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Abstract: In this paper, an adaptive full order sliding mode (FOSM) controller is proposed for strict feedback nonlinear systems with

mismatched uncertainties. The design objective of the controller is to track a specified trajectory in presence of significant mismatched

uncertainties. In the first step the dynamic model for the first state is considered by the desired tracking signal. After the first step

the desired dynamic model for each state is defined by the previous one. An adaptive tuning law is developed for the FOSM controller

to deal with the bounded system uncertainty. The major advantages offered by this adaptive FOSM controller are that advanced

knowledge about the upper bound of the system uncertainties is not a necessary requirement and the proposed method is an effective

solution for the chattering elimination from the control signal. The controller is designed considering the full-order sliding surface.

System robustness and the stability of the controller are proved by using the Lyapunov technique. A systematic adaptive step by

step design method using the full order sliding surface for mismatched nonlinear systems is presented. Simulation results validate the

effectiveness of the proposed control law.
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1 Introduction

Sliding mode (SM) control is widely used because of its

simplicity in design, and particularly due to its robust-

ness towards the disturbances and the plant uncertainties.

When the system reaches the sliding mode, it is insensitive

towards the matched external disturbances and the varia-

tions of the plant parameters. Thus the sliding mode con-

trol technique has been successfully applied to a large va-

riety of practical systems such as robot manipulators, flex-

ible space structures, underwater vehicles, aircrafts, space-

crafts, power systems, electrical motors, automotive engines

or so on. The study of the sliding mode control consid-

ering matched uncertainty is widely studied in the liter-

ature[1−5]. However uncertainties existing in many phys-

ical systems may not always satisfy the matching condi-

tion. When the uncertainties/disturbances appear in the

input channel, it satisfies the matching condition and it

is termed as matched uncertainty. When the uncertain-

ties/disturbances affect the other channels, then they do

not satisfy the matching condition, so it is termed as mis-

matched uncertainty[2]. It is quite natural for a system

that it can be affected by both matched and mismatched

or unmatched perturbations. Nevertheless, traditional slid-

ing mode design methods[6] may fail to give stabilization

in presence of mismatched uncertainties. To reduce the

effect of mismatched uncertainties[7−11], different methods

have been combined with sliding mode. A linear matrix
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inequities (LMI) based sliding surface design method is de-

veloped in [9] for guaranteeing the quadratic stability. Sim-

ilarly the effect of mismatched norm bounded uncertainties

in the state matrix as well as the input matrix using LMI

technique are studied in [12].

One significant research finding is that the stability of

the system is guaranteed if the system trajectory is driven

to a bounded region. Hence when the system contains

mismatched perturbations, the information about the

upper bound of perturbations is needed in order to achieve

asymptotic stability[9]. In [11] and [13, 14], the sliding

mode controllers are designed to stabilize a given system

but the main drawback is, the controllers are applicable to

a certain kind of mismatched uncertain system, satisfying

some necessary conditions. For linear systems a technique

was developed in [15], where asymptotic stability could

be achieved without requiring the information about the

upper bound of the system′s model uncertainties. Here an

adaptive mechanism was embedded in the controller as well

as in the sliding surface, but the control input obtained

by using the above-mentioned method was not smooth

and high frequency chattering was present which made the

algorithm substantially difficult to apply in practice. In

[16-18] disturbance observers are used to control a higher

order uncertain systems with mismatched uncertainties.

Controlling of a class of nonholonomic systems affected by

uncertainties using backstepping based second order sliding

mode control is presented in [19]. In [20] backstepping

design is combined with sliding mode control for systems

in strict-feedback form with parameter uncertainties and

the same is extended to the multi-input case in [21]. In [22]

at each step a virtual control is designed using backstepping
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technique and finally at the end the system is represented

as an auxiliary second order subsystem and a second order

sliding mode control is applied. For the strict feedback un-

certain nonlinear systems, backstepping[22] approach in a

step-by-step design method is very useful to attenuate the

mismatched perturbations.

Algorithms using the quasi continuous higher order slid-

ing mode (HOSM) for strict-feedback systems are pre-

sented in [23, 24]. The control technique achieves finite-time

tracking of the desired output in the presence of smooth

mismatched uncertainties. Similarly the stabilization of

strict feedback systems with mismatched uncertainties us-

ing second-order sliding mode is presented in [25].

Roughly speaking, all the aforementioned sliding mode

design methods can be divided into two categories. The first

category mainly focuses on the stability of linear systems

under mismatched uncertainties via some classical control

design tools, such as the LMI technique[9, 12], adaptive ap-

proach[14, 25, 26]. Secondly the quasi continuous higher or-

der[23, 24] and second order sliding mode algorithms[25] are

for nonlinear strict-feedback systems.

