows that WCMIWO trained with disturbance can re-

cover from a maximum initial angular position of [5.432◦,
0◦, 0◦] while FLIWOH trained with disturbance can only

recover from the initial angular position of [5.369◦, 0◦, 0◦].
WCMIWO and FLIWOH can recover from a maximum ini-

tial angular position of [ 5.692◦, 0◦, 0◦].

Table 8 Comparison of performance for deflection angle of

θ1 = 3◦, θ2 = −3◦, θ3 = 3◦

Method Jsum Tmax (s) u1max (V) u2 max (V)

WCMIWO 651 520 4.075 6.662 1.550

FLIWOH 843 4.050 6.746 0.991

WCMIWO with 1 766 3.675 6.924 1.097

disturbance

FLIWOH with 979 4.000 6.909 1.121

disturbance

Table 9 Comparison of performance for deflection angle of

θ1 = 3.1◦, θ2 = 3.1◦, θ3 = 3.1◦

Method Jsum Tmax (s) u1 max (V) u2max (V)

WCMIWO 28 180 000 6.525 12.000 12.000

FLIWOH 49 311 6.650 12.000 6.010

WCMIWO with 123 270 6.025 12.000 4.762

disturbance

FLIWOH with 77 390 6.475 12.000 2.700

disturbance

Table 10 Comparison of performance for deflection angle of

θ1 = 0◦, θ2 = 4◦, θ3 = 5◦

Method Jsum Tmax (s) u1max (V) u2 max (V)

WCMIWO 4526 100 5.375 12.000 12.000

FLIWOH 5752 5.200 12.000 3.298

WCMIWO with 12 349 4.600 12.000 2.551

disturbance

FLIWOH with 6 220 4.800 12.000 1.325

disturbance

Table 11 Comparison of performance for deflection angle of

θ1 = 4◦, θ2 = 0◦, θ3 = 0◦

Method Jsum Tmax (s) u1max (V) u2 max (V)

WCMIWO 7485 100 5.575 12.000 12.000

FLIWOH 9819 5.450 12.000 4.277

WCMIWO with 20 920 4.825 12.000 3.374

disturbance

FLIWOH with 10 680 5.050 12.000 1.909

disturbance

Table 12 Comparison of performance for deflection angle of

θ1 = 5.45◦, θ2 = 0◦, θ3 = 0◦

Method Jsum Tmax (s) u1 max (V) u2max (V)

WCMIWO 33 873 000 6.700 12.000 12.000

FLIWOH 1411 751 6.800 12.000 12.000

WCMIWO with Inf Inf 12.000 12.000

disturbance

FLIWOH with Inf Inf 12.000 12.000

disturbance

Table 13 Comparison of performance for deflection angle of

θ1 = 5.65◦, θ2 = 0◦, θ3 = 0◦

Method Jsum Tmax (s) u1 max (V) u2 max (V)

WCMIWO 71 745 000 7.375 12.000 12.000

FLIWOH 2978 200 7.500 12.000 12.000

WCMIWO with Inf Inf 12.000 12.000

disturbance

FLIWOH with Inf Inf 12.000 12.000

disturbance

Table 14 Comparison of performance for deflection angle of

θ1 = 5.7◦, θ2 = 0◦, θ3 = 0◦

Method Jsum Tmax (s) u1 max (V) u2 max (V)

WCMIWO Inf Inf 12.000 12.000

FLIWOH Inf Inf 12.000 12.000

WCMIWO with Inf Inf 12.000 12.000

disturbance

FLIWOH with Inf Inf 12.000 12.000

disturbance

Based on Table 15, WCMIWO LQR controller has the

highest ranking for efficiency of motor 1 and ability to up-

right from larger initial angles. This makes it the most

suitable controller for this application largely due to the

fact that the systems dependency on u1 to maintain the

Robogymnast in an upright position is larger than u2. This

can be seen from the results where u1 is usually larger than

u2. Since both u1 and u2 have a maximum limit of 12V, it

is of high interest that the required value of u1 be as small

as possible.

Table 15 Ranking of performance

Method Settling Efficiency Efficiency Ability to be upright

time (u1) of (u2) of from larger initial

motor 1 motor 2 angles of deflection

WCMIWO 4 1 4 1

FLIWOH 3 2 3 1

WCMIWO

with 1 3 2 2

disturbance

FLIWOH

with 2 3 1 3

disturbance

For further evaluation, the performances of the con-

trollers are compared with two state of the art controllers,

the discrete LQR (DLQR) and LQR with local control

(LQR+LC). The DLQR and LQR+LC are two controllers

designed by Kamil[26]. The two controllers are suitable can-

didates for comparison with the proposed four controllers

due to the fact that their performance was evaluated us-

ing the same test bench (Robogymnast). The comparison

is done based on results obtained from [26]. Tables 16–18

show the comparison results.
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Table 16 Comparison of performance for deflection angle of

θ1 = 1.1◦, θ2 = 0.9◦, θ3 = 0.8◦

Method Tmax (s) u1 max (V) u2 max (V)

WCMIWO 4.750 8.948 7.546

FLIWOH 4.850 8.925 6.9

WCMIWO with 4.075 9.715 1.573

disturbance

FLIWOH with 4.250 9.698 0.896

disturbance

DLQR 10.000 10.000 3.00

LQR + LC 1.500 10.000 0.025

Table 17 Comparison of performance for deflection angle of

θ1 = 1.3◦, θ2 = 1.5◦, θ3 = −5◦

Method Tmax (s) u1 max (V) u2 max (V)

WCMIWO 4.775 9.246 10.000

FLIWOH 4.875 9.272 10.000

WCMIWO with 4.050 10.000 3.564

disturbance

FLIWOH with 4.225 10.000 2.661

disturbance

DLQR 10.000 10.000 5.200

LQR + LC 10.000 10.000 1.400

Table 18 Comparison of performance for deflection angle of

θ1 = 1◦, θ2 = 1.1◦, θ3 = 1.2◦

Method Tmax (s) u1 max (V) u2 max (V)

WCMIWO 4.800 9.292 7.780

FLIWOH 4.875 9.296 7.111

WCMIWO with 4.100 10.000 1.583

disturbance

FLIWOH with 4.300 10.000 0.881

disturbance

DLQR 9.000 10.000 2.700

LQR + LC 1.500 10.000 0.038

LQR + LC has the overall fastest settling time while

DLQR has the slowest settling time. WCMIWO is the most

efficient in terms of power for motor 1 while LQR with LC

is the most efficient for motor 2.

At the early stage of the WCMIWO and FLIWOH pro-

cess, exploration is prioritized to obtain an estimate of the

region of where the optimal solution is located. As the

number of iterations increases, exploitation begins to take

precedent as the estimation of the optimal solutions loca-

tion improves.

11 Conclusions

The purpose of this paper was to determine if the multi-

objective IWO could produce a LQR controller that takes

into consideration the values of cost function J and settling

time (T ). The first optimization method applies IWO for

WCM optimization of the J and T values. Weights were

assigned to each variable and the resulting values were mul-

tiplied to each other to produce a single value which is used

as the fitness criteria. The second optimization method is

a hybrid IWO that employs fuzzy logic to attain a mem-

bership value which is used as the fitness criteria. Using

the Q values obtained, two LQR controllers were designed

and tested using simulation. Two other controllers were

designed using the previous two methods but trained with

minor disturbances. All four controllers successfully bal-

anced the Robogymnast in an inverted configuration even

when external disturbances were applied to it. The four

controllers were examined and their performance evaluated

against two state of the art controllers (DLQR and LQR

with LC).
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