Note that the above two categories of sliding mode meth-

ods handle the mismatched uncertainties in a robust way,

the second category handles a much more generalized sys-

tem (strict-feedback) is considered, but the above algo-

rithms are developed with the assumption that the knowl-

edge of the upper bounds of the system uncertainty must

be known. But in case of real time system the upper bound

of the uncertainty may not be always available. The advan-

tage of the proposed technique is to adaptively estimate the

bounds of the uncertainty without having any prior knowl-

edge about it. Another drawback is that the control laws

proposed in [23, 24] are not smooth, and they suffers sub-

stantial chattering. The proposed technique is more effi-

cient in reducing the chattering from the control input. The

finite time convergence is also guaranteed by the proposed

step-by-step adaptive full order sliding mode (FOSM) con-

troller using a full order sliding surface. In conventional

sliding mode, the sliding surface is chosen so that it has de-

sirable reduced-order dynamics when the system is in the

ideal sliding-mode. In this paper, a full-order sliding-mode

manifold is utilized, and a step by step control is proposed.

During the ideal sliding-mode, the system behaves with a

desirable full-order dynamics, and not with reduced-order

dynamics[27].

The aim of this paper is to present a step by step design of

an adaptive FOSM controller for nonlinear strict feedback

systems with mismatched uncertainties for which.

1) The establishment of HOSM ensures finite time con-

vergence of the system′s tracking errors in finite time.

2) The robustness and the finite time tracking of the out-

put are ensured in spite of the presence of unmatched per-

turbations, i.e., parameter uncertainties and external dis-

turbances.

3) The adaptive tuning law guarantees the estimation of

system uncertainties whose upper bounds are not required

to be known in advance.

4) The use of FOSM scheme is more successful and effi-

cient in reducing chattering as compared to [23, 24].

The design procedure is carried out by considering each

state as a separate plant. Then for each state a sliding

surface is designed using FOSM technique. The first step

is defined by the desired tracking signal by considering a

virtual control. After the first step, the desired dynamics

for each state is defined by the previous one and similarly

the sliding surface and virtual control law are obtained by

using FOSM technique and at the last step final control law

is developed.

The control law at each step consists of two parts, one is

equivalent or nominal control and the other one is switch-

ing control. The equivalent control law compensates the

nominal part of the system and the switching control law

compensates the effects of perturbations to achieve the de-

sired control objectives.

In this paper, a homogeneity based adaptive FOSM con-

troller is proposed for strict-feedback systems with mis-

matched uncertainties. As compared to [23–25], the adap-

tive technique guarantees the estimation of uncertainties

without knowing their upper bound a priori[28−40] . The

gain dynamics also ensure that there is no over-estimation

of the gain with respect to the unknown value of uncertain-

ties.

The occurrence of HOSM is proved based on homogeneity

method. The implementation of this algorithm needs the

calculation of the sliding function and its first and higher

order derivatives. For this reason, robust exact differentia-

tors[41] are employed. A systematic design method of step

by step adaptive FOSM control for a mismatched nonlinear

strict-feedback systems is presented.

The rest of the paper is organized as follows. Section 2

explains the class of systems and the problem formulation.

Section 3 discusses the design procedure of the proposed

step by step adaptive FOSM control. Effectiveness of the

proposed controller is demonstrated in Section 4 by per-

forming simulation studies. The conclusions are drawn in

Section 5.

2 Problem formulation

Consider a nonlinear system given by[23]

ẋ1 = f1(x1, t) + g1(x1, t)x2 + d1(x1, t)

ẋi = fi(x̄i, t) + gi(x̄i, t)xi+1 + di(x̄i, t), 2 ≤ i < n

ẋn = fn(x, t) + gn(x, t)u+ dn(x, t)

y = x1 (1)

where n is the order of the system, x = [x1 x2 · · ·xn]T ∈ Rn

represents measurable state vector and x̄i = [x1 x2 · · ·xi]
T.

fi(x̄i, t) and gi(x̄i, t) �= 0 are smooth nonlinear functions

available for feedback. u ∈ R is the control input. y = x1

is the output. The term di(x̄i, t) represents parametric un-

certainties and external disturbances.
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Assumption 1. The disturbances di(x̄i, t) are assumed

to be smooth and bounded, and differentiable.

The problem of interest is to design a controller such that

the output y = x1 tracks a desired smooth reference xd in

spite of the presence of the unknown bounded perturba-

tions di(x̄i, t). For further development, the tracking error

is considered as σ1 = x1 − xd.

Consider a nonlinear system given by

ξ̇ = a(t, ξ) + b(t, ξ)u

σ = σ(t, ξ) (2)

where ξ ∈ Rn, u ∈ R, σ ∈ R, a, b and σ are smooth func-

tions assumed to be unknown.

Assumption 2. The relative degree (p) of the system

(2) with respect to the output is assumed to be constant

and known a priori.

Remark 1. For sake of clarity, only the case of p = n

is considered, however the approach can be extended for

the case of p < n also, if the zero dynamics stability is

assumed[24].

For r-th order sliding mode of the system (2), the r-th

derivative of σ(t, ξ) satisfies the equation

σ(r) = ℵ(t, ξ) + �(t, ξ)u (3)

where �(t, ξ) �= 0 holds and ℵ(t, ξ) = σ(r)|u=0, �(t, ξ) =

( ∂
∂u)

σ(r). The uncertainty does not allow the immediate

reduction of (2) to (3).

Assumption 3. The following inequalities hold for some

values of Km,KM > 0 and C > 0, which can be expressed

as

0 < Km ≤ ∂

∂u
σ(r) ≤ KM , |σ(r)|u=0 ≤ C. (4)

Then (3), (4) imply the differential inclusion

σ(r) ∈ [−C,C] + [Km,KM ]u. (5)

The above problem can be solved by designing a full order

sliding surface along with a FOSM controller, in such a way

that σ = σ̇ = · · · = σ(r−1) = 0 is achieved in finite time and

also the output y = x1 tracks a smooth desired reference xd

in spite of the presence of unknown bounded mismatched

perturbations.

3 Step by step FOSM controller design

Consider the system given by (1), where each state can

be seen as a function of the previous states. If we as-

sume that xi+1(t) = φi, ∀i = 1, · · · , n − 1, i.e., as a vir-

tual control then for the first state equation of (1), i.e.,

ẋ1 = f1(x1, t) + g1(x1, t)x2 + d1(x1, t), here x2 can be seen

as virtual control and then d1(x1, t) is the matched uncer-

tainty as it is satisfying the matching condition with the

virtual control.

Now the algorithm is developed in such a way that the

output y = x1 tracks the reference signal xd.

The control block diagram of the proposed step by step

method can be shown in Fig. 1.

Fig. 1 Block diagram

Step 1. Since the system is of n-th order. Thus the

system consists of n nested control loops. The first state

equation of (1) is cascaded with other n−1 state equations.

For the inner-loop, let x2 correspond to a virtual control in-

put (φ1) acting on the dynamics of first state equation of (1)

with the aim of steering the output y = x1 to desired refer-

ence signal xd in finite time. To achieve this desired control

perspective, an n-th order full sliding surface will be de-

signed. Now the tracking error is given by σ1 = x1 − xd

and also assume that (n − 1)-th derivatives are available

for feedback. Thus a full order sliding surface[27] can be

obtained as

s1 = σ̇1 + k1|σ1|α1sgn(σ1) + k2|σ̇1|α2sgn(σ̇1) + · · · +
kn|σ(n−1)

1 |αnsgn(σ
(n−1)
1 ) (6)

where k1, k2, · · · , kn are the positive constants, chosen such

that the polynomial

P (ψ) = ψn + knψ
n−1 + · · · + k2ψ + k1 (7)

is Hurwitz.

The exponents α1, α2, · · · , αn can be obtained by satis-

fying the following conditions[42, 43]

α1 = α, n = 1

αi−1 =
αiαi+1

2αi+1−αi
, i = 2, · · · , n, ∀n ≥ 2 (8)

where αn+1 = 1, αn = α,α ∈ (1 − ε, 1), ε ∈ (0, 1).

When the ideal sliding-mode s1 = 0 is reached, the mo-

tion can be expressed as

σ̇1 + k1|σ1|α1sgn(σ1) + k2|σ̇1|α2sgn(σ̇1) + · · · +
kn|σ(n−1)

1 |αnsgn(σ
(n−1)
1 ) = 0 (9)

if k1, k2, · · · , kn are properly chosen such as mentioned

above and the exponents α1, α2, · · · , αn satisfy the condi-

tions (7) and (8), then σ1, · · · , σ(n−1)
1 converges to the equi-

librium from any initial condition. For detailed analysis, the

readers are referred to the work by Bhat and Bernstein[42]

and Feng et al.[27]

Remark 2. The missing derivatives of σi, i = 1, · · · ,
n− 1 can be estimated by means of the robust exact finite

time convergent differentiator[41].

The n-th order full sliding surface s1 will converge to zero

and σ1 = x1−xd will vanish in finite time if the virtual con-
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trol law (φ1) is chosen as

φ1 = g1(x1, t)
−1[ueq1 + u1] (10)

ueq1 = − f1(x1, t) − k1|σ1|α1sgn(σ1)−
k2|σ̇1|α2sgn(σ̇1) − · · ·−
kn|σ(n−1)

1 |αn sgn(σ
(n−1)
1 ) + ẋd (11)

u̇1 + τ1u1 = v1 (12)

v1 = − kv1sgn(s1) (13)

where u1(0) = 0, kv1 = (kd1 +kτ1 +η1) and kd1, kτ1 , η1 are

the positive constants. τ1 > 0 and kτ1 ≥ |τ1u1|.
If the disturbance and its derivative are bounded by cer-

tain values |ḋ1(x, t)| ≤ kd1 then the control signal u1 is

bounded and the following inequality holds |τ1u1| ≤ kτ1 .

The value of kv1 is chosen as kv1 = kd1 + kτ1 + η1, which

means that system (1) will reach to the equilibrium s1 = 0

in finite time. In practice, the upper bound of the system

uncertainties are often unknown in advance and hence dif-

ficult to find. Thus an adaptive tuning law can be adopted

to estimate kv1
[34, 37, 44].

The i-th sliding surface s1 will reach the equilibrium in

finite time if the tuning function is chosen as
˙̂
kv1 = γ1|s1|,

where k̂v1 is the estimate value of kv1.

Step iii. Now the i-th step design objective will be to

develop an i-th order FOSM controller such that xi = φi−1

is achieved. To achieve the desired performance i-th full

order sliding surface is chosen as

si = σ̇i + k1|σi|α1sgn(σi) + k2|σ̇i|α2sgn(σ̇i) + · · · +
ki|σ(i−1)

i |αisgn(σ
(i−1)
i ) (14)

where k1, k2, · · · , ki and α1, α2, · · · , αi are design constants

which can be obtained from (7) and (8). The i-th slid-

ing surface si will converge to the equilibrium and σi =

xi −φi−1 will vanish in finite time if the virtual control law

(φi) is chosen as

φi = gi(x̄i, t)
−1[ueqi + ui] (15)

ueqi = − fi(x̄i, t) − k1|σi|α1sgn(σi)−
k2|σ̇i|α2sgn(σ̇i) − · · ·−
ki|σ(i−1)

i |αisgn(σ
(i−1)
i ) + φ̇i−1 (16)

u̇i + τiui = vi (17)

vi = −kvisgn(si) (18)

where ui(0) = 0, kvi = (kdi + kτi + ηi) and kdi, kτi , ηi are

positive constants. τi > 0 and kτi ≥ |τiui|.
If |ḋi(x̄i, t)| ≤ kdi and also the the control signal ui satis-

fies the inequality |τiui| ≤ kτi , then with kvi = kdi+kτi +ηi,

error state σi will reach the equilibrium in finite time.

The value of kvi can be estimated adaptively by k̂vi, if

the following tuning function is chosen
˙̂
kvi = γi|si|, where

γi > 0.

Step nnn. Now at the last step the relative degree of

the system with respect to the control input is 1. Thus

the 1st order sliding mode will be designed such that

σn = xn − φn−1 converges to zero. To vanish the σn → 0

in finite time, let us choose a sliding surface

sn = σ̇n + kn|σn|α1sgn(σn) (19)

where kn > 0 and α1 ∈ (1 − ε1, 1), ε1 ∈ (0, 1). The

last sliding surface sn will converge to the equilibrium and

σn = xn−φn−1 will vanish in finite time if the actual control

law (u) is chosen as

u = gn(x, t)−1[ueqn + un] (20)

ueqn = −fn(x, t) − kn|σn|α1sgn(σn) + φ̇n−1 (21)

u̇n + τnun = vn (22)

vn = −kvnsgn(sn) (23)

where un(0) = 0, kvn = (kdn + kτn + ηn) and kdn, kτn , ηn

are positive constants. τn > 0 and kτn ≤ |τnun|.
If |ḋn(x, t)| ≤ kdn and also if the control signal un satisfies

|τnun| ≤ kτn , then with the value of kvn = kdn + kτn + ηn,

sliding surface sn will reach the equilibrium in finite time.

The value of kvn can be estimated adaptively if the follow-

ing tuning function is chosen
˙̂
kvn = γn|sn|, where γn > 0.

Remark 3. It is quite clear that the derivative of

φi = f(σi), will be extremely large or infinite as σi = 0

and σ̇i �= 0 while calculating the virtual and final control

law. To avoid this problem, the following modifications can

be used

d

dt
[|σi|αisgn(σi)] =

⎧
⎪⎨

⎪⎩

αi|σi|αi−1σ̇i, σi �= 0, σ̇i �= 0

αi|Δi|αi−1σ̇i, σi = 0, σ̇i �= 0

0, σ̇i = 0

(24)

where αi > 0, and Δi > 0 is a small positive constant.

From the work by Zhao et al.[45], it can be shown that

the above assumption can be made in order to avoid the

singularity. For more detailed analysis, the work shown

in [45] can be referred to. Similar procedure can be ap-

plied for the derivative calculation of other terms, such as

|σ(i−1)
i |αisgn(σ

(i−1)
i ).

Theorem 1. The system ẋ1 = f1(x1, t) + g1(x1, t)x2 +

d1(x1, t) will reach s1 = 0 in finite time and will converge

to zero along s1 = 0 in finite time, if the virtual control law

(φ1) is chosen as follows:

φ1 = g1(x1, t)
−1[ueq1 + u1] (25)

ueq1 = − f1(x1, t) − k1|σ1|α1sgn(σ1)−
k2|σ̇1|α2sgn(σ̇1) − · · · −
kn|σ(n−1)

1 |αnsgn(σ
(n−1)
1 ) + ẋd (26)

u̇1 + τ1u1 = v1 (27)

v1 = −kv1sgn(s1) (28)

where u1(0) = 0, kv1 = (kd1 + kτ1 + η1) > 0, τ1 > 0 and

kτ1 ≥ |τ1u1|.
Proof. For system (1), full order sliding manifold s1 can
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be rewritten as follows:

s1 = ẋ1 + k1|σ1|α1sgn(σ1) + k2|σ̇1|α2sgn(σ̇1) + · · ·+
kn|σ(n−1)

1 |αnsgn(σ
(n−1)
1 ) − ẋd =

f1(x1, t) + g1(x1, t)[ueq1 + u1] + d1(x1, t)+

k1|σ1|α1sgn(σ1) + k2|σ̇1|α2sgn(σ̇1) + · · ·+
kn|σ(n−1)

1 |αnsgn(σ
(n−1)
1 ) − ẋd

(29)

where d1(x1, t) is the uncertainty. Substituting the values

of (25) into (29) we have

s1 = d1(x1, t) + u1. (30)

Taking the derivative of (30) the above equation gives

ṡ1 = ḋ1(x1, t) + u̇1. (31)

Now consider the following Lyapunov function V1 = 1
2s2

1
.

Taking the derivative of V1

V̇1 = s1ṡ1 = s1[ḋ1(x1, t) + u̇1] =

s1[ḋ1(x1, t) + u̇1 + τ1u1 − τ1u1] =

s1[ḋ1(x1, t) + v1 − τ1u1] ≤
[ḋ1(x1, t)s1 − kv1s1sgn(s1) − τ1u1s1] ≤
[ḋ1(x1, t)s1 − (kd1 + kτ1 + η1)|s1| − τ1u1s1] ≤
[(ḋ1(x1, t)s1 − kd1|s1|) + (−τ1u1s1 − kτ1|s1|)−
η1|s1|] ≤
− η1|s1| ≤
− η1V

1
2

1 . (32)

As per the assumptions if the disturbance and its deriva-

tive are bounded by certain values |ḋ1(x1, t)| ≤ kd1 and also

the control sgnal u1 is bounded and the following inequality

holds |τ1u1| ≤ kτ1 .

The value of kv1 is chosen as kv1 = kd1 + kτ1 + η1, which

means that system (1) will reach to s1 = 0 in finite time.

�
Theorem 2. The overall stability, the convergence and

the boundness of the states x1, · · · , xi, · · · , xn can be ob-

tained if we consider the virtual control along with the ac-

tual control law as given in (10), (15) and (20).

Proof. The overall stability can be obtained by follow-

ing way, for the second step a Lyapunov function is chosen

as

V2 =
1

2
s21

︸︷︷︸
V1

+
1

2
s22 . (33)

Its first derivative can be computed as

V̇2 ≤− η1V
1
2

1 − η2|s2| ≤
− η1V

1
2

1 − η2(s
2
2)

1
2 ≤

− η̃2[V1 + s22]
1
2 ≤

− η̃2V
1
2

2 (34)

where η̃2 = min{η1, η2}.
The same procedure can be applied recursively to the re-

maining sliding surface variables. The Lyapunov function

candidate for the last step can be obtained as

Vn = Vn−1 +
1

2
s2n. (35)

Using the virtual and actual control law (10), (15) and (20)

one can easily obtain

V̇n ≤ −
n∑

i=1

ηi|si| ≤ −η̃nV
1
2 (36)

where η̃n = min[η1, · · · , ηi, · · · , ηn].

Thus, it proves the overall stability of the system. Since

si converges to zero in finite time and with the surface cho-

sen as (6), (14) and (19) the convergence of σi is also guar-

anteed. For detailed explanation, the work by Feng et al.[27]

can be referred to. �
Remark 4. In the above Theorem 2, the control signal

(25) is equivalent to a low-pass filter, where v1 is the input,

un is the output of the filter, and τ1 is the time constant

or bandwidth of the filter. The use of filter reduces the

chattering considerably but the response gets little slower.

From the work of Feng et al.[27], it is quite clear that above

consideration is quite useful for practical applications.

In practice, the upper bound of the system uncertainties

are often unknown in advance and hence difficult to find.

Thus an adaptive tuning law can be adopted to estimate

kv1
[44].

Theorem 3. The system ẋ1 = f1(x1, t) + g1(x1, t)x2 +

d1(x1, t) will reach s1 = 0 in finite time and will converge

to zero along s1 = 0 in finite time, if the virtual control law

(φ1) is chosen as

φ1 = g1(x1, t)
−1[ueq1 + u1] (37)

ueq1 = − f1(x1, t) − k1|σ1|α1sgn(σ1)−
k2|σ̇1|α2sgn(σ̇1) − · · ·−
kn|σ(n−1)

1 |αnsgn(σ
(n−1)
1 ) + ẋd (38)

u̇1 + τ1u1 = v1 (39)

v1 = −kv1sgn(s1) (40)

with γ1 > 0, the value of kv1 can be estimated adaptively

if the following tuning function is chosen as[44]

˙̂
kv1 = γ1|s1|. (41)

Proof. Let us consider the following Lyapunov func-

tion[37, 46] V1 = 1
2
s21 + 1

2ν1
k̃2

v1, where ν1 is a positive con-

stant, adaptation error k̃v1 = k̂v1 − kv1 and k̂v1 is the esti-

mated value of the kv1. Taking the derivative of Lyapunov

function yields

V̇1 = s1ṡ1 = s1[ḋ1(x1, t) + u̇1] + ν−1
1 k̃v1

˙̃
kv1 ≤

s1[ḋ1(x1, t) − k̂v1sgn(s1) − τu1]+

ν−1
1 (k̂v1 − kv1)

˙̂
kv1.
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If u1 is bounded and using

˙̂
kv1 = γ1|s1| ≤

[|ḋ1(x1, t)||s1| + kτ1 |s1| − kv1|s1| + kv1|s1|−
kv1|s1|] + ν−1

1 γ1(k̂v1 − kv1)|s1| ≤
[(|ḋ1(x1, t)||s1| + kτ1 − kv1)|s1|−
(k̂v1 − kv1)|s1|] + ν−1

1 γ1(k̂v1 − kv1)|s1| ≤
[− (−|ḋ1(x1, t)| − kτ1 + kv1)

︸ ︷︷ ︸
βs1

|s1|−

(k̂v1 − kv1) (|s1| − ν−1
1 γ1|s1|)

︸ ︷︷ ︸
βa1

] ≤

−
√

2βs1
|s1|√

2
−√

2ν1βa1
1√
2ν1

k̃v1 ≤

−min{
√

2βs1,
√

2ν1βa1}
︸ ︷︷ ︸

βx1

(
|s1|√

2
+

1√
2ν1

k̃v1) ≤

− βx1V
1
2

1 . (42)

The above inequality holds if
˙̂
kv1 = γ1|s1| and ν−1

1 γ1 < 1,

also kv1 = kd1 + kτ1 + η1, which yields βs1 > 0, βa1 > 0.

Now with βx1 = min{√2βs1,
√

2ν1βa1}, which is a positive

constant, hence the sliding surface converges to zero in finite

time. �
In a similar way, stability and convergence of other slid-

ing surfaces can also be proved.

Remark 5. By choosing a suitable adaptation tuning

parameter γi one can effectively avoid high control activity

in the reaching mode. When applying this tuning rule, the

initial setting of the adaptation gain should be smaller than

the upper bound of the system uncertainties. However, this

is not really a restriction of the method since one can freely

choose a sufficiently small number.

Remark 6. This tuning rule is applicable where |si| =

0,∀i = 1, · · · , n, is reachable. However, in real sliding mode

control, |si| cannot become exactly zero in finite time due

to sampled computation, noisy measurements, nonlineari-

ties and switching delays. Thus the adaptive parameter k̂vi

may increase boundlessly. A simple way of overcoming this

difficulty is to modify the adaptive tuning law (41) by using

the dead zone technique[30, 44, 47] as

˙̂
kvi =

{
γi|si|, |si| ≥ ε

0, |si| < ε
(43)

where ε is a small positive constant. The main feature of

this approach is that it does not require a priori the knowl-

edge of the uncertainty and disturbances. The increase of

switching gain may be controlled by using a boundary layer

neighboring the sliding surface. It means that accuracy has

to be sacrificed in order to apply the previous controller and

that the control gain is still over-estimated.

To reduce the over estimation of switching control gain

the following tuning rule can also be used

˙̂
kvi = ρi(−κik̂vi + |si|), ∀i = 1, · · · , n (44)

where ρi, κi is a positive constant.

The convergence of s1 can be proved in the following

way: Let us consider the following Lyapunov function

V1 = 1
2
s21 + 1

2ρ1
k̃2

v1. Adaptation error k̃v1 = k̂v1 − kv1 and

k̂v1 estimates the value of kv1. Taking the derivative of

Lyapunov function yields

V̇1 = s1ṡ1 = s1[ḋ1(x1, t) + u̇1] + ρ−1
1 k̃v1

˙̃kv1 =

s1[ḋ1(x1, t) − k̂v1sgn(s1) − τ1u1]+

ρ−1
1 (k̂v1 − kv1)

˙̂
kv1

where k̂v1 estimates the value of kv1.

If

|τ1u1| < kτ1

then

˙̂
kv1 = ρ1(−κ1k̂v1 + |s1|) ≤

[|ḋ1(x1, t)||s1| + |τ1u1||s1| − k̂v1|s1|]+
(k̂v1 − kv1)(−κ1k̂v1 + |s1|) ≤
kd1|s1| + kτ1 |s1| − kv1|s1|−
κ1k̂

2
v1 + κ1kv1k̂v1 ≤

kd1|s1| + kτ1 |s1| − kv1|s1|−

κ1(k̂v1 − kv1

2
)2 +

κ1k
2
v1

4
≤

− (kv1 − kd1 − kτ1)
︸ ︷︷ ︸

η1

|s1| + κ1k
2
v1

4
. (45)

It is quite clear that η1 > 0. Clearly V̇1 < 0 if |s1| > κ1k2
v1

4η1min
.

The decrease of V1 eventually drives the trajectories of the

closed loop system into |s1| < κ1k2
v1

4η1min
. Therefore the trajec-

tories of the closed loop system are bounded[26, 33, 44, 48, 49].

�
Theorem 4. The convergence and boundness of the

overall system can be obtained if we consider the tuning law

(44), and virtual control and actual control law as given in

(10), (15) and (20).

Proof. The overall Lyapunov function can be considered

as a sum of all Lyapunov functions, i.e.

V =
n∑

i=1

1

2
[s2i +

1

ρi
k̃2

vi]. (46)

Taking the derivative of (46)

V̇ =

n∑

i=1

[siṡi + ρ−1
i k̃vi

˙̃
kvi]. (47)

As proved in (45) and using the virtual and actual control

law (10), (15) and (20), one can easily obtain

V̇ ≤ −
n∑

i=1

[(kvi − kdi − kτi)
︸ ︷︷ ︸

ηi

|si| − κik
2
vi

4
]. (48)

It is quite clear that υi > 0. Clearly V̇ < 0 if |si| > κik2
vi

4ηimin
.

Therefore the trajectories of the closed loop system are
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bounded. In a similar way, since si is converging to zero

then the convergence of σi is also assured by [33]. �

4 Simulation

The proposed adaptive step by step FOSM controller is

simulated in MATLAB-Simulink by using ODE 4 solver

with a fixed step size of 0.005 s.

Example 1. As an example, we consider the perturbed

third order system[24]. The system equations are

ẋ1 = 2 sin(x1) + 1.5x2 + d1(x1, t)

ẋ2 = 0.8x1x2 + x3 + d2(x̄2, t)

ẋ3 = −1.5x2
3 + 2u+ d3(x, t) (49)

where d1(x1, t), d2(x̄2, t), d3(x, t) are given as

d1(x1, t) = 0.2 sin(t) + 0.1x1 + 0.12

d2(x̄2, t) = 0.3 sin(2t) + 0.2x1 + 0.2x2 − 0.4

d3(x, t) = 0.2 sin(2t) + 0.2x1 + 0.3x2 + 0.2x3 + 0.3 (50)

where d1(x1, t), d2(x̄2, t) are the mismatched uncertainties

and d3(x, t) is the matched uncertainty. The control objec-

tive is to track xd = 2 sin(0.15t)+4 cos(0.1t)−4 by the out-

put x1. The initial conditions are taken as x0 = [3 −2 4]T.

Step 1. Since the order of the system with respect to

the input is 3. Thus for the 1st step a 3rd order FOSM con-

troller will be designed. The first full order sliding surface

(6) is chosen by satisfying the conditions (7) and (8) as

s1 = σ̇1 + 11|σ1| 12 sgn(σ1) + 11|σ̇1| 35 sgn(σ̇1) +

2|σ̈1| 34 sgn(σ̈1) (51)

where σ1 = x1 − xd. Hence the virtual control can be ob-

tained as

φ1 =
1

1.5
[ueq1 + u1]

where

ueq1 = −2 sin(x1) − 11|σ1| 12 sgn(σ1)

−11|σ̇1| 35 sgn(σ̇1)

−2|σ̈1| 34 sgn(σ̈1) + ẋd (52)

and u1 can be calculated as u̇1 + 0.05u1 = v1 where

v1 = −k̂v1sgn(s1). The value of k̂v1 can be estimated

adaptively if the following tuning function is chosen
˙̂
kv1 =

−k̂v1 + 5.5|s1|.
Step 2. Now the relative position of 2nd state equation

with respect to the control input is 2. Hence a second or-

der FOSM controller will be designed. Now the second full

order sliding surface satisfying the conditions (7) and (8) is

chosen as

s2 = σ̇2 + 10|σ2| 12 sgn(σ2) + 2|σ̇2| 23 sgn(σ̇2) (53)

where σ2 = x2 −φ1, and the second virtual control law can

be obtained as

φ2 = [ueq2 + u2]

ueq2 = −0.8x1x2 − 10|σ2| 12 sgn(σ2) −
2|σ̇2| 23 sgn(σ̇2) + φ̇1 (54)

where u2 can be calculated as u̇2 + 0.05u2 = v2 where

v2 = −k̂v2sgn(s2). The value of k̂v2 can be estimated

adaptively if the following tuning function is chosen
˙̂
kv2 =

−k̂v2 + 6.1|s2|.
Step 3. Now the last state equation of system (49) has a

position 1, so a first order FOSM controller will be designed.

Last full order sliding surface can be designed as

s3 = σ̇3 + 0.5|σ3| 12 sgn(σ3) (55)

where σ3 is defined as σ3 = x3 − φ2, and the actual control

law can be obtained as

u =
1

2
[ueq3 + u3]

ueq3 = 1.5x2
3 − 0.5|σ3| 12 sgn(σ3) + φ̇2 (56)

and u̇3 + 0.05u3 = v3 where v3 = −k̂v3sgn(s3) and the

estimation of k̂v3 is given by
˙̂
kv3 = −0.5k̂v3 + 16|s3|.

The output tracking response and the system states by

using the step by step adaptive FOSM controller are shown

in Fig. 2, which shows that the proposed controller guar-

anteed accurate tracking in spite of the mismatched uncer-

tainties.

Fig. 2 State trajectory using the proposed controller

Fig. 3 depicts the input signal using proposed control law.

It is clear that the undesired chattering in the control input

is reduced effectively as compared to the method proposed

in [24].

The estimated parameters k̂v1 , k̂v2 and k̂v3 with the ini-

tial conditions k̂v1(0) = 1, k̂v2(0) = 1, and k̂v3(0) = 1 are

shown in Fig. 4.
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Fig. 3 Control signal

Fig. 4 Adaptive gain

It is clear that the parameters are bounded without using

the boundary layer technique (43).

Example 2. Now to observe the chattering reduction

effect of the proposed controller, the following example of

inverted pendulum[50] with mismatched uncertainty is con-

sidered. Control objective is to track the reference signal

chosen as

xd = sin(t)

ẋ1 = x2 + d1

ẋ2 =
g sin x1 − (

mlx2
2 cos x1 sin x1

mc
+m)

l[
4

3
− (

m cos2 x1

mc
+m)]

+

cosx1

mc
+m

l[
4

3
− (

m cos2 x1

mc
+m)]

u+ d2

y = x1 (57)

where d1 and d2 are given as

d1 = 0.1 cos(4t)

d2 = 0.4 sin(4t) + sin(10x1) + cos(x2). (58)

The parameters of the single inverted pendulum are tabu-

lated in Table 1.

Table 1 Parameters of the single inverted pendulum

Variable name Description Values

g Gravitational constant 9.8 ms−2

mc Mass of the cart 1 kg

m Mass of the pendulum 0.1 kg

l Effective length of the pendulum 0.5m

x1 Swing angle state

x2 Swing speed state

The proposed step by step adaptive FOSM controller

is now compared with the controller desgned by Estrada

and Fridman[23] where φ1 = u1, u̇1 = −3 σ̇1−|σ1|
1
2

|σ̇1|+|σ1|
1
2

, σ1 =

x1 − xd, σ2 = x2 − φ1 and the final control law is obtained

by

u =

⎡

⎢
⎢
⎣

cos x1

mc
+m

l[
4

3
− (

m cos2 x1

mc
+m)]

⎤

⎥
⎥
⎦

−1

×

[

−
g sin x1 − (

mlx2
2 cos x1sinx1

mc
+m)

l[
4

3
− (

m cos2 x1

mc
+m)]

−

5sgn(σ2)

]

. (59)

The output signal and the control input are shown in

Figs. 5 and 6, which show that the controller given by (59)

achieves good tracking performance with rapid convergence

but the major drawback is the high frequency chattering

present in the control input. Moreover, another design con-

straint is that the uncertainty are needed to be known a

priori.

Now for comparison a step by step adaptive FOSM con-

troller is designed for inverted pendulum (57). Since the

inverted pendulum (57) has a relative position 2, so for the

first step a second order FOSM controller will be designed.

The sliding surface is chosen as

s1 = σ̇1 + 5|σ1| 12 sgn(σ1) + 1.5|σ̇1| 23 sgn(σ̇1)

Fig. 5 Reference trajectory versus actual trajectory using the

method in [23]
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Fig. 6 Control signal using the method in [23]

where σ1 = x1 − xd, and the first virtual control law is

obtained as

φ1 = [ueq1 + u1]

ueq1 = −5|σ1| 12 sgn(σ1) − 1.5|σ̇1| 23 sgn(σ̇1) + ẋd

where u1 can be calculated as u̇1 + 0.1u1 = v1 where

v1 = −k̂v1sgn(s1). The value of k̂v1 can be estimated with

the tuning function chosen as
˙̂
kv1 = −k̂v1 + 6.1|s1|, where

k̂v1(0) = 1.

Now s2 is considered as

s2 = σ̇2 + 0.5|σ2| 12 sgn(σ2)

where σ2 is defined as σ2 = x2 − φ1, and the actual control

law can be obtained as

u =

⎡

⎢
⎢
⎣

cos x1

mc
+m

l[
4

3
− (

m cos2 x1

mc
+m)]

⎤

⎥
⎥
⎦

−1

[ueq2 + u2]

where

ueq2 = −
g sin x1 − (

mlx2
2 cos x1 sin x1

mc
+m)

l[
4

3
− (

m cos2 x1

mc
+m)]

−

0.5|σ2| 12 sgn(σ2) + φ̇1.

Also u̇2 + 0.1u2 = v2, where v2 = −k̂v2sgn(s2) and the es-

timation of k̂v2 is given by
˙̂
kv2 = −0.5k̂v2 + 4|s2|, where

k̂v2(0) = 1.

The output signal and the control input by using the pro-

posed adaptive FOSM controller are shown in Figs. 7 and

8, which show that the tracking is accurate and the control

signal is smooth as compared to Fig. 6[23]. The major ben-

efits are that the proposed controller does not required any

prior knowledge about the uncertainties and control signal

is smooth which is more suitable for electromechanical sys-

tems. The convergence of estimated parameter is shown in

Fig. 9.

Fig. 7 Reference trajectory versus actual trajectory using the

proposed method

Fig. 8 Control signal using the proposed method

Fig. 9 Adaptive gains: k̂v1 and k̂v2

5 Conclusions

A step by step adaptive full order sliding mode controller

(FOSM) controller is presented for nonlinear strict feedback

systems with mismatched uncertainties. The proposed al-

gorithm provides a finite time tracking of smooth signal.

At each step a full order sliding surface is designed to pro-

duce the finite time convergence. To deal with the unknown

bounded uncertainties an adaptive tuning rule is designed.

However, the knowledge about the upper bound of the sys-

tem uncertainties is not required to be known a priori.
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Simulation results demonstrate that the proposed control

strategy is more efficient and successful in reducing the un-

desired chattering in the control input while ensuring a sat-

isfactory tracking performance in presence of mismatched

uncertainty.
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